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Abstract

In this paper we define new generalizations of Fibonacci num-
bers and Lucas numbers in the distance sense. These generalizations
are closely related to the concept of (2, k)-distance Fibonacci num-
bers presented in [10]. We show some applications of these numbers
in number decompositions and we also define a new type of Lucas
numbers.
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1 Introduction

The well-known Fibonacci numbers F,, are defined for n > 2 by recurrence
relation F,, = F,_; + F,_ with initial terms Fy = F} = 1. The Lucas
numbers L, are defined by the same recurrence L, = L,_; + Ln—2 for
n > 2 with Ly = 2, L; = 1. There are many various generalizations of the
Fibonacci numbers in the literature. Some types of generalizations of the
Fibonacci numbers are called generalizations in the distance sense. For an
arbitrary integer k, k > 1, the nth generalized Fibonacci number is defined
recursively by adding two previous terms such that exactly one of these
numbers is the (n — k)th generalized Fibonacci number. Then the second
term is taken in such way that the recurrence linear equation generalizes
the Fibonacci numbers in classical sense. Some types of distance Fibonacci
numbers were introduced and studied quite recently, for example
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1. [6] F(k,n) = F(k,n—1)+F(k,n—k) forn 2 k+1 and F(k,n) = n+1

forn <k,
2. [2] Fd(k,n) = Fd(k,n—k+1)+Fd(k, n—k) forn > k and Fd(k,n) =
lforn<k-1,

3. [10] FO(k,n) = F{O(k,n — 2) + F{P(k,n — k) for n > k and
Fk,n)=1forn<k-1.

Another interesting generalizations of Fibonacci numbers can be found
in [3, 4, 5, 8, 9]. Our paper is a sequel of papers (1] and [10]. We intro-
duce two new kinds of (2, k)-distance Fibonacci numbers and we show that
they are closely related to special number decompositions and there are

interesting relations between them.
Let k > 1, n > 0 be integers, j = 1,2, 3. Then (2, k)-distance Fi-
bonacci numbers of the jth kind F2(J )(k,n) we define in the following way
F (k,n) = FP (k,n = 2) + F (kyn— k) forn 2 k+1 (1)

and

(1) _J1 ifn<k-1 orn=k=1,
F (’“’")‘{2 ifn=k>2

(2) _J O ifnisodd andn<k-1,
B (k’n)—{ 1 ifniseven andn<k-1,

0 ifk=1,
FP(k,k)={ 1 ifkisodd andk23,
2 if k is even,

(3) _ [ 1 ifniseven andn<k-1,
B ('“’")‘{2 ifnisodd andn<k-1,

(3) _ [ 3 ifkisodd and k23,
F (k’k)“{2 ifkiseven or k=1

Tables 1,2,3 present the initial numbers Fz(j )(k, n) for some values k and n.
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Tab.1. (2, k)-distance Fibonacci numbers Fél)(k,n) of the first kind

7 61112314156 7 ] 8] 91011 [ 1213
FOa,n |1 |1 235 [8]13]21|34]|55]89]| 144 | 233|377
F@2,n) [1 12244 8] 8 |16[16]32] 32 | 64 [ 64
Foany 11122345 7|9 12]16 21 |28
FUO4ny 11|21 {1[2[2] 3|35 |5 |8] 8 13 | 13
FOosnyf1 111 ]1]2]213]3[4]5]°¢6 8 9
FOeny 1|11 {afa1f1]2]2([3]|31]4 4 6 6

Tab.2. (2, k)-distance Fibonacci numbers Féz)(k, n) of the second kind

n 0111213145617 89 [lo[it]i2] 13 | 14
FPa,n) |1]o |11 {2358 [13[21[34]|55]80]| 144 | 233
FP2n) |1]|0]2]|0]4a]o[8|o]16] o0 |32]o0] 6] 0 |128
FO9@n) [1 o[ |1j1]2]2]|3]4 |5 |7 ]9 |12]| 16|21
F4n) [1[o]1]ol2fo|3lo|[5 |o]|8]o]1d3|] o] 21
FO6n)y 1ol 1Joj1 1121 ]3]2]4]4 5 7
FFG6ny |1 [0]1Jo]1jo]2]o]3]o]a]ojes 0 9

Tab.3. (2, k)-distance Fibonacci numbers F{ (k,n) of the third kind

n 011 ]2]314] 5] 6] 7] 8 910111213
FI,n) [ 1] 23] 5{8|13]21]34]|855](89] 144 | 233 | 377 | 610
FO9@2,n) |1 ]2[2]4[4] 8| 8 |16]|16[32] 32 | 64 | 64 | 128
F9@,qn) [1[2]1]3]3] 4|6 ] 7 |10]13] 17 | 23| 30 | 40
FI9qn) [ 1] 2]1 |22 4] 3]6 5 |10] 8 |16 | 13 {26
FI9Gn) 1 ]2]1[2]1]3|3]a]5 5] 8 8 12 | 13
F9@%,n | 1f2(1]2]1]2]214]3]6 4 8 6 12

We recall that numbers F2(1) (1,n) are the classical Fibonacci numbers
F,. For k = 2 we obtain known sequence with powers of 2 which double

up. If k = 3 then {Fz(l)(S, n)} is the well-known Padovan sequence { Pv(n)}
defined by the recurrence relation Pv(n) = Pv(n—2)+ Pu(n—3) forn > 3
with Pv(0) = Pv(1) = Pv(2) = 1.

For introduced in this paper numbers F2(2)(k, n) and Fz(s)(k,n) it is
easily seen that Féz)(l, n) = F,_oforn > 3 and Féz) (4,2n) = F,forn > 1.
The numbers F2(2) (4,2n) for n > 1 are Fibonacci numbers interspersed with
zeros ([7]). Moreover, Fz(z)(3,n) = Pu(n).

By the definition of numbers F2(3)(k,n), we obtain that F2(3)(1, n) =
Foip and forn > 1 Fz(s)(4, 2n) = F,. Moreover, by the definition of

numbers Féj )(k, n), j = 1,2,3 we get for k > 1 and n > 0 the following
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relations

Fé:&) (kym)
Fz(s)(k, n) = 2F§l)(k,n) for odd n and even k,
Féz)(k: 2n) Fés)(k, 2n) for even k,
Fz(z)(k, 2n+1) 0 for even k.

Fél)(k, n) for even n and even k,

2 Interpretations of numbers Fz(j) (k,n) for j =
1,2,3

In this section we present some interpretations of (2, k)-distance Fibonacci
numbers with respect to special number decompositions. In [10] the com-

binatorial interpretations of the number Fz(l)(k, n) with respect to special
number decompositions of an integer n into parts 2 and k were studied.
We shall show combinatorial interpretations for the other kinds of (2, k)-
distance Fibonacci numbers which are closely related to number decom-
positions. We recall that by a decomposition of an integer n we mean an
ordered number partition, for example 2 + 3 and 3 + 2 are two distinct
decomposition of an integer 5 into parts 2 and 3.

We say that a sum n) +np+...+n, is a (2, k)—decomposition of the
number n if n; € {2,k} for i = 1,...,t. The number of all (2, k)—decompo-
sitions we will denote by go(k,n). A sum 1+n; +np+...+n; (or ny +
ng + ...+ n + 1) is a (2,k);- —decomposition, (2, k),+—decomposition,
respectively, of the number n if n; € {2,k} for i = 1,...,t. The number of
all (2, k),- —decompositions ((2, k);+ —decompositions) we will denote by
o1~ (k,n) (o1+(k,n), respectively). Clearly,

o1+(k,n) = a;-(k,n). (2)

Let o51- (k,n) be the number of all (2, k)—decompositions and
(2, k);- —decompositions of the number n. In the other words

o51-(k,n) = 0~ (k,n) + oo(k, n) (3)
and analogously
o1+ (k,n) = 01+ (k, n) + oo(k,n). (4)
Consequently,
031-(k,n) = 051+ (k, ). (5)
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We will use the following notation
o(k,n) = 01-(k,n) + ao(k,n) + o1+ (k, n). (6)
It has been proved.

Theorem 1 [10] Let k > 3, n > 2 be integers. Then 031+(k,n) =
FV(k,n).

In this paper we give more general result for all three kinds of (2, k)-
distance Fibonacci numbers.

Theorem 2 Let k > 3, n > 2 be integers. Then

Os1-(kyn) = os1+(k,n) = F§V(k,n), (7
oolk,n) = F2(k,n), (8)
olk,n) = FO(k,n). 9)

Proof. The equality (7) follows immediately from (5) and by Theorem 1.
We shall show that og(k,n) = F{P(k,n). Let n = 1,2,...,k — 1. If
n = 2p, p > 1, then there is a unique (2, k)-decomposition of the number
n of the foom n = ny + ng + ... + np, where n; = 2 for i = 1,...,p.
Hence oo(k,n) = 1. If n = 2p+ 1 for p > 0, then there is no a (2, k)-
decomposition of the number n on terms 2 and k, thus oo(k,n)} = 0. For
n = k we have to distinguish two possibilities. If &k is even then eithern = k
orn=n;+ny+...+n;, wheren; =2 fori=1,...,t. Hence oo(k, k) = 2.
If k is odd then there is the unique (2, k)-decomposition of the number n.

Let n > k + 1. Assume that the equality (8) is true for an arbitrary
number n. We shall show that og(k,n + 1) = Fz(z)(k,n +1). Letn+1=
ny + ng + ... + n, be a (2, k)-decomposition of the number n + 1. We
consider two possibilities either n, = k or n, = 2. In each case we obtain a
(2, k)-decomposition either of the number n — 1 or n+ 1 — k. Consequently
oo(k,n+1) = og(k,n—1)+00(k,n+1—k). Using the induction hypothesis
and the definition of F{* (k,n), we obtain that

oo(k,n+1) = FP(k,n— 1) + FB(k,n+1 - k) = FP (k,n + 1),

which ends the proof of (8).
Now we shall show that o(k,n) = F{) (k,n). By (2), we have that

o(k,n) = g1-(k,n) + go(k, n) + 01+ (k,n)
and next by (2) and the above point of this theorem we get
o(k,n) = 031-(k,n)—ogo(k,n)+ oo(k,n) + 051+ (k,n) — go(k,n) =
= 2F"(k,n) — F{B(k,n).
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We need to prove
Claim.

2F{V (k, n) — F$ (k,n) = {2 (k,n). (10)

Proof (by induction on n). If n = k then the result is obvious. Let n > k.
Assume that the formula (10) is true for an arbitrary n. We will prove it for

n + 1. By the recurrence definitions of the numbers Fg )(k,n), i=1,2,3
and by the induction hypothesis, we obtain

FO(k,n+1) = FO(k,n—1) + F{O(k,n+1—k) =
= 2FO(k,n—1) - FP(k,n - 1)+ 2F (k,n+ 1 - k)+
FO(kn+1—k) =2FP (k,n+1) = F{? (k,n + 1),

which completes the proof. ]
Corollary 3 Let k > 1, n > 0 be integers. Then
FP (k,n) + F{ (k,n) = 2F (k, n).

Let 041(k, 1) be the number of all decompositions of the number n =
ay+ag+...+ap, wherea; € {2,k} fori=2,...,p-1 and a1,a, € {1,2,k}.

Theorem 4 Let k > 3 and n > k be integers. Then
as1(k,n) = F§O(k,n— 1) + P (k,n = 2) + F ) (k,n = k).

Proof. Let k > 3 and n > k be integers and let n = a; +a2+...+ap be the
decomposition of the number n such that a; € {2,k} for i =2,...,p -1
and a;,a, € {1,2,k}. Then we can write

n—ap=a1+a2+...+ap_1.

It is clear that a; + a2 + ... + ap— is either (2,k);-—decomposition or
(2, k)—decomposition of the number n — a,. By the assumption that a, €
{1,2,k} and by (7), we obtain that

or(k,n) = FV(k,n — 1) + FD (k,n — 2) + F D (k,n — k)
and the proof is complete. ]

Consider another type of the decomposition of the number n. For
k>3andn>kletn=a;+as+...+apbethe decomposition of n such
that a; = a, = 1 and a; € {2,k} fori=2,...,p— 1. Denote by T+1(k,n)
the number of all such decompositions of n.
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Theorem 5 Let k > 3, n > k be integers. Then

Fir(k,n) = F$P (k,n - 2). (11)
Proof. Let k > 3 and n > k be integers and let n =14+a2+ ... +ap_1 +1,
where a; € {2,k} for i = 2,...,p — 1. Hence we can write

n—2=ay+a+...+ap 1.

It is easily seen that it is a (2, k)-decomposition of the number n — 2. By
Theorem 2 we obtain that

Fe1(k,n) = B (k,n—2),

which ends the proof. O

Corollary 6 Let k > 3, n > k be integers. Then
FP(k,n~2) = FM(k,n - 1) — FP (k,n - 1).
Proof. By the decomposition of n we obtain
n—1l=1+4a+...4+ap-1

and it is a (2, k);- —decomposition of the number n - 1. Hence by (4) and
Theorem 2 we obtain that

Ta1(k,n) = FD(k,n—1) = FP(k,n—1). (12)
Using both formulas (11) and (12), we obtain that
FP(k,n-2) = FM(k,n—1) - FP(k,n - 1).

]
Analogously as classical Fibonacci numbers F,, the (2, k)-distance

Fibonacci numbers Fz(j )(k, n) can be extended to negative integers n. Let
k > 3,n > 1 be integers. Then for j =1,2,3

Fk,—n) = F(k,k —n) — FO (k,k—2—n) for n > 1
with initial conditions
F9k,0) = 1forj=1,2,3,
FV (k1) 1,
F®(k,1) 0,
F¥k,1) = 2
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Moreover, for n > 1
F®(1,-n) (-1)"FP(1,n+2),
FPa,-n) = (-1)"FP(1,n-9).

]

Tables 4,5 includes initial (2, k)-distance Fibonacci numbers of the second
and of the third kind for special k£ and some negative n.

Tab.4. (2, k)-distance Fibonacci numbers of the second kind for negative n

n -7 —6 -5 ~4 -3 -2 -1 0 1
FO(1,n) | —21 | 13| -8 5| -3 2|l -1]1]o
F¥(3,n) -1 0 1| -1 1 0 ofl1]o0
F¥(4,n) o -1 0 1 0 0 o|l1]o0
F¥)(5,n) 0 0 1 0 0 0 o]J1]o0

Tab.5. (2, k)-distance Fibonacci numbers of the third kind for negative n

n 7T =6 ] 5] 4] -3 —
F(1,n) 5 | -3 2| -1 1

Fi(3,n) 3| -2 1 1] -1
F(4,n) 4] 1] -2 1 2
F,n) | -2 0 1 2 0

ofjoin]|o|nN)
OlO|O ||+
ol I =)
[ LSELSE SR g

3 Identities and relations between
(2, k)-distance Fibonacci numbers

In this section we present some identities for (2, k)-distance Fibonacci num-
bers of the second and the third kind. Moreover, we show some relations
between (2, k)-distance Fibonacci numbers of three kinds.

Theorem 7 Let n >0, k > 3 be integers. Then forj =2,3

ZF")(k ki+m)=F(k,nk+m+2) for0<m<k-3.  (13)
i=0

Proof (by induction on n). We give the proof for j = 3 and m = 0.
Analogously we can prove formula (13) for j = 2 and remaining values of
m.

For n = 0 we have Fz(s)(k,O) =1= Fz(s)(k, 2). Assume that equality (13)
holds for an arbitrary n > 0. We will prove it for n 4+ 1. By the induction
hypothesis and the definition of Fés)(k, n), we get

z; F (k, ki) 2 F{P (k, ki) + F§>) (k,nk + k) =
= FO(knk +2) 4 FO (kynk + ) = B, nk + £ +2),
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which ends the proof. ]

Theorem 8 Letn > 0, k > 3 be integers. Then

n
@)Y FP(kki+m) = FP(knk+m+2) form=k—1,

1=0
@)Y FP(kki+m) = FO(knk+m+2)=2form=k-—1,
i=0
i) Y FP(kki+m) = FDkynk+m+42)—1form=k—2orm=k.
2 2
=0

This theorem we can prove analogously as Theorem 7, so we omit the proof.
Theorem 9 Fork>1,n>2k—2 andj =2,3

FP (kyn) = F(k,n - 2) + FD(k,n = k +2) — FD (k,n — 2k +2).
Proof. We give the proof for j = 3. By the definition of numbers Fz(a)(k, n),
we have

FPkn—2) + FP(k,n—k+2) - FP(k,n - 2k +2) =
= FD(k,n - 2) + FO (k,n — k) + F® (k,n — 2 + 2)
~F(k,n -2 +2) = FO (k,n— 2) + FO (k,n — k) = F (k, ).

For j = 2 we prove analogously. ]

Theorem 10 Forn >0 and odd k > 1
n
(i) 3 FP (k,2) = F$? (k, k + 2n),
=0
(#) Y B3P (k, 2 + 1) = F2 (k, k + 2n + 1).
i=0
Corollary 11 Forn >0 and odd k > 1
2n
() 3 FP (ki) = Bk, k+2n — 1) + F®(k,k +2n) — 1,
i=0

2n+1

(#) Y FP(k,i) = FP(k,k+2n) + FP(k,k+2n+1) - 1.
=0

Theorem 12 Forn >0 and even k > 1

() 3 F® (k. 2) = F (k, k +2n) — 1,
i=0

A (2) ,
(i) 3 F7(k,2i+1)=0.
=0
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Analogously as it was for positive numbers, we can prove by induction
the following identities for (2, k)-distance Fibonacci numbers for negative
integers. :

Theorem 13 Letn > 0. Then
(1) z FO (k, ki +m) = —FY) (k,—nk —k+2+m) for j=2,3
and 0<m<k-3,
i) S F9(k,—ki+m) = —FO (k,—nk—k+2+m)+1 forj=2,3

i=1
andm=k—-2orm=k,

i) 3 F® (k,—ki+m) = —F (k,—nk—k+2+m)+2 form=k—1,
i=1

. n@) . (2)
(w) X F%(k,—ki+m)=-F, (k,—nk—k+2+m) form=k-1.
i=1

Theorem 14 Let k > 3, n > k be integers. Then
3 .
Za F (kyn) = Z (’:) Y aiF (k,n—ik-2p—1)|. (19)
i=0 j=1

Proof (by induction on n). Let n = k. Then p =1 and by the definition of
numbers Fy (k,n) we have

3
Za FP(k k)= as(F (kb - 2) + F(k,0)).
j=1

On the other hand

1 N 3 ' 3 ' )
.Z (z) Z a; F (k,k —ik —2(1—1)) | = Z a; (E_}J’(k, k—2)+ F2(’)(k,0))
i=0 i=1 j=1
Assume that the equality (14) holds for an arbitrary n. We will prove that

3 . P
S 0 FDkn+1) =Y (z) Ea FD (k41— ik — 2(p — 1))
i=1 i=0 i=1

Using the definition of the numbers F2(j >(k, n), we have

Za, FP(kn+1) = za,pgﬂkn—l +}:a, FP(k,n+1- k).
j=

j=1



Using the recurrence relation and the induction hypothesis we obtain

3 3
S 0 FP(k,n+1) = i (’;) (Zasz(j)(k,n —1-ik—2(p-— i))) +

j=1 i=0 i=1

P 3 )
+> (]:) (Zasz(’)(k,n +l—k—ik—2(p— i))) =

i=0 j=1

P 3 ;
=) (p) (Zasz(J)(k,""' 1-ik—2(p— i))) ’
i=0 \* Jj=1

which ends the proof. ]
Corollary 15 For j=1,2,3

FP)(kn) =) (’:) F (k,n — ik — 2(p — 4)). (15)

=0

Proof. Putting a; =1 and a; = a3 = 0 in formula (14), we obtain equality
(15). O

4 (2,k)-distance Lucas numbers

In this section we introduce a new generalization of Lucas numbers which
is closely related to the (2, k)-distance Fibonacci numbers. This is a se-
quel of the paper [1]. Let £ > 1, n > 0 be integers, j = 1,2,3. Then
(2, k)-distance Lucas numbers Lg’)(k,n) of the jth kind we define by the
recurrence relation

LY (k) =LY (kyn—2) + L (k,n—k) forn 2 k+2  (16)

with initial conditions

L& (k,0) 2 for k =1,2,3,
LP(k,0) = kfor k>4,

LM(k,1) = kfork>1,

LP(k,n) = 2forn=23,... k-1,

W o[k ifk=1,
L; (k”“)—{ k+2 ifk#1
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fork>1 L{(k,k+1)=k+2,
fork>2 LPk,0)=k, LP(k1)=0,

LP(1,0) =2,

L(2)(kn)— 0 ifnisodd and3<n<k-1,
2 VW™ T 2 ifniseven and2<n<k-1,

@) [k if k is odd,
Ly (k. k) = { k+2 ifkiseven,

0 if k is even,
LP(k,k+1)=¢ 2 ifkisodd and k# 1,
3 ifk=1,

L k,0) = 2 fork#3,

LP@3,00 = 1,
LPk,1) = 2 fork#1.
LPkn) = 1 for2<n<k-1,

1 ifk=1,
LO(kky={ 4 ifk=2,
3 ifk>3,

3 ifk#2
Lgs)(k’k“):{ 4 ifkiz.

In the paper [1] they were introduced numbers Lgl) (k,n) and L(23) (k, n).
Table 6 includes initial words of (2, k)-distance Lucas numbers of the second
kind for special k and n.
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Tah.6. (2, k)-distance Lucas numbers of the second kind

n 01121374 5] 6] 78] 910 ] 11 12 13
L0 n) 2134711 ]18]20]47] 76 123 [ 199 [ 322 | 521
L9@2,n [ 2lojalo]ls[o]16] 0o }32]o0] e o {128 o
LP@ny3]lof2]3]2[s] s | 7 [w]i12] 17 [ 22] 20 [ 39
LP4,n) Ja]lof2]o]s] o8] o]ma[o]22]o0 36 0
sy ls]ofl2]lofl2] s ] 27219 7 11 | 14 | 13
L6,n | 6]o]2]o]l2fo|[ 8] o]1wo]o] 12 o] 2]o0

Note that for £ =1 we have ng)(l,n) = L,.
By the definition of the numbers Lél) (k,n) and ng) (k,n) we can ob-
serve the following relations.

Let k£ > 2, n > 0 be integers. Then for even & and even n
LY (k,n) = LP (k,n).
Let £ > 3, n > 0 be integers. Then for odd &
L& (k,n) = LP (k,n + 2).
Theorem 16 Let k > 2, n > k be integers. Then
L (k,n) = 2F® (k,n — 2) + kF (k,n — k). (17)

Proof (by induction on n). Let n = k. Then by the definitions of ng)(k, n)
and Fz(z)(k, n), for odd k& we have

LP(k, k) = k = 2F® (k, k - 2) + kF$2 (k,0).
For even & we obtain
L (k, k) = 2 + k = 2F (k, k — 2) + kF$? (k,0).

Assume that the formula (17) holds for an arbitrary n. We will prove it for
n-+1. By the recurrence definitions of the numbers ng) (k,n) and Féz) (k,n)
and by the induction hypothesis, we have

LP(k,n+1)=LPk,n—-1)+ L (k,n+1~k) =
= 2F®(k,n—3) + kFP (k,n —k — 1) + 2FP (k,n — 1 — k)+
+ KED(kyn+1-2k) = 257 (k,n— 1) + kF{? (kyn + 1~ k),

which ends the proof. ]
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Theorem 17 Let n > 0. Then
n (2) . .
; @ 2) = Ly (k,2n+ k) —2, ifk is even
@ i§=:oL2 (k. 24) { LP (k,2n + k), if k is odd, k > 3,
(%) fork >3

3 L (k, ki) = L (k, kn +2) ~ 2.

i=1
Proof. (i) (by induction on n). We prove formula (i) for even k. It is easy
to check that (i) holds for n = 0. Assume that equality (i) is true for an
arbitrary n. We shall prove that it is true for n + 1. By the induction
hypothesis and the definition of numbers Lf)(k, n), we have

ntl

S L@ (k,2) = 30 LP (k, 20) + LP(k, 20 + 2) =

i=0 i=0

ng)(k, n+k)—2+ Lg)(k, 2n+2)= ng)(k,2n +2+k) -2,

which ends the proof.
Similarly we can prove (i) for odd k, k > 3.
(i1) Analogously as in (3). O
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