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Abstract

A graph G is a [s, t]-graph, if there are at least ¢ edges in every included subgraph
by s vertices of G. The concept of [s,t]-graph is the extension of independent
number. In this paper, we prove that

(1) if G is a k-connected [k + 2, 2]-graph, then G has a Hamilton cycle or G
is isomorphic to Petersen graph or to Kx+1 V Gk,

(2) if G is a k-connected [k + 3, 2]-graph, then G has a Hamilton path or G
is isomorphic to Kiy2 V G,
where G, is an arbitrary graph of order k.

This two results include the following known results obtained by Chvatal-
Erdos and Bondy, respectively.

For any graph G of order n > 3,

(a) if &(G) < k(G), then G has a Hamilton cycle.

(b) if a(G) — 1 € k(G), then G has a Hamilton path.

Keywords: [s, t]-graphs; Hamilton paths(cycles); k—connected graphs

1. Introduction and notation

In this paper, we will consider only finite undirected graphs without loops
and multiple edges. For notations and terminology not defined here we refer
to [? ]. Throughout this paper, let G be a graph and V(G), E(G) denote the
vertex set and the edge set of G, respectively. For any a € V(G), S,T C V(G)
and any subgraph H of G, we put

Nr(a) = {u € V(T) : uva € E(G)},
Ny(a) = Ny(gy(a), N(a)= Ng(a),

Nz(S) = |J Nr(v), Nr(H)=Nr(V(H)), Nu(S)=Nyu(S),
vES
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|H| = |V(H)|, E(S,\T)={uw:ueSveT}

The subgraph induced in G on S will be denoted by G[S]. If E(G[S]) = ¢,
S is called an independent set of G. The number of vertices in a maximum
independent set of G is called independent number of G and denoted by a(G).
If G — S is not connected, we call S a vertex cut. The number of vertices in a
minimnum vertex cut is denoted by x(G). If &(G) > k (k is a positive integer),
we call G k—connected. A graph G is a [s, t]-graph, if there are at least t edges
in every included subgraph by s vertices of G, where s, ¢ are positive integers.

Lemma 1. Every [s, t}-graph is a [s + 1, + 1]-graph.

Proof. Let G be a [s,t]-graph. If G is not a [s + 1,¢ + 1]-graph, there exists
S c V(G) with |S] = s+ 1 such that |[E(G[S])| < t. Taking an edge e =
zy € E(G[S]), We have |S — z| = s and E(G[S — 2]) C E(G[S]) — e. Hence,
|E(G[S - z])| < |E(G[S]) — €| <t — 1. This contradicts that G is a (s, t]-graph.
O

Lemma 2. For any graph G, o(G) < k ifand only if Gis a [k + 1, 1)-graph.

Proof. Clearly, o(G) < k if and ouly if J is not an independent set for any
k + 1-vertex set I of G, i.e. Gis a [k+ 1,1]-graph. O

From lemma 2, the concept of [s,t]-graph is the extension of independent
number. Every graph G with E(G) # ¢ is some kind of [s, {|—graph. So the
research on [s, t]—graph is of general significance. In addition, lots of practical
problems can be study from (s, t]-graphs.

The next two known results are due to Chvatal-Erdés and Bondy, respec-
tively.

Theorem 1. ( Chvatal and Erdés [2]) Let G be a graph of order n > 3. If
a(G) € &(G), then G has a Hamilton cycle.

Theorem 2. ( Bondy [3]) Let G be a graph of order n > 3. If o(G) < &(G)+1,
then G has a Hamilton path.

This two theorems can be described as the following forms.

(a) Every [k(G) + 1,1]-graph G of order n > 3 has a Hamilton cycle.

(b) Every [«(G) + 2, 1]-graph G of order n > 3 has a Hamilton path.

Theorem 3. { Liu [4]) Let G be a [4,2]-graph. Then G is 2-connected if and
only if G has a Hamilton cycle or G is isomorphic to Koz or Ky 3.

Theorem 4. ( Li [5]) Let G be a 2-connected [5,3]-graph with |G| > 8 and
§ > 3. Then G has a Hamilton cycle.

In this paper, we show the following results.
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Theorem 5. Let G be a k-connected [k + 2, 2]-graph of order n > 3. Then G
has a Hamilton cycle or G is isomorphic to Petersen graph or to Kx;1 V Gk.

Theorem 6. Let G be a k-connected [k + 3, 2]-graph of order n > 3. Then G
has a Hamilton path or G is isomorphic to Ko V Gi.
Here Gy is an arbitrary graph of order .

We can give the examples showing that the result of theorem 5 fails in k-
connected [k + 3, 2]-graphs and theorem 6 fails in k-connected [k + 4, 2)-graphs.

2. Proof of Theorem 5

Suppose that the graph G satisfies the conditions of Theoremn 5 and G con-

tains no Hamilton cycle.

When k =1, G is a [3, 2]-graph and there exists v € V(G) such that G — v
is not connected. If n > 4, take w,w’,w” not all from the same comnponents
of G — v. We have |E(G[{w,w’,w”}])] < 1, which contradicts the fact that G
is a [3,2]-graph. This contradiction shows that n = 3 if k = 1. Hence, G is
isomorphic to K3 V G;. So the result of Theorem 5 is true when & = 1. Next,

we assume k > 2.
Let C = vjve---vnvy be a longest cycle of G. In this section, for v;,v; €

V(C), we put

viﬁvj = Viligl - V5175, vib'vj = Vili-1 - V54175,

-1 _ + __ - -1 — 1
v = v v = v, v =7, o = o

where the indices are taken modulo m. For z € G and a component H of
G - V(C), we put
NE(z) = {w* : we Ng(2)}, No(z)={w :we Ne(z)},

NE(H) = {w* :w e Ne(H)}, N5(H)={w":w e Nc(H)}.

We have that [Nc(H)| > k > 2 since G is k—connected and the following claimns
hold.

Claim 2.1 Ify,z € No(H)(y # z), then
(a) y¢{z",2"} and hence Iy+62‘| >1lor |z"‘6y‘| > 1
(b) y*zt,y~z~ ¢ E(G).
(c) N° & (y*) N Ne(2%) =0, Nt?," (y*)NNe(zt) =0,
y+C2 z+Cy
Ny_?z_ (y")NNc(27) =10, N;%y_ (y")NNc(z7) =0.
(d) N:ay(y"’) NNe(z™) =0, N:ay_ )N Ne(z=) =9,
Ny-"'az(y_) N Ne(2*) =0, N'%z(y") N Ng(z*) =0.
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Proof. Otherwise, it is easy to get a cycle longer than C. O
Claim 2.2 |G - V(C)|=1.

Proof. Take avertex z € V(H). If |G-V (C)| = 2, there exist 2’ € V(G-V(C))
such that z’ # z. Considering S = {z,z } U N} (H), we have |S;| > k + 2.

When =’ ¢ V(H), ' is adjacent to at most one vertex in NZ&(H) (Oth-
erwise, it is easy to get a cycle longer than C). When =’ € V(H), 2’ is not
adjacent to any vertex in S expect z. Combining Claimn 2.1(a) and (b), we
have |E(G[S1])] £ 1. This contradicts Lemma 1. O

Next, for a longest cycle C of G, the only vertex of G — V(C) is denoted hy
Ic.

Claim 2.3 |N¢(zc)| = k.

Proof. Obviously, |[Nc(zc)| = k. If |Nc(zc)l 2 k + 1, considering S =
{zc}UNL(zc), we have |Sz| > k+2. By Claim 2.1(a) and (b), |[E(G[S2])| = 0.
This contradicts Lemma 1. O

Put Nc(:l:c)“—‘ {vi,,v;,,--',v,-k} (Whe!‘e 1<) <ig <+ < < m)

Claim 2.4 Let v;; € N¢(zc)-
(a) If w € Ne(vy)), then w* ¢ Ne(vy)).
(b) If u € Ne(vf), then u™ ¢ Ne(vf).

Proof. (a) If w* € Nc(v;}), by Claimn 2.1(b), w,wt ¢ NZ(z¢). Considering
S3 = {:cc,v;"’} U Ng (zc), we have |S3| = k + 2. Hence |E(G[S3])| = 2. By
Claim 2.1(a) and (b), {z¢} U Nz (z¢) is an independent set. Furthermore,
vi‘jzxc ¢ E(G)(otherwise, the cycle zcv;; Cwy;; w+6v;;2mc is longer than C).
Hence, there exists v; (I # j) such that v 2v,.‘, € E(G). We can get one of the
following cycles longer than C:

zcuijz'\v;vi'jzﬁw"'v;wbv;,xc (if vy, € V(vijZ'\w)),

xcv,-l.z)wvi:w'*av;‘v;zbvi,zc (if vy, € V(w"'@v,-j)).

This is a contraction.
(b) In a way similarly to (a), (b) can be proved. O

By Claimn 2.4,
viv] ¢ E(G), l=1,2,---,k. (1)

LI
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Claim 2.5 If v} 3v, "l =1, then [] “av, +a| = 1, where the indices are
taken modulo m. (Next we will no longer indicate it when indices need to be

taken modulo m.)

Proof. First, we show that N (v,"; ) € Ne(zce).

By Claim 2.2 and Claim 2.1(a), N(v:;) c V). If N(vf;,) ¢ Ne(ze),
take u € N (vj; ) = Ne(z¢). Combining Iv;';_ 61},‘1 41/ = 1 and Claim 2.1(b)
gives u ¢ N5(zc) U N (z¢). Considering Sy = {zc,ut} U NE(zc), we have
|S4] = k + 2. By Claim 2.1(a) and (b), {zc} U NZ(zc) is an independent set
and zcu* ¢ E(G). By Claim 2.1(C),(d) and Claim2.4, E({u*}, N} (zc)) = ¢
Hence, |E(G[S4])| = 0. This contradiction shows that N(v;) C Nc(zc).

Since G is k-connected, d(v*’) > k. By Claim 2.3, N(v +) = Ng(zc). There-

fore
vi*;v,-, €EG), 1=1,2,--- k. (2)

If o} Cor | > 2, considering S5 = {a:c,v{;+2} U Né’(:cc), we have

{41 ij42

ISs) = k + 2. Since |E(G[Ss])| > 2, by Claim 2.1(a),(b), there exist v} ,v} €
NZ(zc)(s # j # t) such that

S
Uij.,.zvi, lJ+2 11 e E(G)
One of v}, v} is not u . Suppose v} # v} 1 Since vi*; = v, by (2),

v;, € E(G), which is contrary to Claim 2.1(c). O

‘+1

Claim 2.6 If Iv;'; 6v§+1] =1 for some v;; € Ne(zc), then G is isomorphic to
K41V Gk (where Gy is an arbitrary graph of order k).

Proof. By Claimn 2.5 and (2),
i Ty, |=1, =12,k

LIFSY
‘U?;viz € E(G)r J’l = 1721' ) ’)k-

Hence, |C| = 2k. We obtain C = vivy - - - v, V(G) = V(C)U {z¢} and |G| =
2k + 1. Without loss of generality, we assume that No(zc) = {ve,v4, - vor}.
Then, we have S = {z¢,v1,vs, -+, v2¢—-1} is an independent set (by Claimn 2.1)
and , for any a € S and any b € N¢(z¢), ab € E(G). In addition, no matter
what the edges among vertices of No(zc) = {v2,vs,--- vk} are, the graph
G is k-connected [k + 2,2]-graph and has no Hamilton cycle. Therefore G is
isomorphic to Ki41 V Ge(where Gy is an arbitrary graph of order k). O

Next, we suppose |v+6v,‘ J22,1=1,2,
For a longest cycle C of G we put

p(C) = max{iv"'av |:7=1,2,--- ,k}.

41
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Choose a longest cycle C' such that p(C ) is as large as possible. Then
the above Claims is true for this cycle C'. Next, for convenience, we use C =
v Vg - - - Uy vy instead of the cycle C’. We still suppose Ne(z¢c) = Nei(zcr) =
{v,-l \Viz - .- Vi, }(where 1 < 4y < ip < --- <ix < m). Without loss of generality,
we assume that p(C) = |v} 61},‘2 )

Claim 2.7 N V=0, N ) =
aim v?l 8v.~2 (‘U“) vy 60"’2 (vtz

Proof. First, we show that N "'6 (v“)
N *6 (v,l) #0, take u € N +5‘ (Uz,) By (1), u # v}. Considering

Se = {a:c,u } U Ng (zc), we have iSGI k + 2. By Claim 2.1 and Claim 2.4,
|E(G[Ss))| = 0, which contradicts the fact that G is a [k + 2, 2]-graph.

Now we show that v v;, ¢ E(G).

If v v;, € E(G), con51dermg S7 = {zc, v }UNE (zc), we have |S7| = k+2.
By Cla.un 2.1 and Claim 2.4, E(G[S7]) C {v ~} and hence |E(G[S7])| £ 1, a
contradiction.

Therefore N o 6 (v,-'l) =0.

11 12

Similarly, we can proved that N 6 _ (v y=9. O

Claim 2.8 (a) v'2 - € E(G) and v;%v] ¢ E(G) (j =3,4,---,k);
(b) v e E(G) and v+2 + ¢ E(G) ( =3,4,- k)
Proof. (a) First, we show that
vty ¢ B(G), 1=3,4,- k. (3)
Otherwise, there is v;_(3 < r < k) such that v,-';zv,.'r € E(G). Put
C = zcvilt"v;v{lzgv,-,xc.

Then |Cy| = |C| and hence C is also a longest cycle of G. Obviously, zc, = v,
vi, € N¢,(zc,). By Claim 2.7,

p(C1) 2 [vfCluiy| = |7 Cuiy| > I, Cog| = p(C),

which contradicts the fact that p(C) is largest.
Next, we show that v‘2 - e E(G).
Cousidering Sg = {xc, "2} U Ng(zc), we have |Sg| = k + 2. Since G is a
[k + 2,2]-graph, by Claim 2.1 and (3), there exist v;_,v;, € Ng(zc) (s #t,1 <
s,t < 2) such that
v 2], v .. € E(G).

11 is? l]
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Hence, v “v;; € E(G).
(b) In a way similarly to (a), (b) can be proved. O

Claim 2.9 There exists ¢ (1 # g # 2), such that 0'2 v, VLY, ,'2 € E(G).

Proof. Considering S = {z¢, ;2} U Ng(z¢), we have |So| = k + 2. Since
Gisalk + 2,2]-graph, by Claim 2.1, there exist v ,v;; € Ng(zc) such that
v 221}‘ Ui v € E(G). By Claim 2.7, p # 1 # ¢ and hence one of v;_,v;_is not
We assume that v # v .
Put C; = xcv.‘ﬁv v %v v

‘2

i Hzﬁv,qxc Then C, is a longest cycle of G
and zc, = v, v;, € Nc,(xc,) By Claim 2.1(b), v v}, ¢ E(G). If v;v;?
E(G), by Clann 2.7,

p(C2) 2 I}, Covi?) = o Tl + l{oi, 021 > 1o, Tl = p(©),
which contradicts the fact that p(C) is largest. O

Claim 2.10 p(C) =2.

Proof. If p(C) = @v .| > 3, considering Sio = {zc, ,23} U Ng(zc), we

have |310| =k+ 2 Smce Gisalk + 2 2] -graph, by Claim 2.1, there exist

v, € Nz (z¢) such that ”m 123, v;, 3 € E(G). One of v, ,v;, is not v}

Suppose v; # v;,. Since v} € E(G), we can get a contradiction to Clann

2.1(c) if 4g < iq and a contradlctlon to Claim 2.4 if i, = i,. Thus 45 > i,
Noting Claimn 2.9, we get the follow cycle which is longer than C:

_ -3, -, -, 273 -2 _
Cs = zcv,-,t*v,.z 'u'-ygv‘-qv,-2 60‘»0 v,-l(év,-ga:c,
a contradiction. O

By Claim 2.10,
+6vz,+1|_p(c) 2 (l=1,2,"-’k), |G|=3k+1

Claim 2.11 k£ =3.

Proof. Since v;; 2 = v}, by Claim 2.8,

- € B(G), viv ¢ E(G) (=34, -,k).

1k 12 e t

By Claimn 2.4,
v+v,,,v vi, € E(G).
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By Claim 2.1(a) and (b),
vizc ¢ E(G), vivi ¢ E(G) (1=1,2 k).

Therefore ”;: is not adjacent to these 2k+1 vertices of G. Since G is k-connected,
|N(v:)1 > k. Hence

N(’U:) = {'U;,'U;,'U.’a,'",’l).‘k_l,vfk}.

Ifk > 3, vi,_, € N(v;-';) and hence v;’;vi,‘_l € E(G). Considering Sy =
{zc,vf_ }UNg(zc), we have |S11| = k + 2. By Claim 2.1(d), v}_ vy ¢
E(@G) (I =1,2,---,k—1). By Claim 2.1(a) and (b}, |E(G[S11])| = 1, which
contradicts the fact that G is a [k + 2, 2)-graph. Thus k=3. O

By Claim 2.11, |G| = 10. Similarly to the proof of Claim 2.8, we can show

v;?v,, € B(G), i =1,2,3.
Furthermore, we have

E(G) = BE(C)U {zcu;, : j = 1,2,3} U {v; v, 1 5=1,2,3}

141

(Otherwise, it is easy to get the Hamilton cycles of G), where indices are taken
modulo 3. Therefore, G is isomorphic to Petersen graph.
The proof of Theoremn 5 is complete.

Corollary 2.1 If G is a k-connected [k + 2, 2]-graph with |G| > 2k + 2(where
k > 4), then G contains a Hamilton cycle.

Proof. Since |G| > 2k + 2, G is not isomorphic to Kx+3 V Gk. Since k>4,G
is not isomorphic to F. By Theorem 5, G has a Hamilton cycle. 0

Corollary 2.2 Let G be a graph of order n > 3. If o(G) < x(G), then G has
a Hamilton cycle.

Proof. Since o(G) < &(G), G is a k(G)-connected [£(G) + 1,1]-graph (by
Lemnma 2). Hence, G is a k(G)-connected [£(G) + 2,2]-graph (by Lemma 1).
Obviously, G is isomorphic to neither R,‘(G)H VGy(c) nor Petersen graph (since
neither one of them is [k(G) + 1, 1}-graph). By Theorem 5, G has a Hamilton
cyclee. O

3. Proof of Theorem 6

Suppose that the graph G satisfies the conditions of theoremn 6 and G con-

tains no Hamilton path.
Now, we prove that the result of Theorem 6 is ture when k = 1.
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When k = 1, G is a [4, 2]-graph and there exists z € V(G) such that G — z
is not connected.

Case 1. n=3
Obviously, G has a Hamilton Path.
Case 2. n=4

Obviously, G has a Hamilton path when there are two componeunts in G — z
and G is isomorphic to K3 V G, when there are three components in G — z.

Case 3. n>5

There are two components Ry, Ry in G — z(Otherwise, it is easy to take
wy, we, w3, wq € V(G — z) such that |E(G[{w,, wa, w3, wq}])] < 1, which cou-
tradicts that G is a [4,2]-graph.). If Ry, Ry are both complete graphs, G has
a Hamnilton path. Without loss of generality, suppose that R; is not complete
graph. Then, |R;| > 2 and there exist z;,2z; € V(R;) such that z12; ¢ E(G).
If |Ry| > 2, taking z3,24 € V(Ry), we have |E(G[{z1,22,23,24}])] < 1. This
contradiction shows that V(Ry) = {z’}. Because G is a [4,2]-graph, R; is
a l-connected [3,2]-graph(Otherwise, there exist =;,z9,73 € V(R;) such that
|E(G[{x1,%2,23}])] £ 1, and hence |E(G[{z1,z2,z3} U V(R)])| £ 1, a con-
tradiction.). By Theorem 5, R; has a Hamilton cycle or R, is isomorphic to
Petersen graph or K2 V G;. Obviously, G has a Hamilton path when R; has
a Hamilton cycle or R; is isomorphic to Petersen graph. If R; is isomorphic
to K2 vV Gy, ie. V(Ry) = {21,2,2"} and 2"2,2"z € E(R,;). Considering
{2, 21, 22}, because 2,22 ¢ E(G), we have zz; € E(G) or 22, € E(G). lt is easy
to see that G has a Hainilton path.

From the above, we know that the result of Theorem 6 is ture when k = 1.
Next, we assume k > 2.

Let P = vjvuy--- v, is a longest path of G. In this section, for the vertices
v;,v; € V(P) (1 £i<j<p), weput

v;ﬁvj = ViViq1 - ' Uy, 'Uj?’v,' = VUjV5-1 0y,

vl =vi, v =vg (1<i-l<iti<p),

-~ _ =1 4+ _ 41
v =, v =

For z € G and a component H of G — V(P), we put
Nf(z) = {w* :w e Np(z)}, Np(z)={w™:we Np(z)},

Ni(H) = {w* :we Np(H)}, Np(H)={w":we Np(H)}.

Let u = v; and v = v, . We have |Np(H)| > k > 2 and the following claims
hold.

Claim 3.1 Let y,z € Np(H)(y # z).Then
(a) N(w)UN(v) C V(P).
(b) uv ¢ E(G).
() z¢ {y*,y7}.
(d) uy*,vy~ ¢ E(G).
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(e) y*z*,y~2" ¢ E(G).
f) Ify e V(u?z‘), uz™,vy* ¢ E(G).

Proof. Otherwise, it is easy to get the path longer than P. O
Claim 3.2 |G-V (P)|=1.

Proof. Take z € V(H). If |G - V(P)| > 2, there exists ' € V(G — V(P)) such
that =’ # z. Considering Ty = {z,z',u} UN}(H), since [N} (H)| = |[Np(H)| >
k and u ¢ Nj(H), we have [T1| > k + 3.

Noting |NN;:(H)($')| <1ifz' ¢ V(H) and |NN,4;(H)(:1:')| =0if ' € V(H)
(otherwise, it is easy to get paths longer than P), we have |E(G[T1])| < 1 by
Claim 3.1. This contradicts Lemma 1. O

Next, for a longest path P of G, the only vertex of G — V(P) will be denoted
by Tp.

Claim 3.3 (a) Np(zp)=k.
(b) u€ Np(zp), vE€ NE(zp).

Proof. (a) Obhviously, [Np(zp)|> k. If |Np(zp)|> k + 1, considering T =
{zp,u} U NE(zp), we have |T3| > k + 3 and |E(G[T3])| = 0 by Claim 3.1. This
contradicts the fact that G is a [k + 3, 2]-graph.

(b) If u ¢ Np(zp), considering Ts = {zp,u,v} U Ny (zp), we have |T3| =
k + 3 and |E(G[T3}])| € 1 by Claim 3.1. This contradicts the fact that G is a
[k + 3, 2]-graph.

If v ¢ NE(zp), considering Ty = {zp,u,v} UNE(zp), we can get a similar
contradiction. O

Put Np(zp) = {vi,,viz .. -v,-k} (il <idg <o < k).

Claim 3.4 |v} Pv;  |=1,j=12 k-1

tit+1
Proof. By Claim 3.3(b), v;, = v, v;, = vp—1. By Claim 3.1(c),
IUZT’\U.-',,,J >1,7=1,2,---, k-1

Let P, = v; ‘Fvgxpv,-,ﬁ'up (s =2,3,---,k). Then P, is also a longest path
of G and zp, = v;. Using Claim 3.3(b) to P;, we have

vy, v ? € E(G), s=2,---,k. (4)

Let Q; = v:?vp_lmpvi, ‘Pvl (t=1,2,---,k—1). Similarly, Q is a longest
path of G, zg, = vp and

vpviy, Vit € B(G), t=1,---, k-1 (5)
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If there is j € {1 2, — 1} such that |v+7’)v1 ol =2, then v 2 = v,*;

By (4), uv =wnuv - € E(G), which contradicts Claim 3.1(d). Therefore,

i +1
|u:;?v,.;“|¢2, i=1,2- k-1 (6)
If there is ! € {1,2,---,k — 1} such that |v+?v"“| > 3, considering Ts =
{v},zp,vp} UN5(zp), we have |Ts| =k + 3 and
vivy ¢ E(G), m=1,2,--- k.

Since otherwise, by (4) and (5), we can get one of the following paths longer

than P:
v{ﬁv-‘ vf"épvim:rpv,-,“ﬁv,,vf"z—l—"vi_,“ (m <),

v (Fvl Zpy; (ﬁvlv 2?1} v, (m>1+1).
p £ Vi, :

i im
We have vpv ¢ E(G) (otherwise, the path uﬁv,,xpv,, +,T’)vv ﬁv,m is longer

than P). By Claim 3.1, |B(G[T5])| = 0. This contradiction shows that
WP, <3, j=1,2 k-1

By (6),
|v'-"I—"vT =1 §=1,2,---,k~-1.0
ti+1

By Claim 3.4 and Claim 3.3(b), |P| = 2k + 1. Suppose P = vjvg - - - U2gt1,
then

Np(zp) = {va,v4,- - v}, V(G) = V(P)U {xp}, |G| = 2k + 2.

Let
S = {zp,v1,v3, ", vok41},
then |S| = k + 2. For any z,y € S, by Claim 3.1, zy ¢ E(G). Foranyz € S
and any z € Np(zp) = {ve,vq, - - - var}, since d(z) > k, zz € E(G). We notice
that G is k-connected [k + 3, 2]-graph no matter how E(G[N p(zp)]) is. Hence,
G is isomorphic to Kxyz V Gk (where Gy is an arbitrary graph of order k ).
The proof of Theorem 6 is complete.

Corollary 3.1 If G is a k-connected [k + 3, 2)-graph with |G| > 2k + 3, then
G contains a Hamilton path.

Proof. Since |G| > 2k + 3, G is not isomorphic to Ky o V Gx. By Theorem
6,G has a Hamilton path. O

Corollary 3.2 Let G be a graph of order n >-3. If (G) < «(G) + 1, then G
has a Hamilton path.
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Proof. Since a(G) < k(G) +1, G is a &(G)-connected [k(G) + 2, 1]-graph (by
Lemma 2). Hence, G is a x(G)-connected [x(G) + 3,2]-graph (by Lemma 1).
Obviously, G is not isomorphic to K.(g)+2 V Gr(c) (since Kgg)+2 V Gr(c) is
not [k(G) + 2,1)-graph). By Theorem 6, G has a Hamilton path. O
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