A combinatorial proof of a general
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Abstract

We give a short combinatorial proof for the solution of a general
two-term recurrence u(n, k) = u(n—1,k=1)+(an—1 +bi)u(n—-1, k),
which was discovered by Mansour et al. {4].
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1 Introduction

Let (a:)i>0 and (b;)i>0 be sequences of complex numbers where the b;’s are
distinct. Mansour et al. [4] discovered a two-term recurrence

w(n, k) = u(n — 1,k — 1) + (@an-1 + bi)u(n — 1,k), n.k 2 1, (1.1)

with houndary conditions u(n,0) = H;:O'(ai + bg) and u(0,k) = dos,
where §; ; is the Kronecker delta function. This recurrence relation is a
generalization of the recurrence formulas for the Stirling numbers and the
Lah numbers [1,3,5,8,9]. Using gencrating functions, the authors (4] derived
the following formula.

Theorem 1.1.

k n-—1
T2 (b + ai) ‘
u(n. k) = Alizo i TR (1.2)
jz=% nt:o.i;éj (bj - bi)
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Recently, Simpson [6] also presented an inductive proof of formula (1.2).
In this note, we will give a short combinatorial proof of Theorem 1.1 show-
ing its equivalence to a basic result from the theory of Schur functions.

2 A combinatorial proof of Theorem 1.1

Let S = {a;}izo U {bi}izo UV {1}. To construct a combinatorial structure
for the recurrence (1.1), we consider the set of words w = wyws---wy on
S satisfying the following conditions:

e There are exactly i letters to the left of each a;
e There arc exactly i 1's to the left of each b;.

Denote hy Uy 1. the set of such words of length n containing exactly
k 1's, and by P(w), the product of all the letters within a word w. For
example, w = 11bgagbalbsaz is a word in Ug 3 and P(w) = asarb3bs. Define
p(nk) =¥ vey, , P(w). Forawordw = wywz - wn in Uy, k, it is possible
that w, = 1 OF Wa = Gn_y OF wy, = by. This implics p(n, k) satisfics the
same recurrence relation as (1.1) along with the same boundary conditions.
It follows that p(n, k) = u(n, k).

Based on the above combinatorial interpretation of u(n, k}, we proceed
to give an expression for u(n, k). Consider the terms of u(n, k) with exactly
t a;’s, that is, a;,,@i,,...,a;, where 0 <7 <ip <--- < i, < n — 1. These
terms correspond to the words in Uy, « with exactly ¢ a;’s whose positions
are determined by the index sequence 41,12, ..., %. To obtain such words,
we need to fill the remaining n — ¢ positions by n — k — ¢ b;’s and k 1’s.
Each filling can be determined by the index sequence jy,j2,. .., Jn—k-t Of
bi's with 0 < j) < jo €+ € jnk—t L k. Therefore, the coefficient of the
terms in u(n, k) with exactly ¢ a;’s is

Bokmt(boubry .o b)) = > bbb o - (2.1)

0<j1€j2<Sin & 1Sk

where hy—g—¢(bo, b1, - . ., bx) is the complete homogencous symmetric func-
tion, see (7).

Proof of Theorem 1.1. We only need to prove that the coefficient of the

terms with exactly ¢ a;’s in (1.2) is the same as (2.1).
Itl is clear that the coefficient of the terms with exactly ¢ a;'s in (1.2)
equals

Ak
S8 T (b= bm)
>

3 7 - i<m<k Ai+k=jp
Ek bj ' = ’ USi':'¢j A = det(bi ’ J):\.j=(l (2 2)
= - (b: - bj) detbF )Y o
=0 TT (bj —b:) OSiI;IjSk ’ et(b; )i j=0
i=0.i%j
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with Ay =n -k —t,A\; = Ay =--- = A =0, by cofactor expansion along
the first column and the formula for Vandermonde’s determinant. (For a
combinatorial proof of Vandermonde’s formula, see [2].) The expression
(2.2) cquals (2.1) by applying {7, Theorem 7.15.1]. This completes the
proof. O
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