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Abstract
In this paper, we consider the problem of determining precisely which
graphic matroids M have the property that the splitting operation,
by every pair of elements, on M yields a cographic matroid. This
problem is solved by proving that there are exactly three minor-
minimal graphs that do not have this property.
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1. Introduction

The matroid notations and terminology used here will follow Oxley [6].
Fleischner [3] introduced the idea of splitting a vertex of degree at least
three in a connected graph and used the operation to characterize Eulerian
graphs. Figure 1 shows the graph G, , that is obtained from G by splitting
away the edges = and y from the vertex v.

Figure 1
Fleischner [3] characterized Eulerian graphs and also developed an al-
gorithm to find all distinct Eulerian trails in an Eulerian graph using the
splitting operation. Tutte [12] characterized 3-connected graphs, and Slater
(11] classified 4-connected graphs using a slight variation of this operation.
Raghunathan et al. [7] extended the notion of splitting operation from
graphs to binary matroids as follows:
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Definition 1.1. Let M = M|[A] be a binary matroid and suppose z,y €
E(M). Let A, be the matrix obtained from A by adjoining the row that
is zero everywhere except for entries of 1 in the columns labeled by z and
y. The splitting matroid M, y is defined to be the vector matroid of the
matrix A . The transition from M to M,y is called a splitting operation.

Alternatively, the splitting operation can be defined in terms of circuits
of binary matroids as follows:

Lemma 1.2 (7). Let M = (E,C) be a binary matroid on a set E together
with the set C of circuits and let {z,y} C E. Then M, = (E,C’') with
C’' =CoUCy where

Co={CeC : z,yeCorxz¢C, y¢C}; and

C = {01U02 : C,CeC,z€Cy, ye€ Cy, CiNCy, =¢ and C1 U
C; contains no member of Co}.

Note that the elements z and y are in series in M . Various properties
of the splitting matroids have been explored in [1, 2, 5, 7, 8, 9, 10].

The splitting operation on a graphic matroid may not yield a graphic
matroid. Shikare and Waphare [8] characterized graphic matroids whose
splitting matroids for every pair of element are also graphic. They proved
the following theorem.

Theorem 1.3 (8]. The splitting operation, by any pair of elements, on
a graphic matroid yields a graphic matroid if and only if it has no minor
isomorphic to the cycle matroid of any of the following four graphs.

Figure 2

Cographicness of a matroid is not preserved under the splitting oper-
ation. Borse, Shikare and Dalvi [2] obtained the following result in this
regard.

Theorem 1.4 [2]. The splitting operation, by any pair of elements, on a

358



cographic matroid yields a cographic matroid if and only if it has no minor
isomorphic to the cycle matroid of any of the following two graphs.

Figure 3

Let M(G) denotes the cycle matroid of a graph G. If M is a graphic
matroid containing a minor isomorphic to M(Kjs) or M (K3 3) and there
is a pair z,y of elements of M such that M = M, ,, then M, , is not
cographic. In the light of Lemma 2.1(ii), we say that a pair z, y of elements
of M is non-trivial if none of = and y is a loop or a coloop, and M # M,y
In this paper, we characterize those graphic matroids M for which M, is
cographic for every non-trivial pair z,y € F(M). The following is the main
theorem of the paper.

Theorem 1.5. The splitting operation, by any non-trivial pair of elements,
on a graphic matroid yields a cographic matroid if and only if it has no mi-
nor isomorphic to the cycle matroid of any of the following three graphs.

<P

2. The splitting operation and minors

Figure 4

In this section, we provide necessary lemmas which are useful in the proof
of Theorem 1.5.

Lemma 2.1 (8]. Let z and y be elements of a binary matroid M and let
r(M) denote the rank of M. Then the following statements hold:
(i) if  and y are not coloops in M, then they are in series in M; y;
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(ii) Mz, = M if and only if x and y are in series or both x and y are
coloops in M;

(i) 1(My,y) = r(M) + 1 if {z,y} is a non-trivial pair;

(iv) if 1, T2 are in series in M, then they are in series in My,,.

Theorem 2.2 [6]. A binary matroid is cographic if and only if it has no
minor isomorphic to F7, F7, M(Ks) or M(K33).

Notation. For the sake of convenience, let F = {F, F;, M(K5), M(K33)}.

Lemma 2.3. Let M be a graphic matroid and let x,y € E(M) be a non-
trivial pair such that M,y is not cographic. Then there is a loopless and
coloopless minor N of M such that no two elements of N are in series and
Nzy/{z} = F or Ny y/{z,y} = F for some F € F.

Proof. The proof is similar to the proof of Theorem 2.3 of (8]. a

Definition 2.4. Let M be a loopless and coloopless graphic matroid in
which no two elements are in series and let F' € F. We say that M is
minimal with respect to F' if there exist two elements x and y of M such
that My ,/{z} = F or M;,/{z,y} = F.

Corollary 2.5. Let M be a graphic matroid. For any non-trivial pair
{z,y} of elements of M, the matroid M., is cographic if and only if M has
no minor isomorphic to a minimal matroid with respect to any F' € F.

Lemma 2.6. Let F € F and let M be a graphic matroid such that either
M. y/{z} = F or M. ,/{z,y} = F for some non-trivial pair z,y € E(M).
Then the following statements hold:

(i) M has neither loops nor coloops;

(#) r and y cannot be parallel in M;

(iit) if T1,z2 € E(M) are parallel in M, then one of them is either = or y;
(iv) if M, /{x} = F, then M has at most two pairs of parallel elements;
(v) if Mgy /{z} & M(K33) or Mzy/{z,y} = M(Ks33), then every odd
circuit of M contains x or y; and

(vi) if My ,/{z} = M(Ks) or Mz y/{z,y} = M(Ks), then every odd cocir-
cuit of M contains x or y.

Proof. The proof follows from Lemma 2.1 and from the fact that F' does
not contain loops, coloops and 2-circuits. O
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A matroid is said to be Eulerian if its ground set can be expressed as a
union of disjoint circuits [13].

Lemma 2.7 [8]. If z, y are non-adjacent edges of a graph G such that
M(G)z,y/{z,y} is Eulerian, then either G is Eulerian or the end vertices
of x and y are precisely of odd degree.

3. Cographic splitting matroids

In this section, we obtain the minimal matroids corresponding to the four
matroids F5, F7, M(K33) and M(K5), and use them to give a proof of
Theorem 1.5.

Lemma 3.1 [2]. Let M be a graphic matroid. Then M is minimal with
respect to the matroid F; or Fy if and only if M is isomorphic to one of the
matroids M(G1), M(G3) and M(G3) where Gy, Gy and G3 are the graphs
of Figure 5.

G1 G2 Gs
Figure 5

In the following lemma, we characterize the minimal matroids corre-
sponding to the matroid M (K3 3).

Lemma 3.2. Let M be o graphic matroid. Then M is minimal with respect
to the matroid M(Ks3) if and only if M is isomorphic to one of the cycle
matroids M(G4), M(Gs), M(Gg) and M(G,) where G4,Gs,Gs and Gy are
the graphs of Figure 6.
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Ga

Figure 6

Proof. It follows from the matrix representations that M(Ga)s,,/{z} =
M(K33), M(Gs)z.y/{z} & M(K33), M(Gé)z,y/{z} = M(K33), M(G7)zy/
{x,y} = M(K33). Therefore M(G4), M(Gs), M(Gg) and M(G7) are mini-
mal with respect to the matroid M(K33).

Conversely, suppose M is a minimal matroid with respect to M (K3 3).
Then there exist elements z and y of M such that M, ,/{x} = M (K3 3) or
My /{2, v} = M(Kaa).

Case (i). M, /{z} = M(K3z3).

Since (M, y/{z}) = r(M(K33)) = 5, My, is a matroid of rank 6 and
|E(M)| = 10. In the light of Lemma 2.1(jii), the matroid M has rank 5 and
its ground set has 10 elements. Let G be a connected graph corresponding
to M. Then G has 6 vertices, 10 edges and has no vertex of degree 2. Hence,
by Lemma 2.6, G has minimum degree at least 3. Thus the degree sequence
of G is (5,3,3,3,3,3) or (4,4,3,3,3,3). Suppose G is a simple graph. By
[4, pp. 223], each simple connected graph with these degree sequences is
isomorphic to one of the graphs of Figure 7.

P o PP

(@) (i) (i12) (iv)
Figure 7

By the nature of circuits of M(Kj33) or M., and by Lemma 2.6, it
follows that G can not have
(i) two or more edge disjoint triangles; and
(i) a circuit of size 3, 4 or 6 containing both x and y.
Since each of the graphs (i), (i) and (i) of Figure 7 contains two or
more edge disjoint triangles, we discard them. Therefore the graph G is
isomorphic to the graph (i) of Figure 7 which is nothing but the graph G4
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as stated in the lemma.
Suppose G is not a simple graph. Then, by of Case (i) of [2, Lemma
3.3], G is isomorphic to the graph Gs or Gg of Figure 6.
Case (ii). Mz y/{z,y} = M(K3z3).
Asr(M(K33)) =5, 7(M;,y) = 7. Hence r(M) = 6 and |E(M)| = 11. Let G
be a connected graph corresponding to M. Then G has 7 vertices, 11 edges
and has minimum degree at least 3. Therefore the degree sequence of G is
(4,3,3,3,3,3,3). It follows from Lemma 2.6 that G cannot have
(i) more than two edge disjoint triangles;
(ii) a cycle of size other than 6 which contains both z and y;
(iii) a triangle and a 2-circuit which are edge disjoint.
Then, by Case (ii) of [2, Lemma 3.3], G is isomorphic to G7 of Figure 6.
d
Finally, we characterize minimal matroids corresponding to the matroid
M(K3) in the following lemma.

Lemma 3.3. Let M be a graphic matroid. Then M is minimal with respect
to the matroid M (Ks) if and only if M is isomorphic to one of the matroids
M(Gs), M(Gy), M(G10), M(G11) and M(G)3) where Gg, Gy, G10,G1; and
G2 are the graphs of Figure 8.

e e 4

Gs Gio Gn G2
Figure 8

Proof. One can check that M(Gs). y/{z} & M(Ks), M(Go)zy/{z,y} =
M(Ks), M(G10)ay/{2,4} & M(Ks), M(G11)ey/ .4} = M(KGs),
M(Gi2)sy/{z,y} & M(Ks). Therefore M(Gs), M(Go), M(Gio), M(G1)
and M(Gi2) are minimal matroids with respect to the matroid M(Ks).
Conversely, suppose M is a minimal matroid with respect to the ma-
troid M(K3), and let z and y be the elements of M with the property that
My y/{z} = M(Ks) or M, ,/{z,y} = M(Ks).
Case (i). M ,/{x} = M(Ks).
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Then, by Case (i) of [2, Lemma 3.4], G is isomorphic to the graph Gs of
Figure 8.

Case (ii). M;,/{z,y} = M(Ks).

Then r(M(Ks)) = 4,7(M;,) = 6 and |E(M)| = 12. Let G be a connected
graph corresponding to M. Then G has 6 vertices, 12 edges and has mini-
mum degree at least 3. By [4, pp. 224], there are five non-isomorphic simple
graphs each with 6 vertices and 12 edges of which two graphs are planar
and hence are discarded as in Case (ii) of {2, Lemma 3.4]. The remaining
three non-planar graphs are as shown in Figure 9 below.

=<

() (i)
Figure 9

Suppose G is one of these three graphs. In graph (i) of Figure 9, each
odd cocircuit of M doesn’t contain z or y, a contradiction to Lemma 2.6(vi).
In each of the graphs (ii) and (iii) of Figure 9, x and y together belong to
a 3-circuit or a 4-circuit, a contradiction to Lemma 2.6(iv) and (vi).

Hence G is not a simple graph. By Lemma 2.6(iv), G has exactly one
pair of parallel edges. Then G can be obtained from a simple graph on 6
vertices and 11 edges by adding an edge in parallel. There are eight non-
isomorphic connected simple graphs each with 6 vertices and 11 edges as
shown in Figure 10 (see [4, pp. 223])

&

(v) (vi) (vid) (viid)
Figure 10

It follows by Lemma 2.6(i), (iv) and Lemma 2.7 that G cannot be ob-
tained from graphs (%), (4ii) and (vii) of Figure 10. Suppose G is obtained
from graph (i) or (iv). Then G is isomorphic to one of the four graphs of
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Figure 11. By Lemma 2.6(ii), (iii) and (vi), G is not isomorphic to each of
the two graphs (i) and (4) of Figure 11. Hence G is isomorphic to graphs
(iii) and (iv) of Figure 11 which are nothing but the graphs Go and Gy of
Figure 8.

e

&) (i33) (iv)
Figure 11

By Lemma 2.6(ii), (iii) and (vi), G cannot be obtained from graph (v)
of Figure 10. Suppose G is obtained from graph (viii) of Figure 10. Then
G is isomorphic to one of the two graphs of Figure 12. By Lemma 2.6(iv)
and Lemma 2.7, G is not isomorphic to graph (i) of Figure 12. By Lemma
2.6(ii) and (iv) and the fact that M(K5) does not contain odd cocircuit, G
cannot be isomorphic to the graph (i) of Figure 12.

e &S

(%)

Figure 12

Suppose G is obtained from graph (vi) of Figure 10. Then G is isomor-
phic to one of the two graphs G;; and G2 of Figure 8.

Now, we use Lemmas 3.1, 3.2 and 3.3 to prove Theorem 1.5.

Proof of Theorem 1.5. Let M be a graphic matroid. On combining
Corollary 2.5 and Lemmas 3.1, 3.2 and 3.3, it follows that M, is cographic
for every non-trivial pair {z,y} of elements of M if and only if M has no
minor isomorphic to any of the matroids M(G;), i = 1,2,...,12 where
the graphs G;’s are as shown in the statement of Lemmas 3.1, 3.2 and
3.3. However, we have M(G3) = M(Gq) \ {1} = M(Gs)/{1} \ {2} =
M(Ge)/{1}\{2} = M(G7)/{1,2}\{3} = M(Gs)\{y,1,2} = M(Go)/{1}\
{2’ 3’4} = M(GIO)/{y}\{l’ 2v3} = M(Gll)/{3}\{1’ 2’4} = M(Gl2)/{3}\
{1,2,4}. Thus M., is cographic if and only if M has no minor isomorphic
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to any of the matroids M (G;),i = 1, 3,4. But the graphs G1,G3 and G, are
precisely the graphs given in the statement of the theorem. This completes
the proof of the theorem. O
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