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Abstract

A strong edge-coloring is a proper edge-coloring such that two edges
with the same color are not allowed to lie on a path of length three. The
strong chromatic index of a graph G denoted by s’(G) is the minimum
number of colors in a strong edge-coloring.

We denote the degree of a vertex v by d(v). Let the Ore-degree of a
graph G be the maximum values of d(u) + d(v) where u and v are adjacent
vertices in G. Let F3 denote the graph obtained from a 5-cycle by adding
a new vertex and joining it to a pair of nonadjacent vertices of the 5-cycle.
In 2008, Wu and Lin [J. Wu and W. Lin, The strong chromatic index
of a class of graphs, Discrete Math., 308 (2008), 6254-6261| studied the
strong chromatic index with respect to the Ore-degree. Their main result
states that if a connected graph G is not F3 and its Ore-degree is 5, then
s'(G) < 6. Inspired by the result of Wu and Lin, we investigate the strong
edge-coloring of graphs with Ore-degree 6. We show that each graph G
with Ore-degree 6 has s'(G) < 10. With the further condition that G is
bipartite, we have s’(G) < 9. Our results give general forms of previous
results about strong chromatic indices of graphs with maximum degree 3.
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1 Introduction

Graphs in this paper are finite, undirected, and loopless, but multiple
edges are allowed. We always assume that graphs are connected unless the
context implies otherwise. Note that some results that we refer to may not
consider multiple edges, but these results can be extended easily to graphs
with multiple edges.

Let V(G) and E(G) denote the vertex set and the edge set of a graph G
respectively. We use d(z) to denote the degree of a vertex z and A(G) to
denote the maximum degree of a graph G. Let the Ore-degree of a graph G
be the maximum values of d(u) + d(v) where u and v are adjacent vertices
in G. A k-vertex is a vertex of degree k.

The distance between edges e; and ez in a graph G is the distance
between the corresponding two vertices in the line graph of G. A strong
edge-coloring of a graph G is an edge-coloring in which two distinct edges
with distance at most 2 have different colors. A strong k-edge-coloring
is a strong edge-coloring using at most k colors. The strong chromatic
index s'(G) is the minimum k such that G has a strong k-edge-coloring.
Throughout this paper, the term coloring means strong edge-coloring, un-
less the coloring is specified to be other type of coloring.

Erdés and Nesetil [4] conjectured that s'(G) < 5D%/4 — D/2 + 1/4, if
D is odd and s'(G) < 5D?%/4, if D is even, where D = A(G). Andersen (1]
and Horak, Qing, and Trotter 7] settled the case D = 3 of the conjecture
hy showing the following.

Theorem 1.1 ([1, 7]) If a graph G has a mazimum degree three, then
§'(G) < 10.

Horsk (6] showed that there is a strong 23-edge-coloring for graphs
with maximum degree four. Cranston [3] improved the bound to 22. The
conjecture for D = 4 which has s'(G) < 20 remains unsolved.

Faudree et al. [5] formulated a bipartite version of this problem. They
conjectured that s'(G) < D?, if G is a bipartite graph. Steger and Yu [14]
settled the conjecture for A(G) = 3 which is the first non-trivial case of
the second conjecture by showing the following.

Theorem 1.2 ([14]) If o bipartite graph G has a mazimum degree three,
then s'(G) < 9.
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A stronger version of the second conjecture, due to Brualdi and Massey (2],
states that s’(G) is bounded by D; Ds, where D; and D, are the maximum
degrees among vertices in the two partite sets, respectively. Quinn and
Benjamin [12] proved this for a special class of bipartite graphs whose par-
tite sets are the k-sets and l-sets in [m], adjacent when the two sets share
exactly j elements. Quinn and Sundberg [13] proved it for the incidence
bigraph of the k-sets in [m]. Nakprasit [10] gave the affirmative answer to
the conjecture for D, = 2.

Note that there are researches focusing to colorings related to Ore-
degrees of graphs instead of maximum degrees. For example, Kierstead
and Kostochka [8, 9] studied the relation of ordinary coloring, equitable
coloring, and nearly-equitable coloring to Ore-degrees of graphs. In (5],
Faudree et al. conjectured that if G is a bipartite graph with Ore-degree at
most 5, then s’(G) < 6. Let Fp denote the graph obtained from a 5-cycle
by adding D — 2 new vertices and joining them to a pair of nonadjacent
vertices of the 5-cycle. Wu and Lin [15] obtained the main result in their
paper which verified the conjecture in a stronger form as follows.

Theorem 1.3 ([15]) If a graph G is not F3 and its Ore-degree is at most
5, then '(G) < 6.

Let H) denote the graph obtained from a 8-cycle C = vyv,...vg by
adding two vertices v; and vg and joining v} to vs, v, and v} to vy, vs. Wu
and Lin [15] noted that they did not know any graphs with Ore-degree 5
to have s'(G) > 6 except F3, Hy, and Kj 3. The result of Wu and Lin is
generalized by Nakprasit and Nakprasit [11] as follows.

Theorem 1.4 ([11]) If each edge zy of a graph G has d(z) +d(y) < D+2
and min{d(z),d(y)} < 2, then s'(G) < 2D + 1. With the further conditon
that G is not Fp, we have s'(G) < 2D.

However, the stronger form of Theorem 1.3 in terms of Ore-degrees is
not known. For graphs with small Ore-degrees, we have the followings.

Observation 1.5 (Characterization of graphs with small Ore-degrees)
(i) The only graph with Ore-degree 0 is K.
(i) No graph has Ore-degree 1.

(iti) The only graph with Ore-degree 2 is a path with one edge.
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(iv) The only graph with Ore-degree 3 is a path with two edges.

(v) A graph G has Ore-degree 4 if and only if G is a path of length at
least 3, K3, a cycle, or a graph with two vertices and two multiple
edges.

Since graphs with the above Ore-degrees can be classified explicitly, we
can find their strong chromatic indices easily. Thus Theorem 1.3 by Wu
and Lin is the first non-trivial result about the strong chromatic index in
terms of Ore-degrees.

Inspired by the result of Wu and Lin, we show that each graph G with
Ore-degree at most 6 has s'(G) < 10. With the further condition that G is
bipartite, we have s’(G) < 9. Our results give general forms of Theorems 1.1
and 1.2,

2 The strong edge-colorings of graphs with
restricted Ore-degrees

Note again that we assume that each graph is connected unless the context
implies otherwise.

Next, we proceed to investigate strong chromatic indices in terms of
Ore-degree of graphs in general.

Lemma 2.1 Let G be a graph with Ore-degree at most R. If M is the set
of vertices of G with degree R — 2, then s'(G) < max{s'(G — M), 3R — 8}.

Proof. If A(G) = R—1, then G = K; p_; which has s'(G) = R—1. If
A(G) £ R-3, then G = G— M. Thus A(G) = R—2 which implies M # 0.
Let G, be the graph induced by the edges incident to M.

First, note that each edge of G; has at most 2(R—3)+(R—2) = 3R-8
edges within distance two. If each edge of one component of G; has 3R~ 8
edges within distance two, then G satisfies the condition of Theorem 1.4
which implies s'(G) < 2(R —2) +1 = 2R — 3. Now we may assume that
every component of G has an edge with at most 3R — 9 other edges within
distance two.

Apply strong edge-coloring with s'(G — M) colors to E(G — M). It can
be seen that we can use this as a partial strong edge-coloring in G. Now,
we want to extend the coloring to edges in the component of E(G;) with
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an edge e having at most 3R — 9 edges within distance two. To greedily
color them one by one, we give an ordering of the edges of this component
in the following way.

If the distance from e; to e is greater than the distance from e; to e,
then we color e; before e;. Since every edge has at most 3R — 9 colored
edges within distance two at each step, we can color every edge of such
component of G,. Using similar method to all components to complete the
coloring. O

A path wwjw; is a special 2-path if d(w)) = d(wp) = 2 and w is an
(R ~ 2)-vertex.

Lemma 2.2 Let G be a graph with Ore-degree at most R with a special
2-path wwywa. Then s'(G) < max{s'(G — w;),2R — 3}.

Proof. Apply strong edge-coloring with s'(G —w ) colors to G —w;. Now
ww) has at most 2(R — 3) + 1 = 2R — 5 colored edges within distance two
and wyw; has at most (R — 3) + (R —2) = 2R — 5 colored edges within
distance two. Since we have at least 2R — 3 available colors, we can extend
the coloring to ww; and w;ws. As a result, we have a required coloring. O

Theorem 2.3 If a graph G has Ore-degree at most 6, then s'(G) < 10.
With the futher condition that G is bipartite, we have s'(G) < 9.

Proof. Let G be a graph with Ore-degree 6. If A(G) = 5, then G = K, 5
which has s’(G) = 5. So we can assume that A(G) < 4. Let M be the set of
vertices with degree 4. Lemma 2.1 yields that s'(G) < max{s'(G— M), 10}.
Since A(G — M) < 3, we have s'(G — M) < 10 by Theorem 1.1. Thus we
have s'(G) < 10.

Now, it remains to show that s'(G) < 9 when G is bipartite. Suppose
that G is a minimal counterexample to the theorem. Consider the case
that G contains two distinct edges e}, ex with a pair of common endpoints.
Since s'(G — e;) < 9 by minimality and e; has at most seven edges within
distance two, we have s'(G) < 9. Thus we may assume G has no multiple
edges. If A(G) = 5, then G = K, 5 which has s/(G) = 5. If A(G) < 3,
then Theorem 1.2 yields s'(G) < 9. Consequently, we assume that A(G) =
4. Since G is not K 4 which has §'(G) = 4, the graph G contains a 4-
vertex adjacent to a 2-vertex. If G has no 3-vertices, then Theorem 1.4
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yields s'(G) < 9. Thus G contains a 3-vertex and a 4-vertex. Since G is
connected and has Ore-degree 6, the graph G has a path of length at least
two with every internal vertex is 2-vertex whereas one endpoint is 3-vertex
and the other is 4-vertex. If G contains a special 2-path, then (@) <9
by minimality of G and Lemma 2.2. Thus G contains a path uvvw with u
is a 4-vertex, v is a 2-vertex, and w is a 3-vertex.

Consider such v with its four neighbors vy, vz,vs, and v4. Since G is
bipartite, the set {vy,v2,v3,v4} is independent. Suppose some v; is a 1-
vertex. Since s'(G — uv;) < 9 by minimality and wv; has at most six edges
within distance two, we have §/(G) < 9. Let w; different from u be the
other neighbor of the 2-vertex v; (1 <i < 4). Note that wy, w2, ws, w4 are
not necessarily pairwise distinct. We have d(w;) # 1 as before. Moreover,
d(w;) # 2 because G has no special 2-edges. Combinining with the fact
that G has Ore-degree at most 6, we have each d(w;) = 3 or 4. From the
choice of u, some w; is a 3-vertex. Let W = {w1, w2, w3, w4}

Figure 1: Configurations in a minimum counterexample.

We claim that the counterexample G must contain one of the configu-
rations in Fig. 1, where a black square is the vertex u, a dot indicates a
vertex of degree 2 (that is some v;), a hollow triangle indicates a vertex
of degree 3, a hollow square indicates a vertex of degree 4, the degree of
a black diamond is at least the number of edges incident to the black di-
amond in the figure, and all vertices are distinct. If [W| = 4, that is all
wy, wa, w3, ws are distinct, then G contains the first configuration. Con-
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sider the case |W| = 3 where ws = wy. If d(w;) or d(w.) is 3, then G
contains the second configuration, otherwise G contains the third configu-
ration. The case |W| = 2 where w; = wp and w3 = w4 implies G contains
the fourth configuration. Consider the case |W| = 2 where ws = w3 = wy.
If d(w;) = 3, then G contains the fifth configuration, otherwise G contains
the sixth configuration. The case that |W| = 1 contradicts the fact that
d(wi) =3.

After some partial strong k-edge coloring on G, we use A(e) denote the
number of legal colors from k colors that can be assigned to e. Consider a
coloring of all edges in G except edges in a configurtion. Each edge e is
the figure is shown with a lower bound for A(e) that is calculated from 9
minus the number of edges with distance within two from the edge e,

Since the number of legal colors for each edge not incident to u is large
enough, the sets of legal colors of those edges cannot be all pairwise disjoint.
Thus we can assign some color to two of those edges simultaneously. Next,
we color other two edges that are not incident to the vertex u. Note that the
lower bound for A(e) in each uncolored edge e is now decreased by at most
three. Finally, we color four edges incident to the vertex u sequentially
from an edge with the least number of legal colors to the most one. Since
the number of legal colors for each edge is large enough, the strong edge-
coloring using at most nine colors can be completed. a
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