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Abstract: A connected graph G = (V(G), E(G)) is called a quasi-tree
graph if there exists a vertex up € V(G) such that G — ug is a tree. Set
P(2k) := {G : G is a quasi-tree graph on 2k vertices with perfect match-
ing}, and P(2k,do) := {G : G € P(2k), and there is a vertex ug € V(G)
such that G — ug is a tree with dg(uo) = dp}. In this paper, the max-
imal indices of all graphs in the sets 2(2k), £(2k,dy) are determined,
respectively. The corresponding extremal graphs are also characterized.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let
G = (V(G), E(G)) be a graph with n vertices and let A(G) be its adjacency
matrix. Since A(G) is symmetric, its eigenvalues are real. Hence, they can
be arranged as A1 (G) > A2(G) = - -+ = A, (G) and call them the eigenvalues
of G. The characteristic polynomial of G is just det(A\] — A(G)), and is
denoted by ¢(G; A). The largest eigenvalue )\ (G) is called the inder of G,
denoted by p(G). If G is connected, then A(G) is irreducible and by the
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Perron-Frobenius theory of non-negative matrices, p(G) has multiplicity
one and there exists a unique positive unit eigenvector corresponding to
p(G). We shall refer to such an eigenvector as the Perron vector of G.

Two edges of a graph G are said to be independent if they are not
adjacent in G. The vertex v in G is M-saturated if v is incident with an
edge in M; otherwise, v is M-unsaturated. We call M a perfect matching of
G if each vertex of G is M-saturated. Graphs with perfect matchings always
have an even number of vertices. A connected graph G = (V(G), E(G))
is called a quasi-tree graph, if there exists a vertex uo € V(G) such that
G — ug is a tree. The concept of quasi-tree graph was first introduced in
[21, 22). Set P (2k) := {G : G is a quasi-tree graph on 2k vertices with
a perfect matching}, and P(2k,do) := {G : G € P(2k), and there is a
vertex up € V(G) such that G — ug is a tree with dg(uo) = do}-

The investigation of the index of graphs is an important topic in the
theory of graph spectra. The Ref. [5] is a wonderful survey which includes
a large number of references on this topic. The recent developments on this
topic also involve the research concerning graphs with maximal or minimal
index of a given class of graphs (see 1, 7, 8, 10, 12, 13, 14, 15, 20, 23, 26, 27])
which are motivated by the problem proposed by Brualdi and Solheid [1):
Given a set of graphs G, find an upper bound for the index of graphs in G
and characterize the graphs in which the maximal index is attained. On the
other hand, one may hope to study the structure properties of graphs by its
spectral properties. It is hard to see the structure of a graph in certain class
of graphs each of which contains a perfect matching. If one pays attention
to the graph with maximal index in certain class of graphs each of which
contains a perfect matching, one finds that the corresponding graph has a
special structure; see, for example, [2, 3, 9, 28]. Motivated by these facts
and problems, we study the index of quasi-tree graphs each containing a
perfect matching in this paper.

In fact, quasi-tree graph attracts more and more researchers’ attention
(e.g., see [11, 18, 19, 24, 29]). In particular, Liu and Lu [21] determined
the n-vertex quasi-tree with maximal index; Xu and Meng characterized
the unique quasi-tree graph with maximum Laplacian spread among all
quasi-tree graphs; Geng and Li [11] identified the unique quasi-tree graph
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with maximal index among all quasi-tree graphs each with k pendants.
In this article, we determine the maximal indices of all graphs in the set
P(2k), P(2k,dy), respectively. The corresponding extremal graphs are
also characterized.

2. Preliminaries

For v € V(G), we use Ng(v) to denote the neighbors of v and set dg(v) =
|[Ng(v)]. For a subgraph H of G, let Ny(v) = Ng(v)NV(H) and dy(v) =
|Ng(v)] for v € V(G). A pendant verter of a graph is a vertex of degree
1.We will use G — z or G — zy to denote the graph that arises from G by
deleting the vertex z € V(G) or the edge zy € E(G). Similarly, G + ry
is a graph that arises from G by adding an edge zy ¢ E(G), where z,y €
V(G). A pendant path of G is a walk vov;...vs(s > 1) such that the
vertices vg, vy, . .., vs are distinct, dg(vo) > 2,d¢(v,) = 1, and dg(v;) = 2,
whenever 0 < ¢ < s. When we say a pendant path P = vyv, ... v, is
attached to a vertex u, we actually mean identifying vy with u. For two
vertices u,v € V(G),u # v, the distance between v and v, which would be
noted by dg(u,v), is the number of edges in a shortest path joining « and

.

Lemma 2.1 ([27]). Let G be a connected graph and p(G) be the spectral
radius of A(G). Let u,v be two vertices of G. Suppose that vy, vs,...,v, €
Ng(v) \ No(u) (1 < s < dg(v)) and x = (z1,%2,...,2,)T is the Perron
vector of A(G), where z; corresponds to vi(1 < i < n). Let G* be the
graph obtained from G by deleting the edges vv; and inserting the edges
w; (1<i<s). Ifzy >z, then p(G) < p(G*).

Lemma 2.2. Let Gy and Gy be two graphs.
(i) ((17]) If G4 is a proper spanning subgraph of G, and G, is a con-
nected graph. Then ¢(Ga; A) > ¢(G1;A) for A > p(Gy);
(i) ([4, 6]) If (G2; A) > ¢(G1; A) for X > p(Gz), then p(Gy) > p(Ga);
(iii) ([16]) If G2 is a proper subgraph of G| and G, is a connected graph,
then p(G2) < p(Gh).
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Lemma 2.3 ([4, 25]). (i) Let u be a vertez of G, and let €(u) be the

set of all cycles containing u. Then

B(G;X) = MG - — D $(G-v—u))

vEN(u)
—2 Y $(G-V(Z)N). (2.1)

Ze€(u)

In particular, if u is a pendant vertex of a graph G and vu € E(G),
then
$(G;iA) = A(G = A) = D _¢(G ~v—u).

(ii) Let uv be an edge of G and G, be the set of all cycles containing
uv. Then

HGA) = #G-wN- 3 (C-v-uN
veEN(u)

-2 Y o(G-V(2Z)A) (2.2)
Z€buv

We assume that ¢(G;A) = 1 if G is the empty graph (i.e. with no

vertices).

Lemma 2.4 ([4, 25]). If Gi,Ga,...,G; are the components of a graph G,
then we have

$(G; A) = $(G1; N(Ga; M) - - $(Ge; A) = [T #(Gis V).
i=1

3. Maximal index of graphs in £(2k)

In this section, we shall determine the maximal index of graphs in 2(2k) (k >
2).

e Let S} be the tree of order 2k — 1 obtained from a star Ky x-1 by
adding a new pendant edge at each pendant vertex of Kjx—1 (as
depicted in Fig. 1), the center of Kj x_1 is also called the center of
S;. Let B}, be the graph obtained from S} and an isolated vertex
ug by adding 2k — 1 edges joining ug to each vertex of S7.
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St 53

Figure 1: Graph S} and Sj.

e Let S5 be the tree of order 2k — 1 obtained from a star K; by
adding a new pendant edge at each of k£ — 2 pendant vertices of K x
respectively (as depicted in Fig. 1), the center of K  is also called
the center of 3. Let B2, be the graph obtained from S; and an
isolated vertex ug by adding 2k — 1 edges joining ug to each vertex of
S5. ‘

B} B}

Figure 2: Graph B} and B? for k = 3.

For example, Bg, B are shown in Fig. 2. Note that B}, , B2, € 2(2k) for
k>2.

Lemma 3.1. p(B},) < p(B2,) for k > 3.

Proof. Denote the center of S; by u, Ns;(u) = {v1,v2,...,vk-1}, and
Ng;(v1) \ {u} = {ur} (see Fig. 1). If z, > z,,, since B}, — wv; + wju &
B3y, we have p(B%,) > p(B},) by Lemma 2.1; If z, < z,,, since B}, —
{uva,...,uvk_1} + {v1ve, ..., V1061 } = BE,, we have p(B2,) > p(B3,) by
Lemma 2.1. This completes the proof.

Theorem 3.2. Let G € P(2k)(k > 2). Then p(G) < p(BZ,) and the
equality holds if and only if G = B2,.
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Gy G2 Gs G,
Figure 3: Graphs Gy, G2,G3 and G,.

Proof. When k = 2, #(4) = {G1,G2,G3,G4} as shown in Fig. 3. It’s
routine to check that B2, has the maximal index among all the graphs
in #(2k). When k > 3, choose G € #(2k) such that p(G) is as large as
possible. Let x = (z1,%2,... ,Z2x)T be the Perron vector of A(G), where x;
corresponds to the vertex u; for 1 < i < 2k (By z,, we mean the coordinate
of x corresponding to the vertex v ). Assume that G’ := G — ug is a tree.
Choose a vertex u; € V(G') such that dg(u;) is as large as possible. Let
M be a perfect matching of G. First, we establish the following sequence
of facts.

Fact 1. For each vertez v € V(G'),vuo € E(G).

Proof. Suppose to the contrary that there exists one vertex u; € V(G')
such that uou; ¢ E(G). Then G + ugu; € P(2k), and p(G + uou:) > p(G)
by Lemma 2.2 (iii), hence we get a contradiction. 3

Fact 2. For each vertex v € V(G')\{w1}, one has dg/(v) < 2.

Proof. Suppose to the contrary that there exists u; € V(G')\{u1} such
that dgs(u;) > 3. Denote Ng(uw;) = {z0,21,22,...,2, } and Ng/(uy) =
{wo,w1,wa,...,ws}. By the choice of u; and u;, s > ¢t > 2. Since G is
a tree, there is an unique path P,, connecting u; and u; in G’. Assume
that zo, wp belongs to P, (possibly 20 = u; or wo = u; ). Note that
M N {wywy, wws, ..., uuws}| <1, and [M N {uizy, uizo, ..., uize}} < 1.

Without loss of generality, assume uyws, ..., U1ws, Ui 22, ..., u;ze ¢ M. Let
- G — {uiza,...,uize} + {wi22,..., w1z}, ifx1 2z
G — {wwy, ..., uqws} + {waws, ..., uws}, if 21 <z

Then G* € P (2k), and by Lemma 2.1, p(G) < p(G™), a contradiction. O
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By Fact 2, G’ is a tree with some pendant paths attached to u;.
Fact 3. dg/(u;) > 3.

Proof. Suppose to the contrary that dg/(u;) < 3. For the choice of u,,
dg(u1) > 2, hence we have dg/(u1) = 2. Thus, G’ is a path with order
2k —1. Let G’ = v1v,... V91, then dg'(v;) = 2 for all 2 < i < 2k — 2. By
Fact 1, up is adjacent with v; for all 1 < ¢ < 2k — 1. Hence, set vy = u;.
Note that |M N {vg_1Vk, Vivk+1}| < 1. Without loss of generality, assume
UkVk1 € M. If k = 3, then G = Bj,. By Lemma 3.1, p(G) < p(B2,),
a contradiction; If k > 4, there exists at least one edge, say UmUmq1,
satisfying vmvmy1 ¢ M and m < k —2. Let

c* = { G- UmVUm+1 + Um Uk, if Ty 2 TR

G — Uk41Vk + Uk s1Vme1, if Ty, < Ty, ., -
Then G* € £(2k), and by Lemma 2.1, p(G) < p(G*), a contradiction. 1
Denote the paths attached to v, in G’ by B, P,,..., P, (s > 3).

Fact 4. Each pendant path attached to uy in G’ has length no more than
2, that is to say, ; <3 for1 <i<s.

Proof. On the contrary, suppose that, P ; = wu2...y; is such a path
of length I; — 1 > 3. Then there exists at least one edge e € E(R;)
satisfying : e ¢ M, and e is different from ujuy. Assume upmum4y is the
first such edge. Denote N(u;) = {uo,w;,ws, ws ..., Ws}, where wy = us.
Note that |M N {w w1, ujwa, ..., uiw,}| < 1. Without loss of generality,
assume uyw; ¢ M. Let

o G — UnUms1 + UiUmy1, T 2> Tp;
G — wiuy + wyum, if ry < 2.

Then G* € £(2k), and by Lemma 2.1, p(G) < p(G*), a contradiction.

Denote Q@ = {v € V(G')|dg'(v) = 1,u1v € E(G)}. Note that G has a
perfect matching. Hence, by Fact 4, |Q| =0, or Q| = 2.

If |Q] = 0, then G = Bj;. Thus, p(G) = p(B},) < p(B3,) by Lemma
3.1; If |Q| = 2, then G = B2, and the result holds immediately.

This completes the proof. O
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4. Maximal index of graphs in %(2k,do)

For the set P(2k,do) (k > 2), if dp = 1, then £(2k,1) is just the set of
all 2k-vertex trees with a perfect matching. The maximal index of all the
graphs in the set (2k,1) is determined in [28]. Hence, we consider the
case of dp > 2 in what follows.

e Let ST and S be the graphs defined as section 3. Denote by u the
center vertex of K1 x-1. Xi = {z € V(5] )lds: (z,u) = 1,ds: (z) = 2},
Y: = {y € V(S)lds: (y,u) = 2,ds:(v) = 1}, Zi = {z € V(S})
ds: (z,u) = 1,ds:(z) = 1},(i = 1,2). Then IX1] = Y| = k-
1,|Xs| = |Y2| = k—2,1Z1] = 0,22 = 2. Let Zo = {2, 22}.

o Let C3, 4, be the graph obtained from S} and an isolated vertex up by
adding an edge to join ug with each of dp vertices of S7: If 2 < dp < k,
ug is adjacent with u and dp — 1 vertices in Xy; If k+1 < dp < 2k—1,
ug is adjacent with u, k — 1 vertices in X3, and dg — k vertices in Y).

e Let C22k,do be the graph obtained from S; and an isolated vertex
ug by adding an edge to join ug with each of dp vertices of S3: If
2 < dg < k, up is adjacent with u, 21, and dp — 2 vertices in Xo; If
k+1 < dy €2k -1, up is adjacent with u,z;, 29, k — 2 vertices in
X2, and dg — (k + 1) vertices in Ya.

I\

1 2
Co.4 Cé.a

Figure 4: Graphs C§ 4 and C, for k = 3,dp = 4.
For example, C} 4,CZ, are depicted in Fig. 4. It is routine to check that

C%k,do’czzk,do € Q(Qk,do) fOl' k Z 2.

Lemma 4.1. p(Cl, 4.) < p(C% 4,) for allk >3 and 2 < do < 2k - 1.
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Proof. Denote Ns;(u) = {v1,v2,...,vk—1}, and Ng;(vi) \ {u} = w; for all
1<i<2k—1. Assume chnk.do(uo) ={u,v1,...,v45-1} if 2 < dp < k and
Cheno (uo) = {u,v1,...,Up=1,W1,...,Wdo—k } Otherwise.

If 2y 2 zy,, since C3y 4 — viwy +uwy = CF . we have p(CZ, , ) >
p(Cl 4,) by Lemma 2.1; If z, < zy,, since Clxa, — {wv2, ..., uve_1} +
{viva, ..., v1vk_1} Cgk’do, we have P(szk,do) > p(C3y.4,) by Lemma 2.1.

This completes the proof. 3

Theorem 4.2. Let G € P(2k,do) (k > 2, do 2 2). Then p(G) < p(C%, 4.)
and the equality holds if and only if G = Cz2k,do'

Proof. 1f k = 2, then £(4,2) = {G2,G3}, P(4,3) = {G4}, where G,,G,,
G3,Gy are depicted in Fig. 3. It’s straight-forward to check that Cgk.d"
has the maximal index among all the graphs in #(2k, dy) for k = 2,dy = 2
(resp. 3). In order to complete the proof, it suffices to consider k > 3.

Choose G € £(2k,dp) such that p(G) is as large as possible, where
k > 3. Let x = (z1,%2,...,Z2)T be the Perron vector of A(G), where z;
corresponds to the vertex u; for 1 < i < 2k (By z,,, we mean the coordinate
of x corresponding to the vertex v ). Assume that G’ := G — ug is a tree.
Choose a vertex u; € V(G’) such that dg(u;) is as large as possible. Let
M be a perfect matching of G. Similar to the proof of Theorem 3.2, we
obtain that G’ is a tree with some pendant paths attached to u;. We will
first show that dg/(u;) > 3.

Suppose to the contrary that dg/(u;) = 2. Then G’ is a path with
order 2k — 1. Denote G’ := vjvy...,vak—;. If up is matched with v; or
Vi~ 1, then without loss of generality, assume uov; € M. Thus, we have
Vok—2V2k—1 € M, and v vo & M, vokx—_3Vok—2 & M. Let

c = { G — v1vs + vyUok—3, if Type s 2 Tuyp;

G — Vor_oUok—3 + Vog—avg, if Tygp_sz < Ty,-
Then G* € #(2k,dy), and by Lemma 2.1, p(G) < p(G*), a contradiction.
Otherwise, we have uov; € M forsome i € {2,3,...,2k—2}. Moreover, since
G has perfect matchings, 3 < i < 2k—3. Thus, vivp € M, vok_ovar_1 € M.
Hence, we have vaus ¢ M, var_3var—2 ¢ M (possibly vz = v; or vak—3 = v;).
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In particular, if k = 3, then upuz € M. Let

G = G —viva + 0103, if Ty, < Toy;
G —v3vg + vovy, if Ty, > Ty,.
Then G* € 2(2k,dp), and by Lemma 2.1, p(G) < p(G*), a contradiction.

For k > 4, let

G* = | G~ v2vs +vavzk-s, if Tyyp_g 2 Tug;
G — vak—2V2k—3 + Vok-2V3, if Tugy_y < oy
Then G* € P(2k,dp), and by Lemma 2.1, p(G) < p(G*), a contradiction.
Therefore, dg: (1) = 3.

By a similar discussion as in the proof of Fact 4 in Theorem 3.1, we can
also get that each pendant path attached to u; in G’ has length no more
than 2. Denote Q@ = {v € V(G')|d¢'(v) = 1,u1v € E(G)}. Note that G
has perfect matchings. Hence, |Q] =0, or |Q| = 2.

Case 1. |Q| = 0.

In this case, we denote the paths attached to v, in G’ by A, P,,...,
P, _,,wherel; =2forall1 <i < k-1. Denote P = {z € V(G')|dg (x, 1)
1}, R={z € V(G')|d¢/(z,u1) = 2}, and let P,,NP = {v;}, P,NR = {w;}.
Then we have Ng:(u;) = {v1,v2,...,vk-1}. We establish the following se-

quence of facts.
Fact 1. uou; € E(G).

Proof. Suppose to the contrary that uou; ¢ E(G). Since dp > 2, there
exists ug € V(G') \ {u1} such that uouz € E(G) and uoup ¢ M. Then
dGI(UQ,ul) =1lor?2.

First we consider dg'(ugz,u;) = 1. Without loss of generality, set uy =
v;. Let

G* = { G — uov1 + uouy, if £y 2 zy,;

G — {uvs, ..., ugvk—1} + {v1va, ..., n1vk—1}, if 71 < Ty,

Then G* € P(2k,dp), and by Lemma 2.1, p(G) < p(G*), a contradiction.
Therefore, uou; € E(G).

Now we consider dgr(ug,u;) = 2. Without loss of generality, we may
assume us = wj. It is routine to check that uov; ¢ M for all i €
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{1,2,...,k — 1}; Otherwise, w; is not matched in G, a contradiction.
Note that, by our assumption, uow; is not in M. Hence, there exists
some w; € {wz,ws,...,wx} such that uow; is in M. By the maximali-
ty of p(G), we have that uov; is in E(G) and wugv; is not in M. Hence,
dgr(uj,u;) = 1. By the former discussion, our result holds immediately.
Therefore, uou; € E(G) holds in this subcase.

This completes the proof of Fact 1.

Fact 2. If wjuo € E(G), then viug € E(G)(1 <i<k-1).

Proof. Suppose to the contrary that there exists ip, such that w;,up €
E(G), whereas v, ug ¢ E(G). Let

G = G — uowi, + UoUip, if Ty, > Tw, ;
G —uv;, + wwy,, if Tv,, < Tw,,-

Then G* € P(2k,dp), and by Lemma 2.1, p(G) < p(G*), a contradiction.
0

Fact 3. If there exists i € {1,2,...,k — 1} such that w;up € E(G), then
for any j € {1,2,...,k — 1}, we have vjup € E(G).

Proof. Suppose to the contrary that there exists j such that vjugp ¢ E(G).

Hence, by Fact 2, we have uov; € E(G) and wjug ¢ E(G). Obviously,

i # j. Denote G* = G — uow; + ugv;, we will show that p(G) < p(G*).
By direct computing (based on (2.2)) we have

A(G™; X)) = (G —upvj; A) — @(G™ —ug — vj; A)
-2 > #(GC-V(Z))),

Z€%ugy;
¢(G — UpW;, /\) bt ¢(G — Up — Wy, )\)
2 S 4G -V,

Z€C0gu;

#(G; A)

Note that G* — uov; = G —upw;, G* —up — v; is a subgraph of G —up — w;.
Hence ¢(G* — uovj; A) = ¢(G — uow;; A), and ¢(G* — ug — v A) = ¢(G —
up — wi; A) for all A > p(G — ug — w;)

Note that uo is adjacent with do — 3 vertices in V(G*) \ {vi,v;,u1},
among which k; vertices are in P, and k3 vertices are in R, where k; + ko =
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do — 3,k1,kz < k — 3. The cycles passing through edge uov; in G* are as
follows:

e Only one C3 = ugujuiug satisfying G* — {uo, v;, u1} = (k—2)K2UK).
e k,+1 cycles of length 4 (including uov;uyviug) satisfying G* -V (Z) =
(k —3)Ka U2K];.
e k, cycles of length 5 satisfying G* — V(Z) = (k — 3)K2 U K.
Hence,

Y GG = V(Z)X) =0 = DF 24 (14 k) (02 — 1)F720°
Zeguovj
+ k(A2 = 1)F-3)

=A% = DR384 (ke + 1A% + (k2 — DA
(4.1)

Similarly, ug is adjacent with do—3 vertices in V(G)\ {ws, vi, u1 }, among
which k; vertices are in P, and ko vertices are in R. The cycles passing
through edge uow; in G are as follows:

e Only one C3 = uow;v;up satisfying G — {ug, wi, v;} is a tree in which
k — 2 pendant paths of length 2 are attached to a vertex. By an
elementary calculation we have ¢(G—{uo, ws, u1 }; A) = (A2—=1)F"2\—
(k —2)(A%2 —1)k-3A.

e Only one C4 = uow;v;uuo satisfying G — {ug, wi, vi,u1} = (k—2)Ko.

e k) cycles of length 5 satisfying G — V(Z) = (k — 3)K2 U K.

e ko cycles of length 6 satisfying G — V(Z) = (k — 3)K».

Hence,

ST G -V(2yN) = (-3 E N = (k=1 - kA + ke — 1)(4.2)
ZeCupw,
In view of (4.1) and (4.2), we get
Yo eG-V(ZxN - Y $(C-V(ZxN
Z€€uqu; Ze€(uow:)
=N 1) 3N+ (k+ k2 — k1 —2)A =k +1).
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Let
FO)Y=kiA2 4+ (k+khy— k1 —2)A —ky + 1.

Note that f/(A) = 2kiA+k+keo —k1 —2>2k1+k+ ks -k -2 =
k+ky +ky—2>0for A > 1. Together with f(1) = k —1 > 0, hence
f(A) > 0 for all A > 1. Therefore we get

Yo G -V(ZxENZ Y #(G-V(Z2);N
Z€Buqy; Ze€ugu;
for A > 1. Thus, ¢(G*;X) < ¢(G;A) for A > p(G)(> p(G — up — w;) > 1).
In view of Lemma 2.2(ii), we have p(G) < p(G*), a contradiction.

By Facts 1-4, we get G & Czlk,do- In view of Lemma 4.1, we have
p(G) = p(C2lk,do) < P(ngk,do) in this case.

Case 2. |Q| =2.

In this case, let Q@ = {q1,92}, and assume uoq; € M,u 92 € M. De-
note the paths attached to u; in G’ by P, ,R,,..., P,, where p,_, =
191, Py, = ui1g2, and I; = 2 forall 1 < i < k—2. Denote P = {z €
V(G')de (z,u1) =1}, R = {z € V(G')|de/(z,u1) = 2}, and let P, NP =
{vi}, A, N R = {w;} for all 1 < i < k—2. Then we have Ng:(u;) =
{q1,q2,v1,v2,...,vk—2}. We establish the following sequence of facts.

Fact 1. uou, € E(G).

Proof. Suppose to the contrary that uou; ¢ E(G). Since dy > 2, there
exists up € V(G’) such that upus € E(G). Note that ugus ¢ M. Hence,
dar(u2,u1) =1 or 2. We first consider dor(ug,up) = 1.

If dg:(u2) = 2, then Without loss of generality, set up = v;. Let
G* = G —uou1 + wouy, if ) > x,, and G — {uyq1, w102, ..., u vk 2} +
{viq1,v1v9,. .., v1vk_2}, otherwise.

Then G* € 2(2k,dp), and by Lemma 2.1, p(G) < p(G*), a contradic-
tion. Therefore, uou; € E(G)

If dg:(uz2) = 1, then uy = go. Let G* = G —ugqe + uouy, if ; > z4, and
G—{u1g1, w101, w102, .. ., u vk—2}+{q2q1, 201, gova, . . ., g2Uk—2} Otherwise.

Then G* € £(2k,dy), and by Lemma 2.1, p(G) < p(G*), a contradic-
tion. Therefore, uou; € E(G).
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Now consider dg:(ug,u;) = 2. Without loss of generality, we may
assume u; = w;. Let G* = G — uow; + wouy, if z; 2 z,, and G —

{v1q1, w102, - . ., w1vk—2} + {w1g1, W12, ..., wW1vk_2} otherwise.
Then G* € P(2k,dp), and by Lemma 2.1, p(G) < p(G*), a contradic-
tion. Therefore, uou; € E(G). Hence, uou; € E(G), as desired. A

Fact 2'. If gaup € E(G), then viup € E(G) fori e {1,2,...,k-2}.

Proof. Suppose to the contrary that there exists i such that gauo € E(G),
whereas v;,ug ¢ E(G). Let
c = G — upqa + Ui, if Ty 2 Tqp;
G — Wiy Vig + Wigq2, if Ty,, < Zg,-

Then G* € P(2k,dp), and by Lemma 2.1, p(G) < p(G*), a contradiction.
O

Fact 3'. If wyup € E(G), then viup € E(G)(1 <i<k-2).
Proof. Suppose to the contrary that there exists ig such that w;,uo € E(G),
whereas v;,up ¢ E(G). Let
c = G — uowiy + UoVi,  if To, ) = Tw,ys
G — u1v;, + w1 Wiy, I Ty, ) < Twy-

- Then G* € P (2k,dp), and by Lemma 2.1, p(G) < p(G*), a contradiction.
O

Fact 4'. If there ezists i € {1,2,...,k — 2} such that wiuo € E(G), then
ga2up € E(G).
Proof. Suppose to the contrary that gaup ¢ E(G). By Fact 3', we have

viug € E(G). Denote G* = G — uow; + uogz. We will show that p(G) <
p(G*). Based on (2.2) we have

#(G*;X) = O(G" —uoga; A) — ¢(G* —uo — q2; A)
-2 Z ¢(G™ = V(Z); A),

Zebugar
&(G;)) = ¢(G —ugwi; A) — ¢(G —up — wis A)
2 Y #G- V(2N

Z€Cuyw,

328



Note that G* — uoq2 = G — uow;. Hence, ¢(G* — upqa; A) = ¢(G — ugw;; A).
On the other hand, by direct computing it is straightforward to check that
O(G* —up — g2;A) 2 (G —up —w;;; A) for A > 1.

Note that ug is adjacent to do — 4 vertices in V(G*) \ {u1,q1,92,vi},
among which k; vertices are in P, and k2 vertices are in R, where k; +ky =
do — 4,k1, k2 < k — 3. The cycles passing through edge ugg2 in G* are as
follows:

e One C3 = upqau ug satisfying G* — {ug, g2, 1} = (k — 2)K2 UK.

e One C4 = uoqau1q1uo satisfying G* — {uo, g2, u1,q1} = (k — 2)Ks.

e k141 cycles of length 4 (including uogouyviuo) satisfying G* -V (Z) =
(k- 3)K U2K],.

e ko cycles of length 5 satisfying G* — V(Z) = (k - 3)K, U K.

By Lemma 2.3(ii) we have
D HCT-V(2)))
Z€Cugq,
= ()\2 _ 1)k—2)\ + ()\2 _ 1)k—2 + (1 + kl)(/\z _ 1)k—3A2 + kz(/\2 _ l)k—S/\
= (A2 = 15745 4 (ky + DA + (k2 = 2)X% — (k1 +2)A2 = (ky — DA + 1]
+ (A2 —1)F3a2,

Similarly, uo is adjacent with dy—4 vertices in V(G)\{u1,q1, vi, w; }, among
which ky vertices are in P, and ky vertices are in R. The cycles passing
through edge uow; in G are as follows:

® Only one C3 = uow;v;up: in this case G— {uq, w;, v;} is a tree in which
k — 3 pendant paths of length 2 and 2 pendant edges are attached
to a vertex. It’s easy to calculate that ¢(G — {uo, wi, v;};A) = (A2 —
1)F73X% — (k — 3)(A% — 1)%=4X% — 2(A2 — 1)k=3),

e Only one Cy = wow;viujug satisfying G — {uo, wi,vi,u1} = (k —
3)K2 U2K;.

e Only one Cs = uow;vsu1q1up satisfying G — {uo, wy, vi,u1,q1} = (k—
K, UK,.
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o k; cycles of length 5 satisfying G — V(Z) = (k — 4)K, U3K].
e ky cycles of length 6 satisfying G — V(Z) = (k — 4)K2 U2K].
Hence,

I 4G = V(Z)A) =( — 13N — (k= 3)( — 14N
Z€%uouw;

_2()‘2__ )k—3)‘+()\2_ )k—3>\2 ( 2_l)k—3)‘
+ k(A2 = 1A% 4 k(A2 — 1)F 742
=(A2 = 1FTANS = (k= 1= k)2 4+ kod? + )]
+ (A2 - 1)k-3,\2.
Therefore we get
Y G -V@RN- X HG-V(2EN) = (-1, (43)
Z€%bugqy Ze€Cugw;
where
FOY = (k1 + DA + (k+ k2 —ky —3)A3 = (k1 + k2 + 2)A2 — kA + 1.
Let
g(A) := F/(\) = 4(ky + 1A% 4+ 3(k + kg — k1 — 3)A% — 2(ky + k2 + 2)A — k2.
Hence, we have
g () = 12(k1 + 1A+ 6(k + ko — k1 — 3)A — 2(ky + k2 + 2),
g"(\) = 24(ky +1)A+6(k+ ko — k1 — 3).

On the one hand, ¢'(1) = 4k; + 4ky + 6k — 10 > 0 and g”"(A) > 0
for all A > 1. Hence, g’(A) > 0 for all A > 1. It is easy to see that
'g(1) = 4(k1 +1)+3(k+ka— k1 —3)—2(ky + ko +2)—kp =3k - k1 -9 20,
hence f/(A) = g(A) > 0 for all A > 1.

On the other hand,

f(V2) (2 — 2V2)ky + (V2 — 2)ka + 2V2k + 1 - 62
(2 - 2V2)k; + (V2 = 2)k2 + V2(k1 + 3)
+V2(ky +3)+1-6V2
(2 = V2)k;y + (2V2 — 2)k2 + 1 > 0.

v
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Hence, f(\) > 0 for all A > v/2. In view of (4.3) we have

DT HC -V(EZEN - Y. #(G-V(Z)X) >0

Z€%€ugq, Z€Cugw;

for all A > /2. Thus, ¢(G*;)) < ¢(G; A) for A > p(G)(> p(G — up —w;) >
v2 > 1). By Lemma 2.2(ii), we get p(G) < p(G*), a contradiction.

By Facts 1-4’, we get G = C3, , . Hence, in view of Cases 1 and 2, we
obtain that p(G) < p(C%, 4 ) for k > 3. The equality holds if and only if
G=C .

This completes the proof of Theorem 4.2.
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