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Abstract

For a graph G, an edge labeling of G is a bijection f : E(G) —
{1,2,---,|E(G)|}. The induced vertex sum f* of f is a function de-
fined on V(G) given by f*(u) = ZuuGE(G) f(uv) for all u € V(G).
And G is called antimagic if there exists an edge labeling of G such
that the induced vertex sum of the edge labeling is injective. Harts-
field and Ringel conjectured in 1990 that all connected graphs except
K; are antimagic. A spider is a connected graph of which one and
only one vertex has degree exceeding 2. This paper shows that all
spiders are antimagic.

1 Introduction

Let G be a finite simple graph without any isolated vertex. An edge label-
ing of G is a bijection f : E(G) — {1,2,---,|E(G)|} and the induced
vertez sum ft of f is a function defined on V(G) given by f+(u) =
EweE(G f(uv) for all u € V(G). And f*(u) is called the vertezx sum of u.
The graph G is called antimagic if there exists an edge labeling of G such
that the induced vertex sum of the edge labeling is injective. Hartsfield and
Ringel (3] introduced antimagic graphs in 1990. They showed that paths,
complete graphs (except K>), cycles, and wheels are antimagic, and conjec-
tured that all connected graphs except K, are antimagic. This conjecture
is far from completely solved. Alon et al. [1] validated this conjecture for
graphs having n vertices and minimum degree Q(log n). They also proved
that a complete partite graph besides K2 and a graph of order n > 4 with
maximum degree > n — 2 are antimagic. Wang and Hsiao [5] constructed
antimagic graphs through Cartesian products and lexicographic products.
Let P, denote a path of order n. They showed that P, x P, (the Cartesian
product of Py, and P,, m > n > 2) and H x P, (n > 2), where H is a
d-regular graph for some d > 1, are antimagic. They also proved that if
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F is an antimagic k-regular graph, k > 2, then the lexicographic product
U[F) is antimagic for any graph U. Lee, Lin and Tsai [4] proved that a
power of cycle C2 is antimagic and the vertex sums of all vertices form a
set of successive integers when n is odd. Gallian [2] comprehensively in-
troduced many types of graph labelings and their open problems, which
include the antimagic labeling. A caterpillar is a connected graph of order
at least three which contains a path such that each vertex not on the path
is adjacent to a vertex on the path. A spideris a connected graph of which
one and only one vertex has degree exceeding 2. Till now, it is not known
if all caterpillars are antimagic. The main result of this paper is that all
spiders are antimagic.

2 Main result

As mentioned in section 1, a spider is a connected graph of which one and
only one vertex has degree exceeding 2. The vertex with degree exceeding
2 is called the body of the spider. Let S be a spider and = the body of
S. Then each component of S — z is called a leg of S. Obviously each leg
is a path. Suppose a spider has k legs and these legs have l; vertices for
i=1,2,---,k where l; <lp <.+ <li. Then this spider is denoted by
SP(l,la,--+,lk). For j =1,2,---k, let L; be the leg with [; vertices and b
the body of SP(ly,la,--,lk). Fori=1,2,---,1;, let v; ; denote the vertex
on L; with d(v; ;,b) = l; — i + 1, where d(v; j,b) is the distance between
v;,; and b. For each j where 1 < j < k let e; ; denote the edge v; ;vi41,;
fori=1,2,---,l; — 1 and e, ; the edge v, ;b. The following figure shows
the notations of vertices and edges on SP(1,3,3,5).

1,2 V1,3

. €34 €2.4 €1.4
11 b Vs,4 V4,4 V3,4 V2,4 V1,4
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Let E denote the edge set of SP(ly,ls,---,lx). We now define an order
on E as follows. For e; j, ey ;o € E, we have e; ; < ey j if and only if i < ¢/,
ori =i and j < j'. We can see that < is a linear order on E. For example,
in SP(1,3,3,5), we have €1,1 <€1,2 <€ 3 <eyjq <ezxo <e3 <eyyq <
€32 < €33 <€e34 <€44 < €54.

Now define a function f, on E by fo(e; ;) = n if e; ; is the n-th edge un-
der the linear order <. Obviously, f, is an edge labeling of SP(ly,la,- - -, ).
As exhibited in Fig. 2, for SP(1,3,3,5), we have f,(e1,1) = 1, fo(e12) = 2,
foler3) = 3, foler,4) = 4, folea2) = 5, foleas) = 6, folead) = 7,
fo(es,q) = 12.

1 12 11 10 7 4

Fig. 2

The following lemma is trivial. We omit the proof.

Lemma 2.1 Suppose SP(ly,l,---,l) is a spider with the edge set E. Let
< be the linear order on E and f, the edge labeling of SP(ly,la, -+, k)
defined above. Then f}(vi;) < ff(vij) whenever e;; < ey 1; and hence
all the vertex sums are distinct except that of the body. a

Theorem 2.2 Spiders are antimagic.

Proof. Let S = SP(l,ls,---,l) be a spider with the edge set E and the
body b. Suppose |[E| =e. Ifeach [; =1 for i =1,2,---,k (k > 3), then S
is a star. Since a star (except K3) is trivially antimagic, we may assume
lr > 2. Now distinguish two cases ly = lx_y and I > [,_; + 1.

Case 1: !l = l;—;. By the definition of f, we have folen—1k) <
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fol€tu_, k—1) for e, 11 < ey, _, k—1. Then

k
> foler 5)
=1

> folet_yk—1) + fole k)
> folen—1,k) + foler, k)
f:(vlk,k)»

where k > 3 and Il > 2. That is, fF(b) > fF (v, k). By Lemma 2.1, all
f}(vi;) are distinct, and fj (v, k) is the maximum of all ff(v;;), since
ei; < ey, k for all e; ; # ey, x. We have ff is injective.

Case 2: I > lp_1 + 1. Weseethat e, _, k-1 < €l,_,k <€_ +1,k <
€l +2k < -+ < e, and e;; < ey, k-1 for all other ¢,5. Now sup-
pose fo(elk_l,k—l) = p. Then fO(elk—hk) =p+1, fO(elk_H-l,k) =p+2
fa(elk-,+2.k) =p+3, -, fo(elk,k) = e. See Fig. 3.

f3(b)

p+3 p+2 p+1

U142,k Uiy +1,k Vi k

L 'Uh,l
Fig. 3

Note that e > p+ 2 for I > lk—1 + 1. By Lemma 2.1 fF(vi;) <
f:(vlk_1+l,k) for all Vi,j € V(S) - {bs Ul +1,ks UVl 2,k " °° 1vlk.k}~ Now
f:(vlk—l"'l.k) =2p+3 and f:(b) 2 fa(ell.l) + fo(elk—l-k“l) + fo(elk,k) 2
2p + 3. Hence if f}(b) = f}(v;;) for some v; ;, then v; ; € {vi,_, 41k,

Vlu_ 42k +° "y Ui,k }- Distinguish two cases for discussion.

Subcase 2.1: fF(b) = fF(vn_,+14). Thatis, ff(b) =2p+3. It
is easily seen that S = SP(1,l,ly +1). Now fo(er, 2) = p, folen,3) =
p+1, foler,+13) = p+2. By Lemma 2.1, all f}(v;;) are distinct, and
(i) < fF(vya) for vij € V(S) = {b,u1,,3,v1,41,3}, since e;; < e, 3
for all e;; € E — {e1,,3,€1,41,3}. We now define an edge labeling f of
S by f(e,3) = p+2, fler,+1,3) = p+ 1 and f(ei;) = fo(ei;) for all
other i,j. Then ft(v,3) = fF(vy,,3) +1 and f*(vy;) = fF(vi;) for
all other 4,j. Fig. 4 shows several edges’ labels of f. Clearly, for all
vi; € V(S) — {b,v1,,3,vi, 41,3}, the vertex sums f*(v; ;) are distinct and
fHwij) = fFwij) < fFvy3) < f*(v,,3). Next evaluate f*(vy,,3). If
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Iy =1, then f*(u,3) = f(en,3) =p+2;if l; > 2, we see that f(e;,—13) =
p—1and f*(vy,3) = fle,-1.3) + fle,3) =2p+1. And fH(b) = 2p +
2, f*(vi41,3) = 2p + 3. We see that f+(v;;) (1 <i<;,1 <j <k)and
f*(b) are all distinct. Hence f* is injective.

Vip—1,2
p-2 Ul,,2
p p+1 p+2 p—1
/ b Uiy +1,3 Ui,,3 %-’1‘.3'
V1.1

Fig. 4

Subcase 2.2: f}(b) = f¥(vx) for some {,_; + 2 < t < li. Note
that fo(en,_, k) = p+ 1, folen_,+16) = P+ 2, folet_,+2) = p+3,
-, folet, ) = e. Suppose fo(erx) = m. Then fy(e14) = m — 1 and
So(ee—2k) = m — 2. And f3(b) = 2m — 1 for f(vek) = folerr) +
fo(et,k) =2m — 1. By Lemma 2.1, all f;}(v;;) are distinct, and ff(v;;) <
f& (ve—2) for v € V(S) — {b, Vemgks Vem1,ks Vesks -+, Uty 1}, SiDCE €5 <
ek forall e;; € E— {e;—ak,€11,k €k, -, €1, k}. Now define an edge
labeling f of § by f(et—2k) = m—1, f(e:—14) = m—2 and f(e;;) = fole;)
for all other 4, . Then f*(vi—ak) = fH(ve—2.x)+1, fH(vex) = fF (ver) -1
and f*(v; ;) = fF (vi;) for all other 4, j. Fig. 5 shows several edges’ labels
of f. Clearly, for all v;; € V(S8) — {b,vi—2k,Ve—1,k, Ve ks ",V k}, the
vertex sums f*(v; ;) are distinct and f*(v; ;) = fF(vi;) < fFf (ve—2x) <
¥ (ve—2,k). Next evaluate f+(v,—q ). If t = 3, then Fr(ve—ek) = flee—ak)
=m—1;ift > 4, we see that f(e;—3 ) < m—3and f+(ve—ax) = fler—3x)+
fler-24) £2m—4. And f*(ve_16) = 2m =3, f*(vep) =2m -2, f+(b) =
2m—1. And f*(ve414) =2m+1ift+1 <l and fH(vip) = fH(vimyx)+2
ifi >t+2 Weseethat f+(v;;) (1 <i<,1<j<k)and fH(b) are all
distinct. Hence f* is injective.
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Fig. 5

From above we see that for every spider there exists an edge labeling
such that the vertex sums are all distinct. Thus spiders are antimagic. [
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