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1 Introduction

In recent years, a number of papers have dealt with the study of critical sets
in latin squares which consist of specification of a minimal set of cell entries
needed to recreate combinatorial structures uniquely. To name a few, the
reader can look into Nelder [12], Smetanuik [15], Curran and van Rees
[4], Cooper, Donovan and Seberry (2], Cooper, McDonough and Mavron
(3], Donovan, Cooper, Nott and Seberry {5}, Donovan and Cooper [6], Fu,
Fu and Rodger [9], Donovan and Howse (7] and SahaRay, Adhikari and
Seberry [13, 14]. Not much work has been done in regard to construction
of critical sets in F-squares and orthogonal F-squares which are natural
genaralisations of latin squares and mutually orthogonal latin squares. The
papers known to the authors dealing with critical sets in F-squares of a
specific form are Fitina, Seberry and Sarvate (1999), to be denoted by FSS
(1999) herafter, and Bate and van Rees (2002). A close examination of
the critical sets in F-squares obtained in FSS (1999) revealed that in some
cases the sets do not satisfy the properties of a critical set. In particular,
we deal with F-squares of the type F(2n;2,...,2). Before discussing the
main results, some background information is needed which is presented in
Section 2. In Section 3 we rectify the critical set result stated in Theorem
14 of FSS (1999) and exhibit a correct form of a critical set which is a
proper subset of the one proposed for F(2n;2,...,2).

2 Preliminary Definitions and Notations

A frequency square, or F-square, F = F(n;ag,,...,0y-1) of order nis an
nXxn array with entries chosen from theset N = {0,1,2,...,v—1} such that
each element i occurs o; times in each row and in each column, where each
«; is a natural number and E:.’;ol a; = n. For convenience, an F-square of
order n is sometimes represented by a set of ordered triples F' = {(3, j; k)|
element k occurs in the position (¢, j), (4,j) € {0,1,2,...,n—1},k € N}.
A subset of F will also be called a partial F-square.

A partial F-square P of order n is an n X n array with entries chosen
from N such that the kth element of N occurs oy; times in the ith row and
Bk; times in the jth column of P, k € N, 0 < o, Brj < ai. Then ajf=
(ak1y---y0kn) and Bi= (Bk1,...,Prn) are said to be frequency vectors
for the element k in P along the rows and columns respectively. Then
|P| is said to be the size of the partial F-square and the set of positions
Sp = {(4,5)| (i,3;k) € P, 3k € N} is said to determine the shape of P.
Let P and P’ be two partial F-squares of the same order, with the same
size, shape and the same frequency vectors along the rows and columns.
Then P and P’ are said to be mutually balanced if the entries in each row
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(and column) of P are the same as those in the corresponding row (and
column) of P’. They are said to be disjoint if no position in P’ contains
the same entry as the corresponding position in P. A F-square interchange
Fp is a partial F-square for which there exists another partial F-square
Fj of the same order, size, shape and the same frequency vector along
the rows and columns with the property that Fy and F} are disjoint and
mutually balanced. Thus the rationale behind a F-square interchange is
that, in a legitimate F-square, Fy can be replaced by Fj without altering
any property of the original F-square. For example F and F}j given below
are two F-square interchanges of order 4.

2721373 3322
REBER . 21137
F°‘.3.2 F°".2.3

A nonempty subset C of F = F(n;ag, a1,...,a,-1) is a critical set of
Fif
1. F is the only F-square of order » which has element & in position (3, 5)
for each (¢,j;k) € C
2.(a) Every proper subset of C is contained in at least two F-squares of the
type F = F(n;ap,01,...,0,-1) OF
(b) For every (¢, 5;k) € C,l € N,l # k = there does not exist any F-square
oftype F = F(n;aq,,...,ay_1) which contains (S\{(3, j; k) }) U{(5, 5; ) }-

We note that a latin square is an F-square of type F = F(n;1,1,...,1).
A latin square L = {(4,5;k)} of order n is called back circulant if k =
(¢ + j)(mod n) for every triple (i,5;k) € L. Let I = {(3,5;i+7 :0 <
:,j < n—1}. Then p,(I),w € N is the symmetric latin square given
by L = {(4,5;i + j + w)} with addition reduced modulo n. In particular,
p2(f) = {(3,5;4 +3+2);0<i<n-1,0 <j<n-1}. Thus, in pa(I),
1 occurs in the anti diagonal, i.e., in the cells (0,7 — 1),...,(n — 1,0).
Furthermore it is to be noted that i occurs in the cells {(0,: — 2),(1,i —
3), s (-2,0), (i-1,n—1), (4,n—2), ....(n~1,i — )} fori=2,3,...,n—-1
and 0 occurs in the cells {(0,n —-2), (1,n-3),.....,(n—2,0), (R —1,n—1)}.
In our subsequent discussion, for each i, i = 0,2,3,.....,n — 1 in pa(I), we
refer to these collection of cells of occurrence as reverse transversals of i.

3 Main Result

In this section, we investigate the general construction of a critical set for
the specific type of F-square F(2n;2,2,...,2). We refer to the construction
given in FSS (1999) and point out that the critical set mentioned in the
proof of Theorem 14 of FSS (1999), while uniquely completable, does not
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satisfy the second condition and thereby cannot be claimed to be a critical
set. In order to rectify the Theorem and propose a correct form of the
critical set for the specific type of F-square F(2n;2,2,...,2), we refer to
the construction given in Section 4.1 of FSS (1999).

Let S be a finite set, say S = {0,1,2,...,n—1}. Let I = {C}, Ca, ... Cp}
be any ordered collection of n subsets of S, each of size 2, such that each
element k € S occurs in precisely two sets in II. Let L; be a 2 x 2 latin
square, formed from the elements of the set C;; 1 <4 < n. Then a
latin square in the symbols Ly, Lo, . . . Ly, respectively is also an F-square of
the type F(2n;2,2...2) in the elements 0,1,2,...n — 1. Let L1, La,... Ly
respectively be the latin squares given below:

0]1 112 n-2|n-1 n—1 0
110 211 T in=-1ln-2 0 n—1

Then the F-square

Ly | L Lal ... L, L,
Lo Ly Lyf.... L, L
La|{Ls|Ls| ... | Ln Ly
Lo|Ly| Lo ... Lp_o | Ln

is isomorphic to the F-square

F:

I 1
I'| p2(1)
We now quote Theorem 14 from Fitina, Seberry and Sarvate (1999).

Theorem 3.1 (FSS (1999)) Let n = 2m, m > 2. Let I be of order n.
Then the F-square above has a critical set of size Tm®> —m + 1. When I is
of order n + 1, then there is a critical set of size Tm? + 6m + 2.

(3.1)

In the proof of this theorem the following partial F-square given in (3.2)
is claimed to be a critical set for (3.1):

o5

I
>
L

(3.2)

~>

p2I)

where
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0 1 m—1
1 .- m-—1
m-—1
f _ m-1
m
m n—2
and
2 3 m-—1 m+1| .. 1
3 m-1 m+1 1 2
m-—1 m+1
m-—1 m+1
pa(I) = m+1
n—-1 0 1 2 n—-3\n—-2
0] 1 2 3 n—-2{n—-1
1 2 3 4 n—1 0

We now show that the above mentioned partial F-square does not satisfy
condition 2 in the definition of a critical set. For example, when m = 2
and n = 2m the claimed critical set is as follows.

01. .10 1

1 . . .1

. 2 Lo 2

01. .]. 301

1. . .3 01 2
.01 2 3
2(1 2 30

This set fails to satisfy condition 2 (a) because the proper subset ob-
tained by removing entries (4,7;1) and (7,4;1) is still uniquely completable
(the details will be given in the proof of Theorem 3.2). The set also fails
condition 2 (b) because there exist entries that can be changed without
making it impossible to complete the square; for example, if we change
(3,3;2) to (3,3;3) we can obtain the completion
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013 2j01 2 3
13 201 230
3 2012 3 01
2 01 3[3 01 2
012 3|23 01
12 3 0(3 01 2
2 301012 3
3 01212320

Thus the claim made in Theorem 14 in FSS (1999) is not correct. We
now present the corrected form of a critical set of F(2n,2,...,2) which is
a proper subset of the set proposed by FSS (1999). To stress this fact,
Theorem 3.2 below is stated in the same language as Theorem 14 of FSS
(1999).

Theorem 3.2 Let n = 2m,m > 2. Let I be of order n. Then the F-square
given in (8.1) has a critical set F' of size Tm?® — 3m + 3. When I is of
order n = 2m + 1, then there is a critical set of size Tm? + 4m + 4.

Proof: The general construction of the partial F-square F’ is:

F' = ! ! (3.3)
I | pa(l)
where
0 1 2 m-—1
1 2 m-—1
2 m-—1
m-—1
f - m-1 ,
m
m
m n.—2
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2 m—1 m+1|..|..].. 0
m-—1 m+1 1
m-—1 m+1
m+1 m-—2

o m+1 m
p2(l) =

0 1 m-—1 n-1

m n—1 0

for m > 3, and

3(0
. 310|112
213(0

for m = 2.

Thus there are 3(m — 1) empty cells in g2(I): in the upper left corner,
m—1 cells in locations (n,n+m—2),(n+1,n+m-3),..,(n+m—2,n); in
the last column, m — 1 cells in locations (n,2n — 1), (n+1,2n - 1),..., (n+
m—2,2n—1); and in the last row, m —1 cells in locations (2n —1,7n), (2n —
Ln+1),..,2n—-1,n+m—2).

To prove that F” is critical set in F (3.1), we will show below that (i)
F' has unique completion to F and (ii) that any proper subset of F can
be completed to at least two F-squares.

(i) Towards unique completion of F' to F we argue as follows:

Step 1: n —1 is filled uniquely in cells (0,2n — 1), (0,7 — 1), (n — 1,0) and
(2n —1,0).

Step 2: The cells in the 0 th column are filled in sequentially in the order
(2n —2,0),(n —2,0),(2n - 3,0),(n — 3,0)........ (n +m,0),(m,0).

Step 3: The cells in the Oth row are now filled sequentially in the order
(0,2n - 2),(0,n - 2), (0, 2n — 3), (0, — 3), .., (0, n + m), (0, m).

Step 4: In the nth column, the entries m, m +1, m+2,...,n—1 and 1
are placed uniquely in that order.

Step 5: i is placed uniquely in columns 1, n+1, 2, n+2,...., i—1, n+i—1,
and i sequentially in that order for i = m,..n — 1.

Step 6: Now (n,2n—1) = L.
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Step 7: Now i is placed uniquely in columns i+ 1, n+¢+1, 1+ 2, n+
i+2,..., n—1, 2n —1 sequentially in that order and ¢ + 2 is placed in the
cells (2n - 1,n+i+1),(n+i+1,2n-1) fori=0,1,2,....,m - 3.

Step 8: Now i is placed in columns i +1, n+i+1,..n -1, 2n -1
sequentially in that order for i =m — 2 and m — 1.

Thus the F-square is completed uniquely from F”.

(ii) To prove that any proper subset of the partial F-square F' listed
above leads to more than one legitimate F-square, we first note that, irre-
spective of whether n is even or odd, I was proven to be a critical set for
I by Curran and van Rees [4]. So deleting any entry from I will lead to a
completion of I to a latin square other than I and hence to a F-square dif-
ferent from F3 in (3.1). So it suffices to show that deleting any entry from
po(I) will also lead to a completion different from F in (3.1). Moreover, it
is also clear from the symmetric structure of F in (3.1) that in this con-
text, only entries on or below the diagonal of p2(I) need to be considered
as the cases of entries above the diagonal are merely the transpose of the
corresponding cases below the diagonal. To this end, we deal with n = 2m
and n = 2m + 1 separately.

Case 1: n=2m
We note that for each triple (i, j; =) of p2(I), there exists a partial F-
square I(z) C F; for which I’(z) is a F-square interchange and F’' ) I(z) =
{(i, j; =)}. Thus it follows that F’\ {(¢, j; z)} can be completed to a

F-square different from (3.1).
Above the absent m's in po(I), for each z = 2,...,m — 1, with t =

rz—z]’ T —

I(z) = {(n+t, n—~t+z-2; z),(n+t, m+z-1-t; m+z-1)
(m+t+1l, m+z—1-t; z),(m+t+1, n—-t+z—-2; m+z-1)}

has an F-square interchange given by

I'z) = {(n+t,n—t+z-2, m+z—-1),(n+t, m+z—-1-1¢ x),
(m+t+l, m+z—-1—-t;, m+z-1),(m+t+1, n—t+z-2; )}

Below the absent m’s and above the reverse transversal of m’s in the lower
right corner of g2(I), for each z = m+1,...,n—1, witht = [’2;2], eee, T2,

Iz) = {(n+t,n—t+z-2;z),(n+t, z-1-t;z—1),(t+1, z-1-¢
z),(t+1, n—t+z—2; z~1)}

has an F-square interchange given by

I'z) = {(n+t,n—t+z-2z—1),(n+t,z-1-t;2),¢t+1, z-1-%
z-1),(t+1, n-t+z-2; 2)};
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foreach:z:=1,...,m—1,witht=m+[”—glj,...,n—2,
Iz) = {(n+t,2n—t+z-2; z),(n+t, n+z-1—-¢t; z—1),(t+1,
n+z—-1-t z),(t+1, 2n—t+z—-2; £ — 1)}
has an F-square interchange given by
I'z) = {(n+t, 2n—t+z-2;z2-1),(n+t, n+z-1-t; z),
t+l, n+z-1-t; 2-1),(t+1, 2n—t+z-2; z};
and forz =0, witht=m—-1,...,n -2,
Iz) = {(n+t, 2n-t-2; 0),(n+t, n—1—¢t; n—1),
t+1, n=1-¢t0),(+1, 2n—-t-2; n—-1)}
has an F-square interchange given by

I'z) = {(n+t, 2n—t—2,n—-1),(n+t, n—1-1¢; 0),
(t+1, n—-1-¢t; n—-1),(t+1, 2n—t-2; 0}.

Below the reverse transversal of m — 1’s in the lower right corner of
po(I), forz =m with t = 1,..., | 252,
Iz) = {2n-1-t, n+m—-1+¢ m),2n—-1—1t, t; n—1),
(m—t, t; m),(m—t, n+m-1+¢ n—-1)}
has an F-square interchange given by
I'z) = {2n-1-t,n+m-1+t; n-1),2n-1-¢, t; m),
(m—t, t; n—1),(m—t, n+m— 1+t m)};

foreachz=m+1,...,n—1witht=1,...,|25%],

Iz) = {@n—-1-t,n+z—1+¢2),2n—-1-t, c—m+t;
z-m-1),(m—-t, z—m+t z),(m—¢t, ntz—1+t¢
z—m-1)}

has an F-square interchange given by

I'lz) = {(2n—1-t, n+z—-1+¢ z-m-—1),2n-1-1,
z-—m+t; z),(m—t, z—m+t;, z-m-1),(m—t,
n+z—-1+t¢ )}

and forz =0

I(z) = {(2n-1, 2n-1;0),(2n—1, m; m— 1),
(m, m; 0),(m, 2n~1; m — 1)}
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has an F-square interchange given by

I'(z) = {(2n-1,2n-1; m—1),(2n-1, m; 0),
(ma m; m—l)l(m) 2n_1; 0)}'

Case 2: n=2m+1
This case is a little more difficult than the case where n is even, but we
can still show that removal of any of the entries in go(J) leads to more
than one completion. For all elements of po([), beginning with the re-
verse transversal of (m + 1)’s just below the absent m’s and continuing
to the reverse transversal of (m — 1)’s below the anti diagonal, any of
the elements can be shown to be necessary in the critical set using a
swap with the element that is one lower (considering n — 1 to be one
lower than 0) in the same way as was demonstrated in the case of n
even. Below the aforementioned (m — 1)’s and above the absent m’s, how-
ever, there is more work to be done. The cases of removal of the triples
(2n-1,2n-1;0), (2n-1, 2n-2; n—1), (2n-1, 2n~3; n—2), and
(2n—2, 2n —2; n—2) in p2(I) are simpler to deal with. We demonstrate
below the required F-square interchanges.

For (2n -1, 2n —1; 0),

I0) = {(2n-1,2n-1;0),(2n—-1, 2; 1),(n=2, 2; 0),(n~-2, 3; 1),
(n=3, 3 0),(n-3, 4 1),...,(2, n—2; 0),(2, 2n —1; 1)}
{@n-1,2n~1;1),(2n -1, 2; 0),(n -2, 2; 1),(n -2, 3; 0),
(n~3, 3 1),(n-38, 4 0),...,(2, n—2; 1),(2, 2n—1; 0)}.

For 2n -1, 2n—2; n—1),

In-1 = {(2n-1,2n-2,n-1),(2n-1, 1;0),(n—2, 1; n~1),
(n-2,2 0),(rn-3,2 n—-1),(n-3, 3;0),...,

(2, n—-3; n—1),(2, 2n-2; 0)}

{2n-1, 2n-2; 0),(2n-1, 1, n-1),(n—2, L 0),
n-2, 2 n-1),(n-3,2 0),n-3, 3 n-1),...,

(2, n-3; 0),(2, 2rn—2; n—1)}.

For (2n—~1, 2n—3; n—2),

ro)

I'(n-1)

Im-2) = {(2n-1,2n-3;n-2),(2n-1, 0, n—1),(n-2, 0; n—2),
n-21,n-1),...,(2, n—4;, n-2),(2, 2n-3; n - 1)}
I'n=-2) = {(2n-1,2n-3;n-1),(2n-1, 0; n—2),(n—2, 0; n—1),

n-21n-2),...,2, n—4 n-1),(2, 2n-3; n—2)}.

For (2n -2, 2n—2; n—2),

In-2) = {(2n-2,2n-2,n-2),2n-2, 1; n—1),(n-3, 1; n~2),
(n-38, 25 n-1),...,(1, n=3; n—-2),(1, 2n - 2; n—1)}
I'n-2) = {(2n-2,2n-2;n-1),2n-2, 1; n~2),(n-3, 1, n—1),

(n-3,2n-2),...,1, n=3; n—-1),(1, 2n~2; n—2)}.
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For the rest of the elements in go(I) the F-square interchanges are not
that straightforward. To facilitate explanation below, we refer to I’s in the
upper left, upper right and lower left corners of F; in (3.1) as I;, I, and
I3 and respectively.

We first discuss the entries in the lower right corner of p2(I) and exhibit
below algorithms to complete the partial F-square F’\ {(2n—1-¢, n+z—
1+1¢; z))} to a F-square different from (3.1) forz =m, m+1,...,n -3,
with ¢ = 0,...,|25%] . Algorithm 1 below takes care of completion of
F'\{(2n-1—-t, n+z—1+t%; z))}, for the combinationof z =m, t =0,
whereas Algorithm 2 takes care of the other combinations of z and ¢ cited
above.

Algorithm 1 Start with Fs in (3.1).

Step 1: Replace (2n -1, n+m —1; m) and (2n -1, 0; n — 1) by
(2n—1, n+m—1; n-1) and (2n — 1, 0; m) respectively.

Step 2: Replace (m +1, 0; m+1)and (m+1, n+m —1; n—1) by
(m+1, 0; n—1) and (m+1,, n+m—1; m+ 1) respectively.

Step 3: Replace {(m, 0; m),(m — 1, 1; m),...,(2, m —2; m)} by
{(m, 0 m+1),(m—-1, 1 m+1),...,(2, m—2; m+1)} respectively.
Step 4: Replace {(m, 1; m+1),(m—1, 2; m+1),...,(3, m=2; m+1)}
by {(m, 1; m),(m -1, 2; m),...,(3, m —2; m)} respectively.

Step 5: Replace (2, n+m -1, m+1) by (2, n+m—1m).

The resultant square is the required completion.

Algorithm 2 Start with F3 in (3.1).

Step 1: Replace 2n—1—-t¢t, n+z+t-1; z) by 2n—-1—-t¢, n+z+
t-Ln-t-1);(2n-1-¢ 0;n—t—-1)by 2n—-1-1¢, 0; ) and
(n—-2t—z, n+zr+t—-1, n—t—-1)by (n—2t—2z, n+z+t—1; z).
Step 2: Starting from the cell (z, 0) in I, locate all the cells along a stair
path skipping alternatively n — ¢t — £ — 2 cells in the horizontal direction
towards right and then n — ¢t — z — 2 cells in the vertical direction upwards
. Continue this move until the cell (o, jo) where i + jo = z is reached
such that 0 <9 — (n— 2t —z) <n—t—z — 1. Swap the element z with
n —t — 1 all throughout in these cells. If i — (n — 2t —z) = 0, then stop
here and the reqgiured F- square is obtained. Otherwise, go to Step 3.
Step 3: Replace {(n—2t—z, 2z+2t—-n; z),...,(n=2t—z, t+2—2; n—
t-2)} by {(n—2t—z, 2z4+2t—n; z+1),...,(n—2t—z, t+z-2; n—t—1)}.
Step 4: Locate the triples {(i0, jo+ 1; z +1),(io = 1, jo + 1; z), (40 —
L, jo+2 z+1),(60~2, jo+2; z),...,(n—2t—2z+1, 2t+2zx—n; z+1)}
and swap the element z with z + 1 .

Step 5: Adjust the elements in the cells (¢, j), where i = n—2t—z+1,...,14
and

J=z—1i+2,...,n—1t—1-1 accordingly so that the resultant square is
a F-square.
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We now consider the entries in the upper left corner of g2(/) and proceed
to demonstrate alternate completlons for the partial F-square F'\{n+z —

t-2,n+tz)forz=2,.. -—lwntht— 1252

In the one case where m s odd, z=m — 1 and t = |252] = 253, we
proceed as follows.
Algorithm 3 Start with F, in (3.1).

Step 1: Replace (n+ 253, n+ B53:m — 1) by (n+ 252 ,n+”"3 mol),
Step 2: Replace (2n - 1 n+ 223 ""g' ”"1) by 2n-1,n+ 253;m — 1) "and
(n+ 252,20 — 1; 251) by (n + 252 ’"- ,2n — 1;m — 1).
Step3 Replace (2'n 1,m;m-1) by (2n 1,m; 251) and (m, 2n—1;m—1)
by (m,2n — 1; 251),
Step 4: Sta.rtmg from (n-— mtl m; 221), proceed similarly as in Step 2 of
Algorithm 2, sklppmg cells Stop at (m+1, 3"‘"1 ; 2=1) and exchange
the entry 27> ""‘ with m — 1
Step 5: Replace (m, 3mtl, mly |
(m,n—2;m— 2)by(m-—’f——i), ,(myn—2;m—1).
Step 6: Replace(m+1i|'——+—) y(m+1,n—-2m—-1) by (m+
1,3mtl moly L (m+1,n—2;m—2).

For all other z and t in the range under consideration, we proceed as
described below.
Algorithm 4 Start with F» in (3.1).
Step 1: Replace {(n+z—t—-2,n+t;z),(n+m—t—2,n+t;m),(2n—
L,n+tt+1),2n—-Lz+1;z)} by {(n+z—-t-2,n+t;m),(n+m—t—
n+t4t+1),2n—1,n+tz),(2n-1,z+ 1t + 1)}
Step 2: Starting in location (2n — 1,z + 1), proceed as in Step 2 of Al-
gorithm 2, skipping = — ¢ — 2 cells in each step vertically upwards and
horizontally to the right until (io,jo), where g + jo — 2n = z and 0 <
ip — (n+m) <z — t — 1, switching entries r and ¢t + 1.
Step 3: Replace {(n+z—t—1,m+t—z+2;m+1),...,(n+m—t—-2,t+
Im+1)} by {(n+z—t—1,m+t—z+2;m),...,(n+m—t—-2,t+3;m)}.
Step 4: Replace {(n+z—t—2,m+t—z+2;m),...,(n+m—t-3,t+3;m)}
by {(n+z-t-2,m+t—z+2;m+1),...,(n+m—-t-3,t+3m+1)}.
Step 5: Fill in the rest of row n +z — t — 2 of I3 except the last entry,
analogously to Step 3 of Algorithm 2. The last entry will be (n +z — ¢ —
2,n-1;zx).

If ¢ + 1 originally appeared in one of the locations (n + z — t — 2, jo),
(n +zr—-t— 11j0)a' EEE) (7'0 - 1aj0))
Step 6A: As in Step 5 of Algorithm 2, adjust rows n + z —t — 1 through
n+m—t— 2 from column t + 4 to column jo — 1, then adjust columns jo
through n — 1 as necessary.

If t + 1 is originally above location n + z — 2 — ¢ in column jo,
Step 6B: Adjust rows n + = — ¢t — 1 from left to right until the column
where ¢ + 1 would be needed in row n+ m —t — 2. Call this column j;.
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Temporarily change the entry in location (4, jo) back to its original value
and change the entry in location (79, 71) to t + 1. Now adjust columns 3,
through n — 1 as necessary to complete the F-square.

We illustrate below the alternate completions demostrated above for some
specific choices of n and (4, j; z). The usual Roman fonts denote the en-
tries in F'\ {(4, j; ))} , while the bold fonts denote the entries which are
different from those in the corresponding cells of F, in (3.1) and the ”.” s
are the usual entries of F» in (3.1).

Example 1 n=10, (i, j; =)= (15, 13; 0).
01234 .. . . .012 34
1 2 3 4 1 2 3 4
2 3 4 2 3 4
3 4 3 4
4 4
9 5 0 . 5
5 6 . 5 6
5 6 7 . 5 6 7
. . 5 6 7 8 . . . 5 6 7 8
01 2 3 4 2 34 .67 890
1 2 3 4 34 .67 8 901
2 3 4 . 4 . 6 7 8 9 01 2
3 4 . 678 901 2 3 .
4 . 6 78 9 01 2 3 45
0 .. 789 91 2 3 4 5 6
. 5 89 01 2 3 456 7
. 56 9 01 2 3 456 7 8
. 56 7012 3 456 7829
5 6 7 8 5 6 7 8 9 0
Also observe that the case n = 10, (i, j; z) = (13, 15; 0) can be addressed

by taking the transpose of Example 1.
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Example 2 n=11,(i, j;z) = (12,11; 3)

01234 01 2 3 4
1234. 1 2 3 4
234 2 3 4
34 3 4
4 4
5 . 5
. 5 6 . 5 6
5 6 7 . 5 6 7
. 5 6 7 8 . 5 6 7 8
. 5 6 7 8 9 . . . . 5 6 7 8 9
01234 .. . . . .23 4 . 61728 910
1234678 9 10035 4 . 6 7 8 910 01
234658710 9 104 . 6 7 8 9 100 1 2
34 .5786 8 . 10 1 6 7 8 9100 1 2 3 .
4 3 16 7 8 9100 1 2 3 4 5
. .7 8 91001 2 3 4 5 6
3 1 . 58 91001 2 3 4 5 6 7
. 5 6 9 100 1 2 3 4 5 6 7 8
3.1 5 6 710 0 1 2 3 4 5 8 7 8 9
5 6 7 80 1 2 3 4 5 6 7 8 910
1 5 6 7 8 9 3 5 6 7 8 9 10 0
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