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Abstract

For a vector R = (71,72, ..,7m) of non-negative integers, a mixed
hypergraph H is a realization of R if its chromatic spectrum is R.
In this paper, we determine the minimum number of vertices of re-
alizations of a special kind of vectors Ra. As a result, we partially
solve an open problem proposed by Krél in 2004.
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1 Introduction

A mized hypergraph is a triple H = (X,C, D) where X is a finite set and C
and D are families of subsets of X called the C-edges and D-edges, respec-
tively. If X' c X,C'={C €C|CC X'} and D' = {D € D|D C X'}, then
the hypergraph H’ = (X’,C’,D’) is called the induced sub-hypergraph of H
on X', denoted by H[X'].

A coloring of the vertices of H is proper if there are two vertices with
a Common color in each C-edge and there are two vertices with Distinct
colors in each D-edge. A proper coloring using cxactly k-colors is called
a strict k-coloring and a mixed hypergraph is k-colorable if it has a strict
k-coloring. A coloring may also be viewed as a partition (feasible partition)
of the vertex set, where the color classes (partition classes) are the sets of
vertices assigned to the same color. An edge is said to be monochromatic
(resp. polychromatic) if all of its vertices have the same color (resp. different
colors). The maximum (resp. minimum) number of colors which can be
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used in a strict coloring of H is called the upper chromatic number (resp.
lower chromatic number) and denoted by x(H) (resp. x(H)). The study
of the colorings of mixed hypergraphs has made a lot of progress since its
inception [6]. For more information, we refer readers to [3, 5. 7. 8].

The feasible set F(H) of a mixed hypergraph H is the set of all the
values k such that H has a strict k-coloring. For each k. let ry denote the
number of feasible partitions of the vertex set into k nonempty subsets. The
vector R(H) = (r1,72,...,7y) is called the chromatic spectrum of H, where
X is the upper chromatic number of H. If S is a set of positive integers,
we say that a mixed hypergraph H is a realization of S if F(H) = S; and
a mixed hypergraph H is a one-realization of S if it is a realization of S
and all the entrics of the chromatic spectrum of H are either 0 or 1. The
concept of one-realization was introduced by Jiang et al. in [2] with an
extra condition as proper realizations and further studied by Krdl in 4].
Moreover, for a vector R of non-negative integers, a mixed hypergraph H
is called a realization of R if R(H) = R.

Bujtas and Tuza [1] gave a necessary and sufficient condition for S to he
the feasible set of an r-uniform mixed hypergraph. Jiang et al. [2] proved
that the minimum number of vertices of realizations of S is 2max(S) —
min(S) if |S| = 2 and max(S) — 1 ¢ S. Moreover, they also mentioned
that the question of finding the minimum number of vertices in a mixed
hypergraph with feasible set S of size at least 3 remains open. Kral [4]
proved that there exists a one-realization of S with at most |S]+2 max(S) —
min(S) vertices and proposed the following problem: what is the number
of vertices of the smallest mixed hypergraph whose spectrum is equal to a
given spectrum (ry,72,...,7m)? In [9], P. Zhao et al. obtained an upper
bound on the minimum number of vertices of 3-uniform bi-hypergraphs
with a given feasible set. Moreover, P. Zhao et al. [10] proved that the
minimum number of vertices of one-realizations of a given set is 2 max(5) —
min(S) if max(S)—1 ¢ S or 2max(S)—min(S) -1 otherwise. In this paper.
we generalize this result to the minimum number of vertices of realizations
of a special kind of vector.

In the rest of this paper, we always assume that n; and l; are two sets
of integers with 2 < ny < --- < my, L1 =0 and 0 < I; < n;—; —n; for all
i€ {2,...,s}: morcover, Ry = (r1,72,...,7n,) is the vector with 7y =0
and 7, = 2", ¢ € {1,2,...,s}. For any positive integer n, let 1] denote
the set {1,2,....n}. The main result of this paper is as follows:

Theorem 1.1 If §(R,) is the minimum number of vertices of realizations
of Ry, then

_ | 2ny—my, if ng>ne+1,
5(Rz) = { oy —ns—1, if mp=mnz2+1,
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As a result, we partially solve the open problem proposed by Kral.

2 The proof of Theorem 1.1

In this section, we first show that the number §(R3) given in Theorem 1.1
is a lower bound on the number of vertices of the smallest realization of Ra,
then construct two families of mixed hypergraphs which meet the hbound
in each case. For a mixed hypergraph H = (X,C,D) and a strict coloring
c of H, let c¢(v) denote the color of v € X under c.

Lemma 2.1

2n, — ng, if ny>ne+1,
8(Rz) 2 { 2ny—-ns—1, if ny=no+1.

Proof. Since the first part was given by Theorem 3 in [2] and Lemma
2.2 in [10] respectively, it suffices to prove the second part. Let n; =
na + 1 and H = (X,C,D) be a realization of Rs. Then ly =0, i.e., vy, =
1. Suppose|X| < 2n; — (ny + 2). Then for any strict ny-coloring ¢; =
{C1,Ca,...,C,, } of H, there exist at least n, + 2 color classes of size one.
Assumne that Cy = {},Co = {a2},...,Ch 42 = {an,+2}. For any strict
ng-coloring ¢, of H, there are the following two possible cases.

Case 1. There exist three vertices in {a1, a9, ..., an 4+2} with the same
color under c,. Suppose ¢,(e1) = cs{aa) = cs(ag). Then {a1, a2}, {a1, a3z},
{052, a3} ¢ D, which follows that {Cl UCs,Cs,...,Ch, },

{C1,C2U C3,Cy,...,Cp,} are strict ng-colorings of #, a contradiction to
that 7, = 1.

Case 2. There exist two pairs of vertices in {aj,as,...,q,,+2} such
that each pair have the same color under ¢;. Suppose cs(@;) = co(a2)
and c¢s(as) = cs(aq). Then {a;, a2}, {as,a4} ¢ D. which implies that
{C1UCy.C4,...,Cy} and {C,C2,C3 U Cy,Cs,....Cyp,} are strict ny-
colorings of H, also a contradiction to that r,, = 1. u]

In the rest of this section, we shall construct the desired mixed hyper-
graphs. Our construction here is based on the Construction I in [10]. In
order to get the desired ry, strict ny-colorings, we define the vertices of ),

and 2, in the construction.
Construction I. Fori € [ng], p€ [s]\ {1},7 € {0, Lp+ 1.0, +2....,np_1 —
np, — 1} and k € [l,]. write
9,’ = (7'17‘; -71:)) ﬂ] = (n]an27~"!n'Z,"',ns:""ns)
N ———— N —

ol; 2t2 2la

a
i=1
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a,,j=(n,,+j,...,n,,+j,l,...,l).
N J— -

Z’i‘.—:l‘ 24 ZL‘I'?I'
Bpj = (n,,+j,...,n,,+j,np,...,n,,,...,ns,...,n,),
~ ~ IV N
oyl 2'v 2

'y,l,k =(n,+k,....,np +k,
A 4

~
Zg’_:ll2‘i
n,,,...,n,,,l,...,l,....n,,,...,n,,,l,...,l, 1,...,1),
~ -~ A P4 - ~ P N 7 e e 4
2k=1 ok~-1 ok-1 k=1 L 1A
- ~ v 2._,“!
2ty
2
'ypk=(11p+k, np+kl g, np e g, Ny,
~ ~ L RV MRV ING R g
p=1ol; 2k-l ok—1 k=1 k-1
i1 ~ 7
-~
2'»
np+1,...,np+1,...,ns,...,ns),
~ ~ 4 S~ o~ 7
oty 2lx
N, s MNp-1 —np—l lp

X= U U U U{ouamv P]V’Yplnlypkvgl} and

i=1p=2 j=0,l,+1 k=1

= {{a1, 00,03} | o1 € X, L € [3), {eny)r c2in s H = 2.5 € [22' 1}

i=1
D = {{on, a2} | € X, L € [2], 01 # 2z d € D2}V
i=1
s lpg Mp - 1=1p =1
(U U{{ljl,"lpk"yp;.}})u( U U U U {{“mj-ﬁmjs‘Y,]),k}v
=2 k=1 p1=2p2=2k=1 j=0.0, +1

9 .
{O‘Plj’ 5})11& 71)21:}7 {apl;ia 'szk» '71)31\-}3 {Bplj’ 7pgk’ 'ngk}r {'Y,l;,j~ '7,1121;- ’Yﬁ,k}})s

where ay(;y is the j* entry of the vertex c;. Then H = (X,C,D) is a mixed
hypergraph with 2n; — n, vertices.

For example, when S = {2,4} and l» = 1, then

= {91,0’2()./320,’721 ’)’21,[31} where 0] (1,1, 1) 8, = (2,2, 2) gy =
(2 1.1), Boo = (2,2.2), v = (3,2,1),7% = (3,1,2). B = (4,2,2) and

= {{911(¥201[320} {017721)121}} {(1201’)213721}} {/320s 721;7’2]}
{74, 20, B20}, {731, @20, Bao}, {B1, 20, B20}, {51, a1 a1 1}
= {{61, B}, {61,581}, {a2, 51}, {51,721,721}
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{20, Bao, i1 } {20, B20. 731 }> {20, 131, Y21 }» { Baos Y310 Yar } -

Moreover, when S = {2,¢} and l2 = 0, our construction is similar to the
first construction in [2], but our edge-set gives a one-realizer whereas the
construction in (2] does not. The later construction in [2] of their proper
realizers uses many more than the minimum number of vertices.

Note the inspiration for our construction is so that for each ¢ € [s] and
h € [24], cin = {Xin1, Xin2, ..., Xinn, } is a strict n;-coloring of H, where
Xint consists of vertices

11 2'2 .1 h=1 4 h+l 2t 2l 2!
(Cor g T - NN AR . AU - SRR S D K. &

Lemma 2.2 Let ¢ = {C1,Ca,...,Cpn} be a strict coloring of H. Then we
may reorder the color classes such that the following conditions hold:

(1) 6 € Ci, i € [ng);

(i) ap; € Ci, i € [ns — 1]\ {1};
(ili) B1,Bpj ¢ Ci,i € [ns —1];
(V) Ve Yok € Ciri € [ne — 1]\ {1}
(v) aso € CLUCy,

Proof. The D-edge {6;,0;} implies that c(;) # c(8;) if i # j. Hence,
we may reorder the color classes such that 8; € C;, @ € [n,]. It follows that
(1) holds.

Forie [ns - 1] \ {1}, from the D-cdges {ayp;,60:}, {7pr.8i} { 7o 0i},
one gets apj, T+ Vi, & Ci- Hence, (ii) and (iv) hold.

Since {1, 6}, {P,,J.G } are D-edges, we have 3, B,; ¢ C; fori € [ng—1].
which implies that (iii) holds. The C-edge {as0,8x,.6)} implies that o €
CyUC,,,, as desired. O

Lemma 2.3 Let ¢ = {C},C....,Cn} be a strict coloring of H satisfying
the conditions (i)-(v) in Lemma 2.2.

(1) Suppose c(aj,) # ¢(Bij,) for some t € [s]\ {1} and j. € {0,I, +
1,...,n¢—1 —ny—1}. Then there ezists an a € [in]\ [ns — 1] such that
ap; € Cy and By, Bp; € Co forallp € [t]\ {1};

(ii) Suppose c(ayj,) = c(Byj,) for some q € [s]\ {1} and j, € {0,], +
1..... ng—1 — ng — 1}. Then c(ay;) = ¢(B,;) and ((')pk) = c(’)pk) for
alpe{q....,s}.
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Proof. (i) From the C-edge {agj,, B, 61}, we have oy, € C;. From
Lemma 2.2, there is an a € [m]\ [n, — 1] with By, € Ca. Forp € [t]\ {1}, if
np+j # ne+ Je, then the C-edges {B1, atj.» Bej, } and {Bpj, oo s B } imply
that 31, Bp; € Ca; moreover, from the C-edge {opj, Bpj, 61} and the D-edge
{cpss Bj. }, we have ap; € Ci, as desired. '

(ii) If c(cu;,) # c(Btj.) holds for some ¢ € {g,...,s} and jc € {0,1, +
1,...,n4-1 — ng — 1}, then by (i) we have c(ap;) # c(Bp;) for all p €
[t)\ {1}. It follows that c(ag;,) # ¢(Byj,), @ contradiction. Hence, c(op;) =
¢&(Bp;) for p € {q,...,s}. Moreover, for p € {g,...,s}, from the D-edges
{¥3x+ @p0, Bpo } and {¥2 apo, Bpo}, we have e(vi): e(v3) # clopo); and the
C-edge {7}V @po} implies that c(vy) = c(¥5)- o

Lemma 2.4 Let ¢ = {C;,Ca,...,Cn} be a strict coloring of H satisfying
that ¢(cuo) # c(Bro) for some t € [s] \ {1}. Then there cxists an a €
[m] \ [ns — 1] such that

(i) YL, € C1UCa and e(vh) # (Vi)
(ii) vl € C1 and v}y, € Cu for eachp € [t = Y\ {1}.

Proof. For p € [t — 1]\ {1}, from Lemma 2.3, there is an a € [\
[ns — 1} with apo.cw € C1 and Bpo,Bro € C.. For p € [t]\ {1}, since
{'y,l,k,a,,g,[i,,u} and {7§L_,a,,0, B} are C-edges, 'y;k,'ygk € C,UC,; and
the D-edges {Vpx Yok Bpo} and {Yhk Vo> 0po} imply that e(vpe) # (V)
Specially, v}, 73 € C1 U Ca and c(v)y) # c(75). Hence, (i) holds.

For p € [t — 1]\ {1}, from the C-edge {'y;k,a,,o, Bw} and the D-edge
{73 Buo}, one gets 'y;k € C;. Then by (i) we have ’sz € C,, which implies
that (ii) holds. o

Theorem 2.5 H is a realization of Ra.

Proof. It suffices to prove that cy1,€21,. ... Cogtzy. v Cslaenes Cyal ALC
all of the strict colorings of H. Suppose ¢ = {C1,Cq, ... ,Cm} is a strict
coloring of H satisfying the conditions (i)-(v) in Lemma 2.2. In particular,
as0 € C1 U C,,s.

Case 1 a4 € C1.

Note that 3so € Cn,. By Lemma 2.3 we have o,; € Cy and f, Bpj € Ch,
for all p € [s]\ {1}. Then hy Lemma 2.4 one gets that

(i) Y72 € C1UCn, and e(13) # c(V3k);
(i) 74 € C1 and 7} € Cp, forp € [s =1\ {1}.
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It follows that ¢ € {css | b € [2']}.

Case 2 oy, € C,,.

In this case, we shall prove that ¢ € {ci, | i € [s — 1), € [2%]}. Let
t € [s] \ {1} be the minimum number such that c(asx) = ¢(Biw). By Lem-
ma 2.3 we have ¢(a,;) = ¢(Bp;) and c("y;k) = c('y,%k) foreach p € {t,...,s}.
For p,p2 € {t,...,s} and p; # p2, from the D-edges {cp, i\, Bpia}s
{amjvﬁmju7ggkg} and {O‘P-zj'z’ﬁmjw'yyilkl}’ {'Y;l;,k.v')’,l,gkg"}’f;zkz}v one gets
(prin) 7 Braia)s ACiprsi) # €Vopiy) 80 Sl 1) 7 C(Bpaia)s 1)) 7
c(V2,k,) for ji € {0,015, 41, ..., np 1=, =1}, ki € [lp,], i = 1,2. Moreover,
for p € {t,...,s}, the D-edge {Bpj,.p;, } implies that c(ayp;,) # c(ap;,) if
71 # ja; the D-edge {ap;, Bpj, vpr } implies that ¢(ay;) # c(v)); and the D-
edge {vh, s ok, » Yok, } implies that c(v), ) # e(vh,) if ki # k2. Hence, we
may assume that c;, Bpj € Cp,4j and '71§k’ V2 € Cop+k forpe{t,..., s},
Je{0,l,+1,...,ny_1 —ny,—1} and k € [I,].

Case 2.1 ¢ > 2. That is to say, c(ai—1,0) # ¢(Bi—1,0). By Lemma 2.3
we have a;—10 € Cy and Bi—10 € C,. For pe {¢,..., s}, from the D-edges
{Bi-1.0,ap;} and {5:-1,0,’7;k}, we have B;_1,0 ¢ Cpn,+; U Cn,+x. Hence,
we may assume that 3,_1 ¢ € Cy, ,. By Lemma 2.3 we have o,,; € C; and
B, Bpj € Cn,., for pe {t —1]\ {1}. Moreover, by Lemma 2.4 we have

(i) ’Ytl_l.ke’)'?_]'k € CUC,,_, and C('Ttl—l.k) # C(')’;Z_l,k)l
(ii) 7px € C1 and 72, € Cy,_, for any p € [t — 2]\ {1}.

Therefore, ¢ € {c,—1, | h € [2"-1]}.

Case 2.2 t = 2. From the D-edges {$1,c;} and {B1,1pr, 72}, we
have 8) ¢ C,,+; U Cp 4 for all p € [s]\ {1}. It follows that ¢ = ¢y;.

The proof is completed. ]

For the case of n; = ny + 1, we have the following construction.

Construction II. Let X' = X \ {cg0} and H' = H[X’]. Then for each
i€ ls],he 2] ¢ = { Xl Xipar -+ Xlny,} is & strict n;-coloring of H/,
where X}, = Xin, N X".

Theorem 2.6 Ifn, = ny + 1, then H’ is a realization of
R2 = (0,7‘2, ceesThg—1, 1, 1).

Proof. LetH"” = (X",C",D") be the realization of RY = (0,72,...,rn;,-1,1)
with nf = ny given by Construction I. Let Y = {a | a € X, (1) = ()},
where ag;) is the j h entry of the vertex . Then

o Y - X"
(23 el 2fs

11 - gl 20 1. ]
(g, w9, 23,...,23 ... Lgy..., 25 ) = (Tg, &g, TG 4.yl Tgyvnnst L,
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is an isomorphism from G = H[Y] to H”. By Theorem 2.5, all of the strict
colorings of G are as follows:

€ih = {Khlv Yih?s ey },ihn,'}si € [3] \ {1}7 he [2“],
where Yj,, consists of vertices

S T S | 22 1 A=l g bt 22 2l 2!
(.1‘2,1,2,173....,.1'3 7""x‘i""’1’i ’t""i ,---a-l:i, v"a’l’,qa'-"l.q )GX’

Note that the restriction on Y of any strict coloring of H’ corresponds
to a strict coloring of G. For any strict coloring ¢ = {C1,Co, ..., C,} of
H', there are the following two possible cases.

Case 1 cly = e~

By the proof of Theorem 2.5, we have 8y ¢ C; for any j € [r2 — 1].
Then, it is immediate that ¢ = ¢b; if B) € Cny, 0r ¢ =)y if B ¢ Ch,.

Case 2 c|y = ey, for some i € [s]\ {1,2} and h € [2"].

Note that Bip € Cp, and a;o € Cy. From the C-edge {eio, Bio, B1} and
the D-edge {81,601}, we observe that B1 € Cy,. Therefore, ¢ = ¢j,.

Hence, the desired result follows. ]

Combining Lemma 2.1, Theorem 2.5 and Theorem 2.6, the proof of
Theorem 1.1 is completed.
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