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Abstract

Let G = (V(G), E(G)) be a simple connected and undirected graph
with vertex set V(G) and edge set E(G). A set S C V(G) is a
dominating set if for each v € V(G) either v € S or v is adja-
cent to some w € S. That is, S is a dominating set if and only
if N[S] = V(G). The domination number 4(G) is the minimum
cardinalities of minimal dominating sets. In this paper, we give an
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improved upper bound on the domination number of generalized Pe-
tersen graphs P(ck,k) for ¢ > 3 and k > 3. We also prove that
~v(P(4k, k)) = 2k + 1 for even k, v(P(5k,k)) = 3k for all k > 1, and
y(P(6k,k)) = ['3] for k> 1 and k # 2.
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1 Introduction

Let G = (V(G), E(G)) be a simple connected and undirected graph
with vertex set V(G) and edge set E(G). The open neighborhood and the
closed neighborhood of a vertex v € V(G) are denoted by N(v) = {u €
V(G) : vu € E(G)} and N{v] = N(v)U {v}, respectively. For a vertex set
SCV(G), N(S) = ULGJSN(‘U) and N[S] = vléJsN[v]. For S C V(G), let (S)
be the subgraph induced by S.

A set S C V(G) is a dominating set if for each v € V(G) either v € §
or v is adjacent to some w € S. That is, S is a dominating set if and only
if N[S) = V(G). The domination number of G, denoted by ¥(G), is the
minimum cardinalities of minimal dominating sets. A subset S C V(G) is
efficient dominating set or a perfect dominating set if each vertex of G is
dominated by exactly one vertex in S. For a more detailed treatment of
domination-related parameters and for terminology not defined here, the
reader is referred to [4].

In recent years, domination and its variations on the class of gen-
eralized Petersen graph have been studied extensively [1-3, 5-9]. The
generalized Petersen graph P(n,k) is defined to be a graph on 2n ver-
tices with V(P(n,k)) = {vi,u; : 0 < i < n — 1} and E(P(n,k)) =
{vivigr, vivi, wiig 0 0 < 1 S n—1, subscripts are taken modulo n}.
In 2009, B. Javad Ebrahimi et al [2] proved a necessary and sufficient con-
dition for the generalized Petersen graphs to have an efficient dominating

set.

Lemma 1.1. [2] If P(n, k) has an efficient dominating set, then v(P(n, k))
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= % and n = 0 (mod 4).

Theorem 1.2. [2] A generalized Petersen graph P(n, k) has an efficient
dominating set if and only if n = 0 (mod 4) and k is odd.

Recently, Weiliang Zhao et al [9] have started to study the domina-
tion number of the generalized Petersen graphs P(ck, k), where ¢ > 3 is a
constant. They obtained upper bound on y(P(ck, k)) for ¢ > 3 as follows:

£[3F1, if ¢ =0 (mod 3);
Y(P(ck, k) < S5 - 13, if ¢ =1 (mod 3);
3 |'53—k] - [%&] + [g—], if ¢ =2 (mod 3).
They also determined the domination number of P(3k,k) for k£ > 1 and
the domination number of P(4k, k) for odd k.

In this paper, we study the domination number of generalized Petersen
graphs P(ck,k). We give an improved upper bound on the domination
number of P(ck, k) for ¢ > 3 and k > 3. We also prove that y(P(4k,k)) =
2k + 1 for even k, v(P(5k, k)) = 3k for all k > 1, and y(P(6k, k)) = [13%]
for k> 1 and k # 2.

Throughout the paper, the subscripts are taken modulo n when it is
unambiguous.

2  General upper bound of P(ck, k)

In this section, we shall give an improved upper hound on the domination
number of P(ck, k) for general c.

Theorem 2.1. For any constant ¢ > 3 and k > 3,

[ *+a, if ¢ =0 (mod 4);
Ltk _1+a, if c=1,2 (mod 4) and k = 0 (mod 2);
C"Z‘l + ¥4l 4 aq, if c= 1 (mod 4) and k = 1 (mod 2);
Y(P(ck,k)) < 4 °2’°+’°'{1 +a, if c= 2 (mod 4) and k& = 1 (mod 4);
*+ 51 +a, if c = 2 (mod 4) and & = 3 (mod 4);
L] +1%)+1+e, ifc=3(mod 4) and k # 4,8;
| ¢2’°+:+a, ifc=3 (mod 4) and k = 4,8;
where
o {o, if k=1 (mod 2);
(&), if k=0 (mod 2).

35



Proof. To show this upper bound, it suffices to give a dominating set S
with the cardinality equaling to the values mentioned in this theorem. Let
n=ck, m= %] and t = n mod 4. Then n = 4m +1.

For k =1 (mod 2), let So = AU B, where
={v4i:0<i<m-1} and B={ugi42:0<i<m—1},

and let
[ So, if c =0 (mod 4);
SoU {tn-2—4i tn-d—ai : 0 <i < |§] -1} U{un1},

ifc=1 (mod 4) and k = 1 (mod 4);
SoU{tn-2—4i,un—4-4i : 0 < i < [¥] =1} U {va-3},

if c=1 (mod 4) and k = 3 (mod 4);
S= W SoU {tn—2—4i,tn—5-2i : 0 < i < [ 5] = 1} U {un—1,un-3},

if c= 2 (mod 4) and k=1 (mod 4);

SoU {un—2-ai,un—3-a; :0< i < [£] -1},

if c =2 (mod 4) and k = 3 (mod 4);
SoU{tn-2-4i :0<i < |£]}U{vn-3}, ifc=3 (mod 4)and k=1 (mod 4);
t SoU{un-2-4i:0<i < [%j}, if c = 3 (mod 4) and k = 3 (mod 4).
It is not hard to check that
(<% if ¢ = 0 (mod 4);
2x|_°’°_]+2x[ J+1=2k2Lp Bl ifc=1 (mod 4) and k =1 (mod 4);
2X[°kj+2x[ ]+1—°k 1+.L ifc=1 (mod 4) and k = 3 (mod 4);
|S| = { 2x["'°]+2x|_ J+2—°k+—‘L if c =2 {(mod 4) and k =1 (mod 4);
2x|_°'°]+2x|' ]_°k+'° 1 if c =2 {mod 4) and k = 3 (mod 4);
2x[°"]+[ J+2——[°’°J+[ j+, if c =3 (mod 4) and k =1 (mod 4);
L2x[°"]+[ J+1_[°’°J+[ J+1, ife=3 (mod 4) and k =3 (mod 4).

For k =0 (mod 2), let my = | § and 7 = ¢ mod 4. Denote
Si0 = Ao U ByoUCyoU Dy U E40, where

Ago = {Varje2+4i takj+ai 10 S i< K -1, 0 <j<mg-1},
Bgo = {U4kg+k+1+4nu4kg+k+3+4: 0 <i < - 1, 0<ji<me— 1}:
Cso = {Vakj2k+dis Yakj+2k+2+4i 1 0 <3 <k-1, 0<j<my-1},

Dao = {vakj+3k+3+4ir Ydkj+3k4+144i 0 <4 S % -1, 0<j<me -1},
Ego = {vakj+3x 10 < j <ma =1},
Sio = A2 UBjoUCypo U Dy U qu, Where

Agz = {Vakj+air Uakj+2+4i 10 S0 < k=2 l 0 <j<my-—1},

Baz = {Vakj+k+1+4i Yakj+k—1+44i 1 0 < i<k=2_1, 0<ji<ma—1},
Ca2 = {Vakj+2k+24+4is Yakj+2k+4i 0SS k Y _ 1, 0<j<ma -1}
D42 = {vakj+3k—1+44is Yakj+3k+1+4i 1 0 S < k_ -1, 0<j<ma -1},

Ea2 = {Vakj+k—2, Vakj+2k—21 Vakj+ak—3 u4k,+2k—3,u4k,+4k —2,:0<j<ma—1},
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and
S = Ss0, if k=0 (mod 4);
4= Ss2, if k=2 (mod 4).

Then
saf=§ 2% § x5 xategm =l g enr, if k = 0 (mod 4);
2x Ex2xenr x4 sx egr = o0k emr ik = 9 (mod 4).

Ifc=0 (mod 4), let S = S,. Then |S| = % 4 ¢.
Ifc=1 (mod 4), let

S= SqU{ui:n—k+1<i<n-1}, if £ =0 (mod 4);
| SaU{uiin—k+1<i<n~4}U{Vnok,¥n-3,un—1}, if k=2 (mod 4).

Then

S| = (c-?x:"‘cf+k—1=‘«f+'£+l§]—l. if k=0 (mod 4);
o el bk —a43=F + 54 5] -1, ifk=2 (mod 4).

If c=2 (mod 4), let

S4U{vn—2k+244i>Un—2k44i : 0 i< K ~ 1}

Uuiin—k<i<n—1}\{up_2x}, if k =0 (mod 4);
SaU{vn-2k44irUn—2k+244i 0SS K72 — 1)
U{ui:n—k-3<i<n-5}U{vp_3}, if k=2 (mod 4).
Then
T B R A L R LT S RA PR if k =0 (mod 4);
o 2 2x F 2 k14 1= % X 4 5] -1, if k=2 (mod 4).
If c=3 (mod 4), let
[ SaU{vn_ik,Vniksa: 1< i <3}
U{un—2k+2, Up—k+1}\ {vn_k}, if k = 4;
Sa U {vn—ik, Vnoiks3, Vnoirse : 1 < i < 3}
U{n—3k44s Un—2k42: Un—2k+7, Un—k+1 Un—k+5) ifk=8;
SaU{Vn_3k+6+4irUn—3ktasai 1 0< i< K -2}
U{tn—2k+9+4is Un—2k+1144i 1 0K i < & —3)
S = U{Un—k484+4is Un—k4+944i» Un—k+10+4i 1 0< i < '; -3}
U{Vn—ik+ Un—iks3 s 1 <1 < 3}
U{vn—2k+6,Un_k 465 tn—1}
U{Un—2k+2) Un—2k4+7: Un—k+1, Un—k+5}, if k =0 (mod 4)
and k # 4, 8;
SaU{vn_3k44airUn—3k+244i :0<i < kzz -1}
U{¥n—2k+14+4i) Un—2k—144i 1 0 < i < *72)
U{Vn—kt34dis Un—ktdis Un—k+144i 10 < i< F72 -1}
L Wvn-2k-2,un-2}, if £ =2 (mod 4).
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Then
(c—§)xk+c:3+8_1=c2k+:+L:J‘ ifk=4,
(c—z)xk+c:3+l4.._.c2k+;‘+[:], ifk=8;
(=Bxk 4 eod pox (XD +5x (k-2 +13=F +%+[5),

if k =0 (mod 4) and k 5£ 4,8;
(e=xk o8 pax (M2 +1)+5x *2+2=F + 572 +03),

if k = 2 (mod 4).

IS =

It is not hard to verify that S is a dominating set of P(ck,k) with
cardinality equaling to the values mentioned in this theorem. 0

In Figure 2.1 and Figure 2.2, we show the dominating sets of P(ck, k)
for 3 < k <10 and 4 < ¢ < 7, where the vertices of dominating sets are in
dark.

As an immediate consequence of Lemma 1.1, Theorem 1.2 and Theorem
2.1, we have the following

Theorem 2.2. For k> 1,

2k, if k=1 (mod 2);

Y(P(4k, k) = {2k+1, if k = 0 (mod 2).

3 The domination number of P(5k,k)

In this section, we shall determine the exact domination number of
P(5k,k) for k > 1.

From Theorem 2.1, we have the following upper bound for P(5k, k).
Lemma 3.1. For k > 4, v(P(5k, k)) < 3k.

To prove the lower bound, we need some further notations. In the
rest of the paper, let S be an arbitrary dominating set of P(ck,k). For
convenience, let

A; = {vi4jx:0<j<c—1},
B; = {ui4jr:0<j<c—-1},
Diy = {vigjk,visje}, 0<j<e—1,
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1HGC) = 27

Figure 2.1: The dominating sets of P(ck,k) for k = 3,5,7,9 and c = 4, 5,6, 7

for 0 < i < k — 1, where the vertices of A; are on the outer cycle and those
of B; are on the inner cycle(s). For 0 < i< k-1, let G; = (A; U B;) be
the ith subgraph induced by A; U B; and S; = V(G:))nS.

Lemma 3.2. Let £ € {0,1,...,k — 1}. If there exists two vertices vy, vy €
Sg such that |z — y| € {2k, 3k}, then |S,| > 4.

Proof. Suppose to the contrary that |Sy| < 3. Without loss of generality,
we may assume z = £ and y = €4 2k, i.e., vg, ver2k € Se (see Figure 3.1).
Then at least one vertex of {ugsx, uetak, ugt4r} would not be dominated
by S, a contradiction. 3
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Figure 2.2: The dominating sets of P(ck,k) for k = 4,6,8,10 and ¢ =4,5,6,7

Lemma 3.3. For any i € {0,1,...,k — 1}, |Si| > 2. Moreover, if there
exists an integer £ € {0,1,...,k — 1} such that |S¢| = 2, then S¢ C B, S¢
is an independent set, and the following statements hold.

(i) If |Se41| = 2, then |Ses2| > 4. Moreover, the equality holds only if
|Sess| = 4;

(ii) If | Se41] = 3, then |Seq2| > 3. Moreover, the equality holds only if
|Se+a| = 4
where the subscripts are taken modulo k.

Proof. Since (B;) is isomorphic to Cs and every vertex of B; must be dom-



Ve+2k Ve+3k

Figure 3.1: The graph for the proof of Lemma 3.1

inated by S;, we have that |S;| > 2 for any i € {0,1,...,k — 1}.

Suppose that there exists an integer £ € {0,1,...,k — 1} such that
|Se| = 2.

Assume to the contrary that [Se N By| < 1, or [S¢N Be| = 2 and S,
is not an independent set. Then at least one vertex of By would not be
dominated by S, a contradiction. Hence, S C B, and S, is an independent
set.

(i) Suppose |Sey1] = 2. Then SeN Ay =0, Seyy N Agy1 = 0 and Seyq
is an independent set. Without loss of generality, we may assume S¢y; =
{uz+l,ue+1+2k}. Since SgﬂAg = 0, to dominate {ve+1+k, Ve 143k, vz+1+4k},
we have veyo4k, Vet2+3k, Ver24+ak € Seqa. It follows from Lemma 3.2 that
Sey2 2 4.

If Sey2 = 4, to dominate {u¢t2, uer242k}, then uppoyr € Seya, which
implies that Sp1o = {vVes2+k, Vetr2+3k, Ver2+ak, Uer24k} and | Dyy(o)NSeta
= |De42(2)NSe+2| = 0. Since Spq1NAes; = 0, to dominate {vet2, Veratak},
we have vgy3,ver312k € Sets (see Figure 3.2 (1)). It follows from Lemma
3.2 that Spy3 > 4.

(ii) Suppose |Seq1] = 3. If |Sey2| = 2, then Se N Ay = @ and Spyo N
Agr2 = 0. To dominate all the vertices in Agy1, we have that [Deg1gy O
Set1| 2 1 for every j € {0,1,2,3,4}. It follows that |Se.y| > 5, a contra-
diction with |S¢41| = 3. Hence, [Se+2| > 3.

Now suppose |Ser2] = 3. It is easy to see that there exist at least
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Vey3 V142 vy
4 1]

Vre
Vt+k Vitatak
Veg1ak Vt43+4k
Vt424k Ve4244k
Vi+3+k Q Vit14+ak
Vt+a+k A . P Vtyak
Ve 2n SN T ’ Ve4a+43k
Ves142k O YyT.d S " Utaasak
Ver242k Ue4+243k
Ve4342k Vg1 43k
Vt4a42k Ve+3k
)

Vp43 V42 Ve
V44 Ve
Vetk Veps4dk
Ut +k Ve434+4k
Ve42+k Ve4244k
Vt43+k Ve+1+4k
Ve a4k Vt+ak
Uey2k P Uryae3k
Ve+1+2k Ve43+3k

Vt4242k Ve+2+3k
Ve4342k T Vg4
Depd+2k Y43k

)

Figure 3.2: The graph for the proof of Lemma 3.2

two different index j1, j2 € {0,1,2,3,4} such that Dgyy¢j,y N Ses1 =0 and
Det1(sz) N Sevr = 0.

If |1 —j2| € {1,4}, that is, |j1 — 2| € {2,3}, say j1 = 1 and j2 = 3, since
S¢NAg = 0, to dominate {vVet1+k, Ve+1+3k }, We have that veioyk, ver2+ak €
Sey2. It follows from Lemma 3.2 that |Seq2| > 4, a contradiction with
|Se+2] = 3. Hence, we conclude that |j; — j2| € {1,4} and |Dey1()NSes1| =
1forte{0,1,2,3,4}\ {s1, 2}

Without loss of generality, we may assume j; = 1 and jo = 2. To
dominate {uet1+k, Ue+142k}, We have that ugsy, uer143k € Se+1 and vesa,
Ver1+3k € Se+1. Since S¢N A, = 0, to dominate {'ve+1+k, vg+1+2k}, we have
Ve42+ks Ve+242k € Se42. Since Sep2 = 3, to dominate {u¢+2,ug+2+3k},
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we have that ugio44x € Seq2. It follows that Diio@y N Sey2 = B and
Deya(zy N Ser2 = 0. Since vey1,ves143k & Ser1, We have veys, verssak €
Se+3 (see Figure 3.2 (2) for veyi144x € Seq1). It follows from Lemma 3.2
that [Sess]| 2 4.

Lemma 3.4. For k > 4, y(P(5k, k)) > 3k.

Proof. Let S be a dominating set of P(5k, k) with the minimum cardinality
If|Si| > 3 foreveryi € {0,1,...,k—1}, then y(P(5k, k)) = |S| = E |S:] >
3k, and we are done. Hence, we may assume that there exists at least one

index £ € {0,1,...,k — 1} such that |S,| = 2.

Let H={0<i<n-1:[8=2,|8_1] > 2} and let h = |H|. Let
t1,t2,...,tn be all the integers of H, where 0 <¢; <tg < - <t <n-—1.
LetNi={05:c5n—l:t,-Sa:Sti.H—l}fori—l? h (In
particular, t44; = ¢;). Clearly, {0,1,...,n -1} = U N;. By Lemma
3.3, we conclude that for any 1 < i < h, N; satisfies one of the following
conditions:

(a) |St'.| = 29|St.'+l| = 2, lSti"f‘zI > 5 and |Sz} >3 for any t; + 3 <z <
tiy1 —1;

(b) 1Se;| = 2,|Se41| = 2,[Se42l = 4, |Se.+3l 2 4, [Sz| 2 3 for any
t+4<z<tip1 — 1

(€) 1St = 2,18t.41] = 3,|Ss42]| = 4, |Se| > 3forany t; +3 <z <
tiv1 — 15

(d) ISu] = 2,|Se41] = 3,[St42l = 3,St.43] > 4, |Sz| = 3 for any
Lbi+4<z <ty -1

(e) ‘Sti,l =2, ISti+l{ 24, |S.1:| >3foranyt; +2<z <tiy1— 1.

It is easy to check that } |S:| > 3|N;| for every i € {1,2,...,h}.

IGN"
It follows that y(P(Sk,k)) = S| = ¥ [S:l =1 X |8 =
0<z<k-1 0<zgn-1
h h h
bX T ISz E AN = § X N = =3k o



As an immediate consequence of Lemma 3.1 and Lemma 3.4, we have
the following

Theorem 3.5. For k > 4, v(P(5k, k)) = 3k.

It was shown in [2] that y(P(n,1)) = [3] for n # 2 (mod 4), v(P(n, 2))
= [%], and v(P(n,3)) = [§]1+1 for n =3 (mod 4) and n # 11. Then, we
have that v(P(5,1)) = 3, v(P(10,2)) = 6 and P(15,3) = 9, which implies
that P(5k, k) = 3k for k € {1,2,3}. Hence, we have the following corollary.

Corollary 3.6. For k > 1, y(P(5k, k)) = 3k.

4 The domination number of P(6k, k)

In this section, we shall determine the exact domination number of
P(6k,k) for k > 1.

Lemma 4.1. For k > 4, v(P(6k, k)) < [1%].

Proof. To show that v(P(6k, k)) < [19¥] for k > 4, it suffices to construct
a set S that uses [!3*] vertices to dominate P(6k,k).

Let m = | %] and t = k mod 3. Then k = 3m +¢. Denote

[ {ui:0<i<k-1}U{u;:3k<i<dk—1}U
(vk4air1:0S i< % — 1} U {vapyzis1 :0Si< F -1}, ift=0;

{ui:0<i<k—1}U{u:3k~-2<i<4k-3}U
{vk43i41:0<i < 2572 1} U {wara3i—1 10 S i< F3l - 1JU
S={ {vsk—2,Vsk—1} U {vsktai42:0<i< 3t =1}, ift=1;

{ui :0<i<k—1}U{vegzipr :0<i< 32U

{(vakpais2 1 0 i< 535 =1} U {uy: 3k<z<4k 5}U

{‘U4k+3,+‘ 0<£iL k 5_ 1} U {115,”.3; 0<:< k_z}U

L {u3k—a, V362, uak-3, u4k 1, Vdk—3, Usk—2, Y5k—4 }» ift=2.

It is easy to check that

2 x 3m 42 x 2X3m = [19k], if t =0;
15| 2x(3m+1)+2"‘3”‘“) Ziox 3 42='%), ift=1;
2x(3m+2)—4+2x(3"‘+1)+2x3"" +7—[1°'°] ift=2.



For k = 0,1 (mod 3), it is not hard to verify that each vertex in
V(P(6k,k))\ S can be dominated by S.

For k =2 (mod 3), we have that

N[{ui:0<i<k-1}, ifo<j<k-1;
N{{vesaip1:0< i < 532}, ifk<j<2%k—1;
vie | NHvzessisn :0< i< 558 — 1 U {ugkog,vak2)], 2k <5< 3k
’ N[{u; : 3k <i < 4k ~ 5} U {uak—3, vak—1,vax-3}], if3k <j < ak—1;
Nl{vak43i41:0 <4 < 558 ~ 1} U {usikz, vsk-a}], if4k <j <5k —1;
N[{vsk+3: : 0 < i < 532}, if 5k < j < 6k —1;
and
( N{u:i:0<i<k-1}] ifje {ek,tk+1,...,8k+k—1}
and ¢ € {0,1,5};
N[{u; : 3k < i < 4k - 5}], ifje {ek,tk+1,...,0k+k—5)
uj € { and £ € {2,3,4};

N{usk—q, va-3, V3 -2, wak~1}, if3k—-4<j<3k~1;
N{{usk-a,uak-3,usk-2,uak-1}}, ifdk—4<j<dk-1;
( N{{vsk—a,u4x-3,usk—2,uar-1}}, ifSk—4<j<5k—1

Hence, S is a dominating set of P(6k, k) for k > 4 with |S| =[!3*]. DO

In Figure 4.1, we show the dominating sets of P(6k, k) for 4 < k < 12,
where the vertices of dominating sets are in dark.

Lemma 4.2. For i € {0,1,...,k — 1}, |S;| > 2. If there exists an integer
£€{0,1,...,k — 1} such that |[B; N Se| = 1, then |Se| > 4.

Proof. Since (B;) is isomorphic to Cs and every vertex of B; must he dom-
inated by S;, we have that |S;| > 2 for every i € {0,1,...,k — 1}. If there
exists an integer £ € {0, 1,...,k—1} such that |[B,NS,| = 1, say ug € Sg, to
dominate {ues 2k, Uet3k, Uetak }, We have vey ok, vesar, Vesar € Se. It follows
that |Se| > 4. The lemma follows. O

Lemma 4.3. Foreveryi € {0,1,...,k—1}, |S;i—1 US; US;4,| > 10, where
the subscripts are taken modulo k.

Proof. Suppose to the contrary that there exists an integer £ € {0,1,...,k—
1} such that |S,_; U S; U S¢41| < 9. Combining with Lemma 4.2, we have
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the assumption, we have |(Be—1 N Sp—1) U (Bey1 N Seq)| < 3. It follows
that
|Be—1 N Sp-1| £1 or |Begy1NSeyr| < 1. (3)
If Be_1NSe_y =0 or Ber1NSeq1 = 0, say Be_1NSe_; = 0, to dominate
each vertex in By, we have Ag_y C Se_y, ie., |Se—;| = 6, a contradiction
with (1). Hence,

|Be_1 ] Sg_lf >1 and |Be+1 N Se+1| >1. (4)

It follows from (3) and (4) that |Be—1 N Se_1| =1 or |Beyy N Seq1| =1,
say [Be—3 N Se—1| = 1. Without loss of generality, we may assume ug_; €
Se—1. To dominate {ue_142k, Ue—143k, Ue—14+4k }, We have ve_ 142k, Ve143k,
Ve—~1+44k € Se_1, which implies

[Se-1] = 4.

To dominate ue4 3k, we have that |{ueq ok, Uetak, Uetak, Verar }NSe| > 1.
It follows that i [N{veqjx] N (Se—1 U SeU Seyy)| > 3+ 1 = 4. Combining
with (2), we co:::fude that [(V(Ge-1) UV(Ge) UV (Gey1) \ Beg1) N (Se-1 U
SeUSet1)| = |Be—1NSe—1| +Jijo IN{ves k) N (Se—1USeUSes1)| > 147 =8.

Hence, we have
|Bet1 N Seqa] < 1.

By (4), we have [Be41 N Spy1| = 1. It follows from Lemma 4.2 that |S;| > 2
and |S¢41| > 4. Since |Se—;| > 4, we have [Se—1USeUSes1| > 4+2+4 = 10,
a contradiction with assumption. The lemma follows. O

Lemma 4.4. For k > 4, v(P(6k,k)) > [12].

Proof. Let S be a dominating set of P(6k, k) with the minimum cardinality.
6k—1

Notice that each subset S; is counted 18 timesin 3 (jSi|+|Si41]+|Siz2)).
i=0

By Lemma 4.3, we have

6k—1
18 x |S] = D (ISi] + |Ses1| + |Sis2l) > 6k x 10 = 60k,

=0

which implies that v(P(6k, k)) = |S| > ['9*].
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As an immediate consequence of Lemma 4.1 and Lemma 4.4, we have
the following

Theorem 4.5. For k > 4, v(P(5k, k)) = 3k.

It was shown in [2] that y(P(n,1)) = 3+1forn =2 (mod 4), y(P(n,2))
= [32] and ¥(P(n,3)) = § + 1 for n = 2 (mod 4). Then, we have that
v(P(6,1)) = 4, ¥(P(12,2)) = 8 and P(18,3) = 10, which implies that
P(6k, k) = [1%] for k € {1,3} and P(6k, k) = ['§*] +1 for k = 2. Hence,
we have the following corollary.

Corollary 4.6. For k£ > 1,
1351, iftk#2
P(6k,k)) = 3
1(P(E.F) { [19%7+1, ifk=2
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