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Abstract

Let D = (V, A) be a digraph with the vertex set V' and the arc set
A. An absorbant of D is a set S C V such that for each v € V' \ S,
O(w) NS # ® where O(v) is the out-neighborhood of v. The absorbant
number of D, denoted by 7,(D), is defined as the minimum cardinality
of an absorbant of D. The generalized de Bruijn digraph Gg(n,d) is a
digraph with the vertex set V(Gg(n,d)) = {0,1,2,--- ,n — 1} and the arc
set A(Gg(n,d)) = {(z,y)ly = dz + i (mod n),0 < i < d}. In this paper,
we determine v,(Gpg(n,d)) for all d < n < 4d.

Keywords: generalized de Bruijn digraph; absorbant number; resource
location problem

1 Introduction and preliminaries

Let D = (V, A) be a digraph with the vertex set V' and the arc set A. If
(z,y) € A, then the vertex z is called a predecessor of y and y is called a
successor of z. For a vertex v € V, the out-neighborhood of v is O{v) =
{w|(v,w) € A} and the in-neighborhood of v is I(v) = {u|(u,v) € A}. The
closed out-neighborhood of v is the set O[v] = O(v) U {v} and the closed
in-neighborhood is the set I[v] = I(v) U {v}. For a set S C V, the out-
neighborhood of S is the set O(S) = |J,e¢5 O(s). O[S], I(S) and I[S] are
defined accordingly.

An absorbant of D = (V, A) isa set S C V such that for each v € V'\ S,
O(w)NS # 0, ie., I[S] = V. The absorbant number of D, denoted by
~a(D), is defined as the minimum cardinality of an absorbant of D.

Note here that a dominating set of D = (V, A) is a set T C V such that
forallve V\T, I(v)NT # 0, i.e., O[T] = V. So, from the definitions, it
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is not difficult to realize that the absorbant and also the dominating set of
D play an important role in resource location problem and facility location
problem [4]. The general facility location problem is: given a set of facility
locations and a set of customers who are served from the facilities then:

e which facilities should be used

o which customers should be served from which facilities so as to min-
imize the total cost of serving all the customers.

Imase and Itoh [3] were the first to generalize the well-known de Bruijn
network B(d, D) [1], independently followed by Reddy, Pradhan and Kuhl
[5]. The generalized de Bruijn digraph Gg(n,d) is defined by congruence
equations,

V(Ga(n,d)) ={0,1,2,-- ,n—1} = Z,
{ A(Gp(n,d)) = {(z,y)ly=dz+i (mod n),0<i<d}.

Note that if n = d?, Gp(n,d) is the de Bruijn digraph B(d, D). 1t is well-
known that the de Bruijn graph is a highly reliable and efficient network
which was proposed as suitable processor interconnection network for VLSI
implementation [7]. It was verified later by Xu et al. [8] that directed de
Bruijn networks are suitable model for interconnection networks in parallel
and distributed processing systems. However, one of the disadvantages of
de Bruijn digraphs B(d, D) is the restriction on the number of vertices
dP. This phenomenon can be overcome by Gp(n,d). As a matter of fact,
Gp(n,d) retains all the properties of the de Bruijn digraphs and has no
restrictions on the number of vertices [2]. So determining the connectivity,
diameter and the absorbant number of Gg(n,d) is of relevant interest and
important. Throughout this paper, we assume that n > d > 2 in Gg(n,d).
In [6], the authors Shan et al. studied the absorbant and several interesting
results were obtained. The following theorem gives the upper and lower
bound of v4(G5(n, d)).

Theorem 1. (6] [F2] < 7(Gs(n,d)) < [§].

Also, in the paper, they proposed five open problems, three of them are
on the absorbant number of Gg(n,d).

1. Find sufficient conditions for the absorbant number of Gg(n,d) to
be the lower bound [n/(d +1)}.

2. Is it true that v,(Gg(8k — 4,4k — 3)) = 3 for k > 27

3. Is it true that v,(Gp(6k,2k — 1)) = 4 for k > 27

In this paper, we solve the second and third problems. In fact, we obtain
a more general result by showing

(a) 'Ya(GB(2d+1,d)))={ 2 ifd#1 (mod3),

3 otherwise,
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ifd#1 (mod 4),
otherwise,

ifd#1 (mod 4),
otherwise,

ifd =2,4,5,
otherwise,

ifd=0 d 2),
(e) 1a(GB(3d + 3,d))) = { 4 ;t;herwise.(mO )

Therefore, combine with Theorem 1, we have determined v,(Gg(n, d))
for each d < n < 4d.

(0) 1(Gp(2d +2,d))) =

(€) 7%(GB(3d +1,d)))

(d) 7(GB(3d + 2,d)))

{
{
{

W s B W W

2 The main results

For convenience, we shall use [a, b] to denote the set of non-negative integers
{a,a+1,--- ,b—1,b} where a < b are non-negative integers and the integers
are taking modulo n. For example, in Zg, [7,9] = [7,1] denotes {7,0,1}
and [4, 6] denotes {4, 5,6}.

Lemma 2. Let n and d be positive integers with 2 < d < n, and let
ged(n,d) = 1. For a subset S of Z,, if
Zo\(Jls - d+1,s)) C {ds]s € S} (2.1)
s€ES

holds, then S is an absorbant of Gg(n,d).

Proof. Since ged(n,d) = 1, we have Z, = {ds|s € S}u{ds'|s' € Z,,\ S}.
Therefore, if S is a subset of Z,, such that

Zn\(|Jls —d+1,3]) C {ds|s € S}
sE€ES

then for each z € Z,\ S, dz € [s —d + 1, 5] for some s € S. This implies
that (z, s) is an arc of Gp(n,d) and thus S is an absorbant of Gg(n,d). B

Example 1. Let S = {1,6} be a subset of V(Gp(8,3)) = Zs. Since
Zg\ ({7,0,1} U {4,5,6}) = {2,3} C {ds|s € S} = {83,2}, S is an absorbant
of Gp(8,3) by Lemma 2. ]

If fact, the reverse statement of Lemma 2 is also true.
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Lemma 3. Let n and d be positive integers with 2 < d < n, and let
ged(n,d) = 1. If a subset S of Z, is an absorbant of Gp(n, d) then

Za\ (| Jls—d+1,5]) C {dss € S}. (2.2)
s€ES

Proof. Since ged(n,d) = 1, we have Z, = {ds|s € S}U{ds'|s' € Z,\ S5}
Since S is an absorbant, for each z € Z, \ S, dz € [s —d + 1,5] for
some s € S. Hence {dz|z € Z, \ S} C U,esls — d + 1,s]. Therefore,
Za\ (U,esls —d+1,s]) € {ds|s € S}. |

In what follows, we consider Gg(n,d) and let Ts = Z, \ (U,esls — 2+
1, s]) for brevity. Now, we consider the case ged(n,d) > 1. For convenience,
let ged(n,d) = A

Lemma 4. Let n and d be positive integers with 2 < d < n and let A > 1.
For a subset S of Z,, define T = {t:t € Ts and Ajt}. If

T% C {ds|s € S} (2.3)
and

U {zr:2€Z,,dz=t (modn)}CS (2.4)

teTy

hold, then S is an absorbant of Gg(n,d). Furthermore,
AlTs| < |S]. (2.5)

Proof. Let S be a subset of Z, satisfying (2.3) and (2.4). Since A > 1,
{dz|z € Z,} = {ds|s € S}uU{ds'|s' € Z,\ S} = {t:t € Z, and At} =
TiU{t:t € (U,esls — d+1,3]),Alt}}. Since (2.4) holds, Ts N {ds’ : &' €
Zn, \ S} = 0. Since (2.3) holds, {ds'|s’ € Z,\ S} C{t:t € (Usesls —d +
1,s]), Alt}}. This implies that for each ' € Z,\ S, ds’ € [s" —d+1,s"] for
some s” € S. Hence (s,s"”) € A(Gg(n,d)) and S is an absorbant.

For every t € T}, there exists a set X = {z/,z' + §,2" +2(}),--- ,z' +
(A—1)3} where dz’ = t (mod n), such that Vz € X, dz = ¢ (mod n).
Since (2.4) holds, A|Tg| < |SI. ]

Example 2. Let S = {3,10,17} be a subset of V(Gp(21,6)). Since
% = {18} C {ds|s € S} = {18}, (2.3) holds. Since U,er;{z: 2 € Zn,dz =
t (mod n)} C S, (2.4) holds. Therefore, S is an absorbant by Lemma 4. B

Lemma 5. Let n and d be positive integers with 2 < d < n and let A > 1.
If a subset S of Z, is an absorbant of Gp(n,d), then

T C {ds|s € S} (2.6)
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and

U {z:z€Z,,dr=t (modn)}CS, (2.7

teTs
where Tg = {t : t € Ts and A|t}.

Proof. Let S be an absorbant of Gp(n,d). Suppose (2.7) is false. Hence
there exist to € T§ and 29 € Z, \ S such that dzo = to (mod n). This
implies that dzo € Z,\J,esls —d + 1,s]. Therefore S is not an absorbant,
a contradiction. Furthermore, we have T§ N {ds’ : s' € Z,\ S} = 0.

Since S is an absorbant, (z,s’) € A(Gg(n,d)), Vz € Z, \ S and for
some s’ € S. Therefore, dz € J,cg[s —d+1,5], Vz € Z,\ S. Since A > 1,
{dz|z € Z,} = {ds|s € S}uU {ds|s' € Z, \ S} = {t|t € Z, and )|t} =
TsU{t : t € (Usesls —d + 1,5]),M|t}}. Since {ds'|s’ € Z, \ S} C {¢:
t € (Usesls —d+1,8]),Alt} and Tgn{ds' : ' € Z, \ S} = 0, we have
T C {ds|s € S} and (2.6) holds. ]

Now, we are ready to prove our main results. First, we consider the
second problem. Instead of finding v,(Gp(8k — 4,4k — 3)) only, we prove
a more general theorem.

2 ifd#1 (mod 4),

Theorem 6. v,(Gp(2d + 2,d)) = { 3  otherwise

Proof. To prove the first part, it suffices to construct an absorbant S
with cardinality 2. Let § = {|£],n— |%] —1}. We claim that S is an
absorbant of Gg(2d + 2,d) for d # 1 (mod 4). According to the congruent
classes modulo 4, we split the proof into 3 cases.

Case 1. d = 0 (mod4). Let d = 4p. Hencen = 8 +2 and S =
{2p,6p +1}. We have A = 2 and Tg = {6p+ 2} C {ds|s € S} = {6p + 2}.
By Lemma 4, we have the proof.

Case 2. d = 2 (mod4). Let d = 4p+ 2. Hencen = 8p + 6 and
S ={2p+1,6p+4}. Therefore, A\ =2 and T§ = {2p + 2} C {ds|]s € S} =
{2p + 2}. By Lemma 4, we have the proof.

Case 3. d =3 (mod4). Let d =4p+3. Hencen =8p+8and § =
{2p+1,6p+6}. Weget Ts = {2p+2,2p+3} C {ds|s € S} = {2p+3,2p+2}.
By Lemma 2, we have the proof.

Now, we are left with the case d = 1 (mod 4). Let d = 4p + 1 where
p > 1thenn =8p+4and A = 1. Suppose there exists an absorbant S with
cardinality 2. We claim that S does not exist. By Lemma 3, we may let
S = {z,z+d} or S = {x,z+d+1}. Otherwise, |Ts| > |S]|, a contradiction.

Case 1. S = {z,z +d}. Hence we have Ts = {z +d+ 1,z +d +2} C
{ds|s € S} = {dz,dx + 1}. Therefore,

dz=z+d+1 (modn),
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r(dp+1)=z+(4p+1)+1 (modn),
4zp = 4p+2 (mod 8p +4), a contradiction.

Case 2. S = {z,z+d+1}. This implies that Ts = {z+ 1,z +d+2} C
{ds|s € §} = {dz,dz +d +1}. If dz =z + 1, then 4pz =1 (mod 8p +4),
a contradiction. If dz =  + d + 2, then 4pz = 4p + 3 (mod 8p + 4), a
contradiction.

Since (2.2) fails to hold, S is not an absorbant by Lemma 3. ]

3 for evend,

Theorem 7. 7,(Gp(3d + 3,d))) = { 4 otherwise.

Proof. By Theorem 1, we have 3 < 7,(GB(3d + 3,d)) < 4. If there exists
an absorbant S with cardinality 3, then we complete the proof of the first
part where d is even. Let S = {d/2,(3d/2) + 1,(5d/2) + 2}. According to
d modulo 6, we have 3 cases to consider.

Case 1. d = 2 (mod 6). Let d = 6p+2. Hence n = 18p +9 and
S={3p+1,9p+4,15p+ 7}. We have Ts = {3p+2,9p + 5,15p + 8} C
{ds|s € S} = {3p + 2,15p + 8,9p + 5}. By Lemma 2, S is an absorbant.

Case 2. d = 4 (mod 6). Let d = 6p+ 4. Hence n = 18p + 15 and
S ={3p+2,9p+7,15p+ 12}. We have Ts = {3p+3,9p + 8,15p + 13} C
{ds|s € S} = {9p + 8,15p + 13,3p + 3}. By Lemma 2, S is an absorbant.

Case 3. d =0 (mod 6). Let d = 6p. Hencen = 18p+3 and S =
{3p,9p +1,15p + 2}. Therefore, A = 3 and T = {15p+ 3} C {ds|s € S} =
{15p + 3}. By Lemma 4, S is an absorbant.

For the second part, according to the congruent classes modulo 6, there
are also 3 cases to consider.

Case 1. d = 3 (mod 6). Let d = 6p + 3. Hence n = 18p + 12 and
A = 3. By Lemma 5, we may let S = {z,z+d + 1,z + 2d + 2}. Hence
Ts={z+1,z+d+2,z+2d+3}.

Case 1-1. z = 0 (mod 3). Hence Tg = {z
dr = z + 2d + 3 (mod n), 6pz + 2z — 12p - 6
contradiction.

Case 1-2. £ = 1 (mod 3). Hence Tg = {z + d + 2}. Therefore, dz =
z+d+2 (mod n), 6pz — 6p =5 — 2z (mod 18p + 12), a contradiction.

Case 1-3. £ = 2 (mod 3). Hence Tg = {z + 1}. Therefore, dz =z +1
(mod n), 6pz +2p =1 (mod 18p + 12), a contradiction.

Since (2.6) fails to hold, S is not an absorbant by Lemma 5.

Case 2. d =1 (mod 6). Let d =6p+1, thenn = 18p+6 and A = 1.
By Lemma 3, we have 4 subcases to consider.

Case 2-1. S = {z,z + d,z + 2d}. Hence we have Ts = {z+2d+1,z+
2d+2,z+2d+3} C {ds|s € S} = {dz,dz+1,dz+2}. But dz =z+2d+1
(mod n), 6pz = 12p + 3 (mod n = 12p + 6), a contradiction.

+ 2d + 3}. Therefore,
= 3 (mod 18p + 12), a
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Case 2-2. S = {z,z +d,z + 2d + 1}. Hence we have Ts = {z + d +
l,z+2d+ 2,z + 2d + 3} C {ds|s € S} = {dz,dz + 1,dz + d + 2}. Since
dz = z + 2d + 2 (mod n) has no solutions, it is a contradiction.

Case 2-3. S = {z,z +d,z + 2d + 2}. Hence we have Ts = {z+d +
L,z+d+2,z+2d+ 3} C {ds|s € S} = {dz,dz + 1,dz + 2d + 2}. Since
dz = z+d+ 1 (mod n), we have 6pz = 6p+ 2 (modn = 12p + 6), a
contradiction.

Case 2-4. S={z,z+d+1,z+2d+2}. Wehave Ts = {z+ 1,z +d+
2,z+2d+3} C {ds|s € S} = {dz,dz +d+1,dz+2d + 2} (mod n). By all
of the three congruences dr =z + 1, dr=z+d+1and dz =dz +2d + 2
(mod n) fail to hold, it is a contradiction.

Since (2.2) fails to hold, S is not an absorbant by Lemma 3.

For the last case d = 5 (mod 6), let d = 6p+5, and we have n = 18p--18
and A = 1. By Lemma 3, there are 4 subcases to consider.

Case 3-1. S = {z,z+d,z+2d}. Hence Ts = {z+2d+1,z+2d+ 2,z +
2d + 3} C {ds|s € S} = {dz,dx + 6p + 7,dz + 12p + 14}, a contradiction.

Case 3-2. S={z,z+d,z+2d+1}. Hence Ts ={z+d+1,z+2d +
2,z +2d + 3} C {ds|s € S} = {dz,dz + 6p + 7,dz + 1}, a contradiction.

Case 3-3. S = {z,z+d,z+2d+2}. Hence Ts = {z+d+1,z+d+2,z+
2d + 3} C {ds|s € S} = {dz,dz + 6p + 7,dz + 6p — 30}, a contradiction.

Case 3-4. S = {r,z+d+1,z+2d+2}. Hence Ts = {z+1,z+d+2,z+
2d + 3} C {ds|s € S} = {dz,dx + 12p + 12,dx + 6p — 30}, a contradiction.

Since (2.2) fails to hold, S is not an absorbant by Lemma 3 and we
complete the proof. 1

2 ford#1 (mod 3),

Theorem 8. v,(Gp(2d + 1,d))) = { 3 otherwise.

Proof. Clearly A = 1. By Theorem 1, we have 2 < v,(Gg(2d + 1,d)) <
3. For the first part, it suffices to construct an absorbant S with cardinality
2.

Case 1. d = 0 (mod 6). Clearly if d = 6p then n = 12p + 1. Let
S = {4p,10p}. We have Ts = {10p + 1} C {dz|z € S} = {10p+1,7p + 1}.

Case 2. d = 2 (mod 6). Clearly if d = 6p + 2 then n = 12p + 5. Let
S = {2p,8p+3}. We have Ts = {2p+1} C {dz|z € S} = {11p+5,2p+1}.

Case 3. d = 3 (mod 6). Clearly if d = 6p + 3 then n = 12p + 7. Let
S = {2p+1,8p+4}. Wehave Ts = {8p+5} C {dz|xr € S} = {5p+3,8p+5}.

Case 4. d = 5 (mod 6). Let d = 6p + 5 then n = 12p + 11 and
S = {4p+3,10p+9}. We have Ts = {4p+4} C {dz|z € S} = {4p+4,p+1}.

For the second part, if S is an absorbant then |Ts| < |S| by Lemma 3.
Hence we have two cases to consider.

Case 1. S={z,2+d-1}. Hence Ts = {z + d,z + d+ 1}.
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Case 1-1. d = 6p+ 1. Hence n = 12p +3. We have Ts = {z +d,z +
d+ 1} C {ds|s € S} = {dz,dz — 3p}, a contradiction.

Case 1-2. d = 6p + 4. Hence n = 12p+ 9. We have Ts = {z+d,z+
d + 1} C {ds|s € S} = {dz,dz + 3p + 3}, a contradiction.

Case 2. S = {z,z+d}. Hence Ts ={z+d+1} ={z +3p+ 2}. Let
d = 3p+1, thenn = 6p+3. Oneget dz = (3p+1)z = (z+3p+2)+(3px—3p—
2) # (z+3p+2) (mod n) and (z+d)d = (z+3p+2)+(9p*+3pz+3p—1) #
(z + 3p+2) (mod n). Hence (2.2) fails to hold. By Lemma 3, S is not an
absorbant. ]

3 ford#1 (mod 4),

Theorem 9. 7,(Gp(3d + 1,d))) = { 4 otherwise.

Proof. Clearly A = 1. By Theorem 1, it suffices to construct an absorbant
S with cardinality 3 to prove the first part. By taking the congruent classes
modulo 4, we have 3 cases to consider.

Case 1. d = 0 (mod 4). Let d = 4p and S = {2p,6p,10p}. Hence
n=12+1and Ts = {10p + 1}. Since (6p)(4p) = 10p +1 (mod n),
Ts € {(6p)d}.

Case 2. d =2 (mod 4). Let d = 4p+2and S = {2p+1,6p+3, 10p+5}.
Hence n = 12p + 7 and Ts = {10p + 6}. Since (6p+ 3)(4p + 2) = 24p® +
24p + 12 = 2p(12p + 7) + (10p + 6) = 10p+ 6 (mod n), Ts C {(6p + 3)d}.

Case 3. d =3 (mod 4). Letd =4p+3and S = {p,5p + 4,9 + 7}.
Hence n = 12p + 10 and Ts = {p + 1}. Since (9p+ 7)(4p+3) = (3p+
2)(12p + 10) + (p+ 1) = p+1 (mod n), Ts € {(9p + 7)d}.

In all the 3 cases, (2.1) hold, S is an absorbant by Lemma 2.

Now we show the second part. Let d = 4p + 1 where p > 2 then
n =12p+4 and A = 1. Suppose S is an absorbant with cardinality 3. We
will claim S doesn’t exist. By Lemma 3, we have |Ts| < |S| = 3. Withourt
loss of generality, we may let S be one of the following sets {z,z+d,z+2d},
{z,z+d-1,z+2d-1}, {z,z+d+ 1,z +2d}, {z,z+d -1,z +2d -2},
{z,z+d + 1,z + 2d — 1}. Thus Ts corresponds to {z + 2d + 1}, {=z +
2d,z+2d+1}, {z+ 1,z +2d+1}, {z+2d - 1,2+ 2d,z + 2d + 1} and
{z + 1,z + 2d,z + 2d + 1}, respectively. For each case, t+2d+1 € Ts
and £+ 2d + 1 = z + 3 (mod 4). On the other hand, {ds (mod 4)|s €
{a:,a:+d—1,m+d,:z:+d+l,z+2d—2,a:+2d—1,:1:+2d}} = {z,z+1,z+2}
(mod 4). Hence, z +2d + 1 € TsZ{ds|s € S}. Therefore equation (2.2)
fails to hold and S is not an absorbant by Lemma 3. n

3, ifd=24,5,
4, otherwise.

Theorem 10. 7,(Gp(3d + 2,d)) = {

Proof. Ifd=2let S={0,2,6}. Ifd=4,let S={3,7,10}. Ifd =35,
let S = {3,8,13}. These 3 cases can be checked directly.



For the second part, we split d into two parts: odd and even. First, d
is odd. Hence A = 1. Suppose S is an absorbant with cardinality 3. By
Lemma 3 we have 4 cases to consider. They are S; = {z,z + d,z + 2d},
Sy ={z,z+d+1,z+2d+2}, S3 = {r,z+d—-1,x+2d} and Sy =
{z,z + d,z + 2d — 1}. Therefore, the corresponding Ts are as follows:
Ts, ={z+2d+1,z+2d+2},Ts, ={z+1,z+d+2},Ts, ={z+d,z+
2d+ 1,z +2d+2} and Ts, = {z + 2d,z + 2d + 1,z + 2d + 2}. According
to d modulo 6, we have 3 cases to consider. We claim all of them are all
impossible by (2.2) fails to hold.

Case 1. d=1 (mod 6). Let d = 6p+ 1. Hence

Ts,Z{ds|s € S1} = {dz,dz + 2p + 1,dz + 4p + 2},

Ts,Z{ds|s € S2} = {dz,dz +d+2p+1,dzc + 2d + 4p + 2},
Ts,Z{ds|s € S3} = {dz,dz + 2p — 2,dz + 4p + 2},
Ts,Z{ds|s € S4} = {dz,dz +2p + 1,dz — 2p + 1}.

Case 2. d =3 (mod 6). Let d =6p+ 3. Hence

Ts,Z{ds|s € S} = {dz,dz + 14p +9,dz + 10p + 7},

Ts,Z{ds|s € Sa} = {dz,dz + d+ 14p+ 9,dz + 2d + 10p + 7},
Ts,Z{ds|s € S3} = {dz,dz + 8p + 6,dz + 10p + 7},
Ts,Z{ds|s € S4} = {dz,dz + 14p + 9,dz + 8p — 7}.

Case 3. d =5 (mod 6). Let d = 6p+ 5 where p > 0. Hence

Ts,Z{ds|s € 51} = {dz,dz + 8p + 8,dz + 16p + 16},

Ts,Z{ds|s € S} = {dz,dz + d + 8p + 8,dx + 2d + 16p + 16},
Ts,Z{ds|s € S3} = {dz,dz + 8p + 6,dz + 10p + 7},
Ts,Z{ds|s € S4} = {dz,dz + 14p+ 9,dz + 8p — 7}.

Since (2.2) does not hold, we have v,(Gp(3d + 2,d)) > |S|+1=4.

Now, it is left to consider the case: d is even. Let d > 6, then n = 3d+2
and A = 2. Suppose S = {z,y, 2} is an absorbant of Gg(3d + 2,d). We
claim S does not exist. According to the number of elements in Tg, we
have 3 cases to consider.

Case 1. |Tg| = 0. By definition, Ts = Z,\([z —d + 1,z]U[y — d + 1,3]U
[z—d+1,z]). Ts can not contain two consecutive integers, otherwise Ts
contains at least one even integer and this implies [Tg| > 1, a contradic-
tion. Therefore S has two possibilities: {z,z +d + 1,z + 2d + 1} and
{z,z +d,z + 2d + 1}. The corresponding Ts are {z + 1,z + 2d + 2} and
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{z 4+ d+ 1,7+ 2d + 2}, respectively. In both of the two cases, Ts contains
exactly one even integer by d is even. Hence [Tg| > 1, a contradiction.

Case 2. [T4| = 1. Suppose T = {to}. Since A\ = 2, there exist two
integers, = and z + %, equivalence to to (mod n). Hence {z,z + 2y cS.
Without loss of generality we may let [z + 1,z + § ~ d] C O(y) such that
§={z,z+3y}. By (21)

Tb=ZAUJB—d+Lﬂ%=h+g+hx—%ﬂﬂ=g+L
3€ES

Since T} is the subset of even integer in Ts, we have |Ts| = g +1< 3 and
d < 4, a contradiction.

Case 3. |T%| > 2. This implies that |S| > 4 by Lemma 5, a contradiction.

[ |

3 Conclusion
Observe that if [737] = [5], then 74(G(n,d)) = [§]. Therefore, we have

2 ifd+2<n<2d,d>2
7a(Ga(n,d))) =4 3 if2d+3<n<3d,d>3; and
4 if3d+4<n<4d,d>4

So, combine with Theorem 2 - 5, we have determined v,(Gg(n, d)) for each

d<n<dd.
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