A CHARACTERIZATION OF GRAPHIC MATROIDS WHICH YIELD BIOGRAPHIC SPLITTINGS MATROIDS

Y. M. Borse, M. M. Shikare and Naiyer Pirouz

Department of Mathematics, University of Pune, Pune 411007 (India)

E-mails: ymborse11@qmail.com

mms@math.unipune.ac.in naiyer.pirouz@gmail.com

Abstract

In this paper, we consider the problem of determining precisely which graphic matroids M have the property that the splitting operation, by every pair of elements, on M yields a cographic matroid. This problem is solved by proving that there are exactly three minorminimal graphs that do not have this property.

AMS Subject Classification: 05B35; 05C50; 05C83

Keywords: Binary matroid, graphic matroid, cographic matroid, minor, splitting operation

1. Introduction

The matroid notations and terminology used here will follow Oxley [6]. Fleischner [3] introduced the idea of splitting a vertex of degree at least three in a connected graph and used the operation to characterize Eulerian graphs. Figure 1 shows the graph $G_{x,y}$ that is obtained from G by splitting away the edges x and y from the vertex v.

Figure 1

Fleischner [3] characterized Eulerian graphs and also developed an algorithm to find all distinct Eulerian trails in an Eulerian graph using the splitting operation. Tutte [12] characterized 3-connected graphs, and Slater [11] classified 4-connected graphs using a slight variation of this operation.

Raghunathan et al. [7] extended the notion of splitting operation from graphs to binary matroids as follows:

Definition 1.1. Let M = M[A] be a binary matroid and suppose $x, y \in E(M)$. Let $A_{x,y}$ be the matrix obtained from A by adjoining the row that is zero everywhere except for entries of 1 in the columns labeled by x and y. The splitting matroid $M_{x,y}$ is defined to be the vector matroid of the matrix $A_{x,y}$. The transition from M to $M_{x,y}$ is called a splitting operation.

Alternatively, the splitting operation can be defined in terms of circuits of binary matroids as follows:

Lemma 1.2 [7]. Let $M=(E,\mathcal{C})$ be a binary matroid on a set E together with the set \mathcal{C} of circuits and let $\{x,y\}\subseteq E$. Then $M_{x,y}=(E,\mathcal{C}')$ with $\mathcal{C}'=\mathcal{C}_0\cup\mathcal{C}_1$ where

 $\mathcal{C}_0 = \{ C \in \mathcal{C} \ : \ x,y \in \mathcal{C} \ or \ x \notin C, \ y \notin C \}; \ and$

 $C_1 = \{C_1 \cup C_2 : C_1, C_2 \in C, x \in C_1, y \in C_2, C_1 \cap C_2 = \phi \text{ and } C_1 \cup C_2 \text{ contains no member of } C_0\}.$

Note that the elements x and y are in series in $M_{x,y}$. Various properties of the splitting matroids have been explored in [1, 2, 5, 7, 8, 9, 10].

The splitting operation on a graphic matroid may not yield a graphic matroid. Shikare and Waphare [8] characterized graphic matroids whose splitting matroids for every pair of element are also graphic. They proved the following theorem.

Theorem 1.3 [8]. The splitting operation, by any pair of elements, on a graphic matroid yields a graphic matroid if and only if it has no minor isomorphic to the cycle matroid of any of the following four graphs.

Cographicness of a matroid is not preserved under the splitting operation. Borse, Shikare and Dalvi [2] obtained the following result in this regard.

Theorem 1.4 [2]. The splitting operation, by any pair of elements, on a

cographic matroid yields a cographic matroid if and only if it has no minor isomorphic to the cycle matroid of any of the following two graphs.

Figure 3

Let M(G) denotes the cycle matroid of a graph G. If M is a graphic matroid containing a minor isomorphic to $M(K_5)$ or $M(K_{3,3})$ and there is a pair x,y of elements of M such that $M=M_{x,y}$, then $M_{x,y}$ is not cographic. In the light of Lemma 2.1(ii), we say that a pair x,y of elements of M is non-trivial if none of x and y is a loop or a coloop, and $M \neq M_{x,y}$. In this paper, we characterize those graphic matroids M for which $M_{x,y}$ is cographic for every non-trivial pair $x,y \in E(M)$. The following is the main theorem of the paper.

Theorem 1.5. The splitting operation, by any non-trivial pair of elements, on a graphic matroid yields a cographic matroid if and only if it has no minor isomorphic to the cycle matroid of any of the following three graphs.

2. The splitting operation and minors

In this section, we provide necessary lemmas which are useful in the proof of Theorem 1.5.

Lemma 2.1 [8]. Let x and y be elements of a binary matroid M and let r(M) denote the rank of M. Then the following statements hold: (i) if x and y are not coloops in M, then they are in series in $M_{x,y}$;

- (ii) $M_{x,y} = M$ if and only if x and y are in series or both x and y are coloops in M;
- (iii) $r(M_{x,y}) = r(M) + 1$ if $\{x,y\}$ is a non-trivial pair;
- (iv) if x_1 , x_2 are in series in M, then they are in series in $M_{x,y}$.

Theorem 2.2 [6]. A binary matroid is cographic if and only if it has no minor isomorphic to F_7 , F_7^* , $M(K_5)$ or $M(K_{3,3})$.

Notation. For the sake of convenience, let $\mathcal{F} = \{F_7, F_7^*, M(K_5), M(K_{3,3})\}.$

Lemma 2.3. Let M be a graphic matroid and let $x, y \in E(M)$ be a nontrivial pair such that $M_{x,y}$ is not cographic. Then there is a loopless and coloopless minor N of M such that no two elements of N are in series and $N_{x,y}/\{x\} \cong F$ or $N_{x,y}/\{x,y\} \cong F$ for some $F \in \mathcal{F}$.

Proof. The proof is similar to the proof of Theorem 2.3 of [8]. \Box

Definition 2.4. Let M be a loopless and coloopless graphic matroid in which no two elements are in series and let $F \in \mathcal{F}$. We say that M is *minimal* with respect to F if there exist two elements x and y of M such that $M_{x,y}/\{x\} \cong F$ or $M_{x,y}/\{x,y\} \cong F$.

Corollary 2.5. Let M be a graphic matroid. For any non-trivial pair $\{x,y\}$ of elements of M, the matroid $M_{x,y}$ is cographic if and only if M has no minor isomorphic to a minimal matroid with respect to any $F \in \mathcal{F}$.

Lemma 2.6. Let $F \in \mathcal{F}$ and let M be a graphic matroid such that either $M_{x,y}/\{x\} \cong F$ or $M_{x,y}/\{x,y\} \cong F$ for some non-trivial pair $x,y \in E(M)$. Then the following statements hold:

- (i) M has neither loops nor coloops;
- (ii) x and y cannot be parallel in M;
- (iii) if $x_1, x_2 \in E(M)$ are parallel in M, then one of them is either x or y;
- (iv) if $M_{x,y}/\{x\} \cong F$, then M has at most two pairs of parallel elements;
- (v) if $M_{x,y}/\{x\} \cong M(K_{3,3})$ or $M_{x,y}/\{x,y\} \cong M(K_{3,3})$, then every odd circuit of M contains x or y; and
- (vi) if $M_{x,y}/\{x\} \cong M(K_5)$ or $M_{x,y}/\{x,y\} \cong M(K_5)$, then every odd cocircuit of M contains x or y.

Proof. The proof follows from Lemma 2.1 and from the fact that F does not contain loops, coloops and 2-circuits.

A matroid is said to be *Eulerian* if its ground set can be expressed as a union of disjoint circuits [13].

Lemma 2.7 [8]. If x, y are non-adjacent edges of a graph G such that $M(G)_{x,y}/\{x,y\}$ is Eulerian, then either G is Eulerian or the end vertices of x and y are precisely of odd degree.

3. Cographic splitting matroids

In this section, we obtain the minimal matroids corresponding to the four matroids F_7 , F_7^* , $M(K_{3,3})$ and $M(K_5)$, and use them to give a proof of Theorem 1.5.

Lemma 3.1 [2]. Let M be a graphic matroid. Then M is minimal with respect to the matroid F_7 or F_7^* if and only if M is isomorphic to one of the matroids $M(G_1)$, $M(G_2)$ and $M(G_3)$ where G_1 , G_2 and G_3 are the graphs of Figure 5.

In the following lemma, we characterize the minimal matroids corresponding to the matroid $M(K_{3,3})$.

Lemma 3.2. Let M be a graphic matroid. Then M is minimal with respect to the matroid $M(K_{3,3})$ if and only if M is isomorphic to one of the cycle matroids $M(G_4)$, $M(G_5)$, $M(G_6)$ and $M(G_7)$ where G_4 , G_5 , G_6 and G_7 are the graphs of Figure 6.

Proof. It follows from the matrix representations that $M(G_4)_{x,y}/\{x\}\cong$ $M(K_{3,3}), M(G_5)_{x,y}/\{x\} \cong M(K_{3,3}), M(G_6)_{x,y}/\{x\} \cong M(K_{3,3}), M(G_7)_{x,y}/\{x\}$ $\{x,y\}\cong M(K_{3,3})$. Therefore $M(G_4),M(G_5),M(G_6)$ and $M(G_7)$ are minimal with respect to the matroid $M(K_{3,3})$.

Conversely, suppose M is a minimal matroid with respect to $M(K_{3,3})$. Then there exist elements x and y of M such that $M_{x,y}/\{x\} \cong M(K_{3,3})$ or $M_{x,y}/\{x,y\} \cong M(K_{3,3}).$

Case (i). $M_{x,y}/\{x\} \cong M(K_{3,3})$.

Since $r(M_{x,y}/\{x\}) = r(M(K_{3,3})) = 5$, $M_{x,y}$ is a matroid of rank 6 and |E(M)| = 10. In the light of Lemma 2.1(iii), the matroid M has rank 5 and its ground set has 10 elements. Let G be a connected graph corresponding to M. Then G has 6 vertices, 10 edges and has no vertex of degree 2. Hence, by Lemma 2.6, G has minimum degree at least 3. Thus the degree sequence of G is (5,3,3,3,3,3) or (4,4,3,3,3,3). Suppose G is a simple graph. By [4, pp. 223], each simple connected graph with these degree sequences is isomorphic to one of the graphs of Figure 7.

Figure 7

By the nature of circuits of $M(K_{3,3})$ or $M_{x,y}$ and by Lemma 2.6, it follows that G can not have

- (i) two or more edge disjoint triangles; and
- (ii) a circuit of size 3, 4 or 6 containing both x and y.

Since each of the graphs (i), (ii) and (iii) of Figure 7 contains two or more edge disjoint triangles, we discard them. Therefore the graph G is isomorphic to the graph (iv) of Figure 7 which is nothing but the graph G_4 as stated in the lemma.

Suppose G is not a simple graph. Then, by of Case (i) of [2, Lemma 3.3], G is isomorphic to the graph G_5 or G_6 of Figure 6.

Case (ii). $M_{x,y}/\{x,y\} \cong M(K_{3,3})$.

As $r(M(K_{3,3})) = 5$, $r(M_{x,y}) = 7$. Hence r(M) = 6 and |E(M)| = 11. Let G be a connected graph corresponding to M. Then G has 7 vertices, 11 edges and has minimum degree at least 3. Therefore the degree sequence of G is (4,3,3,3,3,3,3,3). It follows from Lemma 2.6 that G cannot have

- (i) more than two edge disjoint triangles;
- (ii) a cycle of size other than 6 which contains both x and y;
- (iii) a triangle and a 2-circuit which are edge disjoint.

Then, by Case (ii) of [2, Lemma 3.3], G is isomorphic to G_7 of Figure 6.

Finally, we characterize minimal matroids corresponding to the matroid $M(K_5)$ in the following lemma.

Lemma 3.3. Let M be a graphic matroid. Then M is minimal with respect to the matroid $M(K_5)$ if and only if M is isomorphic to one of the matroids $M(G_8), M(G_9), M(G_{10}), M(G_{11})$ and $M(G_{12})$ where G_8, G_9, G_{10}, G_{11} and G_{12} are the graphs of Figure 8.

Figure 8

Proof. One can check that $M(G_8)_{x,y}/\{x\} \cong M(K_5), M(G_9)_{x,y}/\{x,y\} \cong M(K_5), M(G_{10})_{x,y}/\{x,y\} \cong M(K_5), M(G_{11})_{x,y}/\{x,y\} \cong M(K_5),$ $M(G_{12})_{x,y}/\{x,y\} \cong M(K_5).$ Therefore $M(G_8), M(G_9), M(G_{10}), M(G_{11})$ and $M(G_{12})$ are minimal matroids with respect to the matroid $M(K_5)$.

Conversely, suppose M is a minimal matroid with respect to the matroid $M(K_5)$, and let x and y be the elements of M with the property that $M_{x,y}/\{x\} \cong M(K_5)$ or $M_{x,y}/\{x,y\} \cong M(K_5)$.

Case (i). $M_{x,y}/\{x\} \cong M(K_5)$.

Then, by Case (i) of [2, Lemma 3.4], G is isomorphic to the graph G_8 of Figure 8.

Case (ii). $M_{x,y}/\{x,y\} \cong M(K_5)$.

Then $r(M(K_5)) = 4$, $r(M_{x,y}) = 6$ and |E(M)| = 12. Let G be a connected graph corresponding to M. Then G has 6 vertices, 12 edges and has minimum degree at least 3. By [4, pp. 224], there are five non-isomorphic simple graphs each with 6 vertices and 12 edges of which two graphs are planar and hence are discarded as in Case (ii) of [2, Lemma 3.4]. The remaining three non-planar graphs are as shown in Figure 9 below.

Suppose G is one of these three graphs. In graph (i) of Figure 9, each odd cocircuit of M doesn't contain x or y, a contradiction to Lemma 2.6(vi). In each of the graphs (ii) and (iii) of Figure 9, x and y together belong to a 3-circuit or a 4-circuit, a contradiction to Lemma 2.6(iv) and (vi).

Hence G is not a simple graph. By Lemma 2.6(iv), G has exactly one pair of parallel edges. Then G can be obtained from a simple graph on 6 vertices and 11 edges by adding an edge in parallel. There are eight non-isomorphic connected simple graphs each with 6 vertices and 11 edges as shown in Figure 10 (see [4, pp. 223]).

It follows by Lemma 2.6(i), (iv) and Lemma 2.7 that G cannot be obtained from graphs (ii), (iii) and (vii) of Figure 10. Suppose G is obtained from graph (i) or (iv). Then G is isomorphic to one of the four graphs of

Figure 11. By Lemma 2.6(ii), (iii) and (vi), G is not isomorphic to each of the two graphs (i) and (ii) of Figure 11. Hence G is isomorphic to graphs (iii) and (iv) of Figure 11 which are nothing but the graphs G_9 and G_{10} of Figure 8.

By Lemma 2.6(ii), (iii) and (vi), G cannot be obtained from graph (v) of Figure 10. Suppose G is obtained from graph (viii) of Figure 10. Then G is isomorphic to one of the two graphs of Figure 12. By Lemma 2.6(iv) and Lemma 2.7, G is not isomorphic to graph (i) of Figure 12. By Lemma 2.6(ii) and (iv) and the fact that $M(K_5)$ does not contain odd cocircuit, G cannot be isomorphic to the graph (ii) of Figure 12.

Figure 12

Suppose G is obtained from graph (vi) of Figure 10. Then G is isomorphic to one of the two graphs G_{11} and G_{12} of Figure 8.

Now, we use Lemmas 3.1, 3.2 and 3.3 to prove Theorem 1.5.

Proof of Theorem 1.5. Let M be a graphic matroid. On combining Corollary 2.5 and Lemmas 3.1, 3.2 and 3.3, it follows that $M_{x,y}$ is cographic for every non-trivial pair $\{x,y\}$ of elements of M if and only if M has no minor isomorphic to any of the matroids $M(G_i)$, $i=1,2,\ldots,12$ where the graphs G_i 's are as shown in the statement of Lemmas 3.1, 3.2 and 3.3. However, we have $M(G_3) \cong M(G_2) \setminus \{1\} \cong M(G_5)/\{1\} \setminus \{2\} \cong M(G_6)/\{1\} \setminus \{2\} \cong M(G_7)/\{1,2\} \setminus \{3\} \cong M(G_8) \setminus \{y,1,2\} \cong M(G_9)/\{1\} \setminus \{2,3,4\} \cong M(G_{10})/\{y\} \setminus \{1,2,3\} \cong M(G_{11})/\{3\} \setminus \{1,2,4\} \cong M(G_{12})/\{3\} \setminus \{1,2,4\}$. Thus $M_{x,y}$ is cographic if and only if M has no minor isomorphic

to any of the matroids $M(G_i)$, i = 1, 3, 4. But the graphs G_1, G_3 and G_4 are precisely the graphs given in the statement of the theorem. This completes the proof of the theorem.

References

- [1] Azadi G., Generalized splitting operation for binary matroids and related results, Ph.D. Thesis, University of Pune (2001).
- [2] Borse Y. M., Shikare M. M. and Dalvi K. V., Excluded-Minors for the class of cographic splitting matroids, Ars Combin. 115 (2014), 219-237.
- [3] Fleischner H., Eulerian Graphs and Related Topics, Part 1, Vol. 1, North Holland, Amsterdam, 1990.
- [4] Harary F., Graph Theory, Addison-Wesley, Reading, 1969.
- [5] Mills A., On the cocircuits of a splitting matroid, Ars Combin. 89 (2008), 243-253.
- [6] Oxley J. G., Matroid Theory, Oxford University Press, Oxford, 1992.
- [7] Raghunathan T. T., Shikare M. M. and Waphare B. N., Splitting in a binary matroid, *Discrete Math.* 184 (1998), 267-271.
- [8] Shikare M. M. and Waphare B. N., Excluded-Minors for the class of graphic splitting matroids, *Ars Combin.* 97 (2010), 111-127.
- [9] Shikare M. M. and Azadi G., Determination of the bases of a splitting matroid, European J. Combin. 24 (2003), 45-52.
- [10] Shikare M. M., Splitting lemma for binary matroids, Southeast Asian Bull. Math. 32 (2007), 151-159.
- [11] Slater P. J., A Classification of 4-connected graphs, J. Combin. Theory 17 (1974), 281-298.
- [12] Tutte W. T., A theory of 3-connected graphs, *Indag. Math.* 23 (1961), 441-455.
- [13] Welsh D. J. A., Matroid Theory, Academic Press, London, 1976.