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ApsTRACT. The vulnerability value of a communication network is the resis-
tance of this communication network until some certain stations or commu-
nication links between these stations are disrupted and, thus communication
interrupts. A communication network is modeled by a graph to measure the
vulnerability as stations corresponding to the vertices and communication links
corresponding to the edges. There are several types of vulnerability param-
eters depending upon the distance for each pair of two vertices. In this pa-
per. closeness, vertex residual closeness (V RC) and normalized vertex residual
closeness (NV RC) of some Mycielski graphs are calculated, furthermore upper
and lower bounds are obtained.

1. Introduction

Networks are important structures and appear in many different applications
and settings. The most common networks are telecommunication networks, com-
puter networks. the internet, road and rail networks and other logistic networks
[14]. The vulnerability value of a communication network shows the resistance of
the network after the disruption of some centers or connection lines until 2 com-
munication breakdown. As the network begins losing connection lines or centers,
eventually. there is a loss of efficiency. In a communication network, the measures
of vulnerability are essential to guide the designers in choosing a suitable network
topology. They have an impact on solving difficult optimization problems for net-
works [14].

There are several types of theoretical parameters do not depending upon dis-
tance such as connectivity [11], toughness (16], integrity [4], bondage number (2],
average lower independence number [1] and scattering number [10]. On the con-
trary. many graph theoretical parameters depending upon the distance such as
vertex and edge betweenness. average vertex and edge betweenness, normalized
average vertex and edge betweenness [12], closeness, vertex residual closeness, nor-
malized vertex residual closeness [3,5, 6, 18].
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Let G = (V(G), E(G)) be a simple undirected graph of order n. We begin
by recalling some standard definitions using throughout this paper. For any ver-
tex v € V(G). the open neighborhood of v is Ng(v) = {u € V(G)luwv € E(G)}
and closed neighborhood of v is Ng[v] = Ng(v) U {v}. The degree of vertex v in
G denoted by dg(v), that is the size of its open neighborhood {7]. The distance
dg (11, v) between two vertices u and v in G is the length of a shortest path between
them. The dinuneter of G, denoted by diam(G) is the largest distance between two
vertices in V(G). The complement G’ of a graph G has V(G) as its vertex sets, but
two vertex are adjacent in G’ if only if they are not adjacent in G. A set S CV(G)
is a dominating set if every vertex in V(G) — S is adjacent to at least one vertex
in S. The minimum cardinality taken over all dominating sets of G is called the
domination number of G and is denoted by 7(G) (15].

The concept of VRC and NV RC were introduced on 2006 by Chavdar Dan-
galchev [5] and has been further studied by Aytag and Odabag[3, 18]. The aim of
residual closeness is to measure the vulnerability even when the actions (removal
of the vertices) do not disconnect the graph. In [3] and [5], they are explained that
Residual closeness is considered to be more sensitive for the vulnerability of graphs
than the other known vulnerability measures.

The closeness of a graph G is defined as: C(G) = Y C(v;) , where C(v;) is

Vi
the closeness of a vertex v;, and it is defined as: C(v;) = 3, ?’37}"_1’ [5]. Let

vj#v;
dy, (vi.v;) be the distance between vertices v; and v; in the graph G, received from
the original graph where all links of vertex vy are deleted. Then the closeness af-
ter removing vertex vy is defined as: Clw) = 1 X m {5]. The vertex

Vi U FV:

residual closeness (V RC) of the graph G is defined as: R(G) = min{C,,}(5]. The
v

normalized vertex residual closeness (NV RC) of the graph G is defined as dividing
the residual closeness by the closeness C(G): R'(G) = R(G)/C(G) [5].

Our aim in this paper is to consider the computing the closeness, vertex resid-
ual closeness and normalized vertex residual closeness of Mycielski networks that
are modeled by Mycielski graphs. Mycielski graphs that may be used to encoding
use the adjacency relations hetween vertices of graph G and copy graphs G'. In
section 2. well-known basic results are given for closeness, VRC and NV RC, re-
spectively. In section 3, definitions of Mycielski graphs and known basic results for
them are given. furthermore; closeness, V RC and NV RC of some Mycielski graphs
are computed. Finally. upper and lower hound are determined in section 4.

2. Basic Results

In this section well known basic results are given.

THEOREM 1. [3,5] The closeness of
(@) If G = K,. where K,, is a complete graph with order n, then

C(G) = (n(n - 1))/2,
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(b) If G = K,,,., where K}, is a star graph with order (n + 1), then
C(G)=(n(n+3))/4
(¢) If G = C,,, where C,, is a cycle graph with order n, then
| 2n(1- 1/2=D/2y | if n is odd;
cle) = { n(2 - 3/2"/2) , if n is even.

THEOREM 2. (5] The VRC of
() If G = K,,, then R(G) = ((n - 1)(n - 2)}/2,
(b) If G = Ky., then R(G) = 0.

THEOREM 3. [5] The NVRC of
(a) If G = K, then R'(G) = (n - 2)/n,
() If G = Ky, then R'(G) =0.

THEOREM 4. (5] For a graph G, 0 < R'(G) < 1.

3. Residual Closeness of Some Mycielski Graphs

DEFINITION 5. [9.13] For a graph G on vertices V(G) = V = {v;,vg,...,vn}
and edges E(G) = E, let mycielski graph pu(G) be the graph on vertices and edges
VuV'u({u} = {v1,v2,...,0n, ¥}, V3, ..., U, u} and EU {viv)|viv; € E} U{ viufv] €
V' i =1,u}, respectively. In Figurel, we display Mycielski graph p(Cs).

FIGURE 1. Graphs Cs and 1(Cs)

LEMMA 6. [8] For a graph G, diam(u(G)) = min(maz(2, diam{G)), 4).

LEMMA 7. [17] If is a regular caterpillar, then the closeness of the reguler cater-
pillar T, ,,, is C(Tyym) = C(Po) ((m+2)*/4) + nm(m +3) /4 .

LEMMA 8. [17] For any graph G, if diam(G) <2, then
CG) = (IV(ANIV(G) - 1) +2|E(G)]) /4.

LEMMA 9. [6] If ¢ vertez k does not belong to any unique geodesic (shortest
path) of graph G then C(G\k) = C(G) — 2C(k).
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THEOREM 10.

(¢) Forn 2 3; If G = K., the closeness (C) of u(G) with order (2n + 3) is
defined as: C((G)) = (2n® +9n +4) /2.

(b) For n > 3; If G = Kn, the closeness (C) of u(G) with order (2n +1) is
defined as: C((G)) = (Tn? +n) /4.

(¢) For n > 8: If G = C,, the closeness (C) of u(G) with order (2n +1) is
defined as: C(u(G)) = (9n? + 77n) /16..

Proo¥. For(a): Since diam(Ki,n) = 2, by Lemma 6, we have that diam (u(K1,.)) =
2. Thus. by Lemma 8, we obtain C(u(G)) = (2n +9n + 4) /2.
For(b): Proof of (b) is similar to (), and we omit it.
For(c): Let the vertex set u(G) be V(u(G)) = ViU Vo U {u}, where: Vi = {v; €
V(G).1<i<n}and Vo = {v)€V(G),1<i<n} Wehave three cases depend-
ing on the vertices of the graph u(G).
Casel. For any vertex of v; € V) in the graph u(G). Clearly, we have |NF(G)('v,~)| =
4. By the structure of the graph u(G) and n > 8, there are six paths of length 2,
(n — 3)-paths of length 3 and (n — 7)-paths of length 4. Thus,

(MCE) = () (4(27) +6(272) +(r=3) (27) + (n =1 (27))

3n2 +43n
M =76

Case2. For any vertex of v} € V; in the graph p(G). Due to dy(c)(v}) = 3, number
of paths of length 1 is 3. It is not difficult to see that there are (n + 2)-paths of
length 2 and (n — 5)-paths of length 3. Thus,

(mC) = () (3(27") +(n+2) (27%) +(n - 5) (27%))

3n2 4+ 11n
@ ==
Case3. For the vertex  in the graph (G). Clearly, d,(c)(u) = n. So, number of

paths of length 1 is n. Then, distance from the vertex u to remaining n-vertices is
2. Thus,

3) Clw) = () (271) +(m) (27) =

As a result. by summing (1), (2) and (3), we obtain C(u(G)) = (9n? + 77n) /16.
The proof is completed. O

THEOREM 11.

(@) For n 2 3; If G = K1, the vertex residual closeness (VRC) of 1(G) with
order (2n + 3) is defined as: R(u(G)) = (3n% + 10n + 4) /4.

() Forn >3 If G = K. the vertex residual closeness (VRC) of u(G) with
order (2n + 1) is defined as: R(u(G)) = (Tn? - Tn+ 4) /4.

() Forn > & If G = C,. the vertex residual closeness (VRC) of u(G) with
(3 - 273%) , if nis odd;
n(3 + 245" —2%F*) , if n is even.

order (2 4-1) is defined as: R(1(G)) = {
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PROOF. For(a): Let the vertex set u(G) be V(u(G)) = {vc} U VI U {v}U
Vo U {u}. where: let v, v, and u be center vertex of G, the vertex v in the copy
G’ and the vertex in the definition of Mycielski graph, respectively. Moreover, let
Vi = {vi € V(G)\{v.},1 i <n}and V2 = {v] € V(G')\{v(},1 <7 < n}. We
have five cases depending on the vertices of the graph p(G).
Casel. Removing the central vertex v, of the graph G from the graph u(G). If
vertex v, is removed from the graph p(G), then remaining subgraph is a regular
caterpillar T;.,,. By Lemma 7, we directly obtain

_ 3n2 4+ 10n + 4
v, = ——T——

Case2. Removing a vertex v; € V; in the graph u(G). Since the vertex v; does not
belong to any unique geodesic of x(G), then by Lemma 9, C,,, = C(u(G)) — 2C(w:).
For v; € V. we have N,(g)(vi) = {v,v;}. Then, distance from the vertex v; to
remaining 2n-vertices is 2. Thus, C(v;) = 1‘—‘{—2 Consequently, by Theorem 10.{a),
we have

G, = 4 2 2
Case3.Removing the vertex v’ in the graph u(G)\{v.}. We have four sub cases
depending on the vertices of the survival subgraph u{(G)\{v_}.
SubCasel For the central vertex of the graph G from the graph u(G)\{v.}.
Then, we have

2n2+9n+4_2(n+2) _ 2 +Tn

dn+1
4

(4) Curlve) = (20)(271) +(27%) =

SubCusc2.For a vertex v; € V) in the graph u(G)\{v.}. The vertex v; is
adjacent to only vertex v, in the survival subgraph p(G)\{v.}. It is clear that
dy (v;.u) = 3 in the survival subgraph u(G)\{v;}. Moreover, distance from the
vertex v; Lo remaining (2n — 1)-vertices is 2. Thus,

4n? +3n

() (M)Cuy(vi) = (M)(27' + (2n - (27 +27%) = 3

SubCase3.For a vertex v! € V3 in the graph u(G)\{v.}. The vertex v; is adja-
cent to vertices v, and w. It is clear that distance from the vertex v} to remaining
(2n — 1)-vertices is 2. Thus,

2
© (WCus (6 = (m2(27") + 2n - D7) = T2
SubCasel .For a vertex u € p(G)\{v.}. It is not difficult to see that,
(7) Coyl) = (@) +272 4 ()2 = 22

2

By summing (4), (5), (6) and (7), we have C,y = _ﬂmi-_?
Cased.Removing a vertex v! € V, from the graph u(G). We have five sub cases
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depending on the vertices of the survival subgraph u(G)\{v}}. Proof of this case is
similar to Case2. Then, we obtain C,; = %‘fﬂ
Case5.Removing the vertex u from the graph u(G). We have four sub cases de-
pending on the vertices of the survival subgraph u(G)\{u}.

SubCasel. For the central vertex v of the graph G in the graph p(G)\{u}. It
is clear that |N,,(g)\ (u} (vc)| = 2n, and then du(ve, v¢) = 2 in the survival subgraph
#(G\{u}. Thus,

n+1
4

SubCase2. For a vertex v; € Vj in the survival subgraph u(G)\{u}. It is easily
seen that, we obtain,

(8) Culve) = (2n)(271) +(27%) =

2n2 + 3n
4

SubCuse3. For the vertex v/ of the graph G’ in the graph p(G)\{u}. So, we
have |N,,(cy\qu} (v2)] = n. Moreover, dy, (v, v;) = 2 in the survival graph u(G)\{u}.
Since the vertex u removing the graph p(G), distance from the vertex v, to every
vertex v} € V5 is not 2. So, it clear that distance from the vertex v!. to every vertices
of V5 is 3. Thus,

(9) (R)C.(vi) = (n)(2(27") + (2 - 1)(272)) =

Sn+2
8

SubCuscq. For a vertex v] € V; in the graph u(G)\{u}. The vertex v] is
adjacent to only the vertex v,. Moreover, dy(v},v.) = 3 in the survival subgraph
#(G)\{x}. Then, it is clear that distance from the vertex v} to remaining (2n — 1)-
vertices is 2. Thus,

(10) Cu(vy) = ()27 +272 + ()(27%) =

4n? + 3n
8

By summing (8), (9). (10) and (11), we obtain C, = 4n’tlin2 1in42 .
From the definition of the vertex residual closeness (VRC) of the graph as follows,
R(IL(G)) = min{C,,,, ’ C".‘ B Cv,"s Cv_(y Cu}

(11) M)C(v) = ()2~ + (2n - 1)(272) +27%) =

o (303410044 202470 4n?411n42
=min{iz—tlntd 2nATn dn 47lntd}

For n > 3. R{(1(G)) = (3n2 + 10n + 4)/4 is obtained. Proof of (b) and (c) are
similar to Theorem?.(a) obviously, and we omit them.
The proof is completed. ]

COROLLARY 12.

(@) Forn >3, If G = K\, the normalized vertex residual closeness (NV RC)
of 1(G) with order (2n + 3) is defined as: R'(u(G)) = %;{—i—g—:—'ﬁ.

(b) Forn > 3: If G = Ky, the normalized verter residual closeness (NV RC)
of W(G) with order (2n + 1) is defined as: R'(u(G)) =1~ -.,%‘,:_—‘L.

(¢) Forn > 8: If G = C,,, the normalized vertez residual closeness (NV RC) of
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#(G) with order (2n + 1) is defined as:

S . )
R G 12‘:)71-20-77 ) 1f n s Odd;
(ll’( )) = 124 212 n 2)6-1. . .
ST — o+ if nis even.

4. Bounds on the Closeness of a Mycielski Graph

THEOREM 13. Let G be any connected graph of order n. Then, C(u(G)) <
(4n? - 1)/2 .

PROOF. It is not difficult show that, C(v;) < (2n - 2)(271) +2(272) = (2n -
1)/2. Because, we know that dg(v;,v)) = de(vi,u) = 2. So, (2n — 1)/2 is upper
bound for vertices of the graph y(G). Furthermore, C(u(G)) < (2n + 1){((2n -
1)/2) = (4n” — 1)/2 is obtained. O

THEOREM 14. Let G be any connected graph of order n. If diam(G) > 4, then
C(1(G)) > (6n® + 51n +24)/16 .
Proor. If diam(G) > 4, then we know that diam(u(G)) = 4 from the Lemma
6. Let v; he any vertex of V(G) in the graph u(G). By the structure of Mycielski
graphs and Lemma 6. there are two paths of length 1, four paths of length 2, (n—2)-
paths of length 3 and (n — 4)-paths of length 4 for the minimum value of C(v;).
So, we have C(v;) > 2(271) +4(272) + (n — 2)(27%) + (n — 4)(274) = (3n +24)/16.
Since the inequality holds for every other vertices of graph p(G), we get
C(u;) = (2n + 1)((3n + 24)/16) = (6n® + 51n + 24)/16
O

THEOREM 15. Let G be any connected graph of order n and size m. If domi-
nation number v(G) = 1, then C(1(G)) = (2n% + 2n + 3m)/2.

PROOF. By the structure of the mycielski graph 1(G) and definition of the
domination number, we get C(v;) = 2(dg(v:))(271) + 2(n — dg(v:))(272) for every
vertices of v; € V(G), where i =T, n. Similarly, we get C(v]) = (de(w:)+1)(271) +
(2n = 1 - da(v:))(272) for every vertices of v} € V/(G), where i = T,n. Finally,

C(u) = n(271) + n(2'2) = 3n/4 is obtained. Thus,

C(G)) = Z Clu) + Z C(v]) + C(u)
= Z dg(vi) +3 }:(n de(vi))+3 Z(da(v,)+l)+ 2(2'1 1-dg(v:)) + 3
(271 +2n+3m)/2 O

DEFINITION 16. [10] Let G, = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be
graphs. Let G be a join graph Gy + Go. Vertices and edges of join graph G are
V(G) = V(G1)UV(G,) and E(G) = E(G1)UE(G)U{uv|u € V(G,),v € V(G2)},

respectively.

THEOREM 17. Let G| and G, be two graphs on disjoint sets of n and s vertices,
m and p edyes, respectively. Then, C(pu(G)+G2)) = (n2+32+n+s)+$9'"—+6';+1£1.
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PROOF. Let the vertex set V(u(Gy +Ga)) = V(G1)UV(G)UV' (G ) UV (G2)U
{u}. When the C(1(G1 +G?2)) is calculated for all vertices in the graph u(G1 +G3z),
the vertices in five cases should be examined.

Casel. Let z; € V(G;), where i = T,n. The vertex z; is adjacent to dg, (z:)-
vertices of V(G ), similarly dg, (z;)-vertices of V'(G1), and whole vertices of V(G?2)
and V'(G3). There are 2(n —dg, (z:))- vertices remaining in the graph u(G) + Gz),
and then distance from vertex z; to these vertices is 2. Thus, we get

(12) D Cla:) =) (o, (i) + ) + 2Z(n de, (z:))

i=] i=1 i=1

Case2. Let y; € V(G,), where j = T,s. The proof is similar to Casel. So, we
get

(13) ZC(yJ) = Z (de, () +7) + 3 Z s — dg, (y;))

i=1

Case3. Let 2 € V/(G;). where i = T,n. The vertex z is adjacent to whole
vertices of V(Ga). dg,(z;)-vertices of V(G,) and vertex u. Moreover, distance
from vertex x! to remaining vertices is 2. Then, we get

(14) ZC(:J: ch,(m.)+s+l)+ Z(2n+s dg, (z:) - 1)

i=1 l"'l l—l
Cased. Let y; € V'(G2), where j = 1,5. The proof similar to Case3. So, we
get

1 S
(15) ZC(,, (dc,(J,) +n+1)+= Z(2s+n— de,(y;) - 1)
i=1 3_1
Case5. Let r; € V(G)). y;¢V(G2), zieV'(G1) and y;eV’(G2). By the struc-
ture of graph u(G; + G2), we have d,.(c,+c,)(u z}) = d,,(c,-;-c:,)(u ¥;) = 1 and
401 55) = dyc,+6,) (8, y;) = 2fori = T,nand j =1,5. As a result, we
get

(16) C(“) = (Tt +8)(2_1) + (Tl +S)(2-l) _ 3n +3s

By summing (12). (13) (14), (15) and (16), we have:
Cli(Gy +Gy)) = Z Clz:) + 2 Cly;) + ZI C(zi) + E Cly;) +C(u)

= Z de,(z:) +38) + 3 Z(n dg,(z:)) + Z(dca (y;) +n)

l"‘l
+§ z:l(s - dc;2 (yj)) +1 3 z:l(dal (:I:.' + 8+ l)
i= i=
L3 s
+3 ;(2n+s —dg,(z:)-1)+3 gi(da,(yj) +n+1)
= ]=
+4 zl(2s+n —de,(y;) - 1) + o3
J=
.—.(n2+s2+n+s)+$‘M4&1ﬂl O
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5. Conclusion

Network design problems arise in many important fields such as telecommuni-
cation, transportation, distribution and logistics. Since this situation, vulnerability
measures of networks are important increasingly. In this paper we investigate a
new measure which is more sensitive than other vulnerability parameters for the
reliability of a graph, vertex residual closeness, recently introduced by Dangalchev.
Myecielski networks can he modelled by Mycielski graphs. They may be use encod-
ing to transformation of a graph. Consequently, these considerations motivated us
to investigate the vulnerability of some Mycielski networks by using the closeness,
vertex residual closeness and normalized vertex residual closeness.
Acknowledgement: The authors would like to thank the referee for many help-
ful comments and suggestions, which have greatly improved the presentation of the
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