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Abstract

The noncrossing partitions with fixed points were introduced and stud-
ied in the literature. In this paper, as their continuations, the expressions of
Sn(xr, O, X2, 07, Xeues, O7#P73) and fu(xy, X2, OF, Xue3, 0P, Xpupess
0m-7-#-4) are given, respectively. Moreover, the noncrossing partitions with
fixed points having specific property 2 are introduced, and the number of
such noncrossing partitions is described through a function of several vari-
ables: £ (x1, Xz, ..., Xu). Besides, the counting formulas of £ (x,, 0')
and £, (x1, x2, 02) are obtained for various properties 2.
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1 Introduction

A partition 7 = By /B3/ -+ - /B, of a totally ordered set X is called a noncrossing
partition (n.c.p.) if and only if there do not exist four elements a < b < ¢ < d of
X'such thata, c € B; and b, d € Bj, where i # j. The set of all n.c.p. of X and
the set of all n.c.p. of X that contain exactly m blocks By, B,, ..., B, are denoted
by NC(X) and NC(X, m), respectively. If |X| = n, we can equivalently deal with
[n] = {1, 2, ..., n} instead of X, and in this case we will use the notations NC,
and NC,(m) respectively.

Many authors have worked on n.c.p. (see e.g. [5, 6]). It is well known that
INC,| equals the Catalan number C, = # zn”), and |[NC,,(m)| equals the Narayana
number N(n, m) = %(",‘l)(m_,) Furthermore, an interesting class of n.c.p. was

introduced in [1): 7 € NC(X) is called a noncrossing partition with fixed points

n
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the elements of a given set A C X if and only if every block of & contains exactly
one element of A. The set of all these n.c.p. is denoted by NC(X, A).

Since the distribution of the elements of A in X determines the cardinality of
NC(X, A), itis more convenient to restrict the problem to the following equivalent
case: let A = [m] and X = [m] U Y, where the elements of Y are distributed in
the intervals (i, i+ 1) (i = 1, 2, ..., m—=1) and (m,+00), so that X N (i, i +
D=X(G=1,2, .., m—1)and X N (m +o0) = X,. From now on, without
loss of generality, we may assume that for every n.c.p. 7 = By/Bz/--+[Bn €
NC(X, [m]), we have i € B; for every i € [m). A function f, of m variables is
defined by fn(x1, X2, ..., Xm) = INC(X, [m])], where x; = |X;| (¥ i € [m]).

For convenience, let f,,,(y',', . L‘) = fuOlts oo s Y1y oo s Yk oo s Yi)» Where

e et e
h A
1<k<m, Z'j;, li=mand0<l;<m(j=1, 2, ..., k). For example,

fs(12, 6%, 3%, 4% = f5(12, 6, ) = fi(1, 1, 6, 4, 4, 4).

In [1], Sapounakis and Tsikouras claimed that it is difficult to obtain an explicit
formula of f,(xi, X2, ..., xm). But for some special cases, the expressions were
obtained in [1, 2]: for every m, x,, x; € N withm > 2,

-1
falr, 0" =(x' - )
Falins 32, O72) =(x| +,’tnz+m)_(xn +':1n— 1)_(x2 +nr:1— 1) (. 2.

For every m, x|, X542 € N withm > 4 and every p € N* with2p0 <m - 2,

m m m

+

p+l m-6
x1+k-1 x,,,,2+m—k—l
(o e

6=2 k=6

In addition, Weng and Liu [3] gave the expressions of fi(x1, x2, X3, 07-3) and
Ja(xy, x2, 0P, X543, 0m-#-3) (2p < m—3). As their continuations, the recurrences
of fu(x1, 04, Xya2, 0P, Xpuuss, " FPH (1 < p<p<m-p-p-3)and
fm(xh X2, (y‘» Xy43, 0, Xp+u+ds 0m-p-u-4) (l SpuLpEm-p—p- 4) are
obtained in Section 2.

It is well known that there are various kinds of partitions having specific prop-
erties in classic combinatorics. It is natural to consider the noncrossing partitions
with fixed points having specific properties. Let NC(X, [m], ) denote the set
of all nc.p. # = By/By/ - /By in NC(X, [m]) such that By, ..., Bn satisfy
property &. Analogously, we define f,;? 1, X2, . s Xm) = INC(X, [m}, P),
where x; = |X;| (i € [m]). For instance, the noncrossing matching with fixed points
introduced in [4] is one kind of noncrossing partition with fixed points having a
specific property &, where & prescribes that |B;| = 2 for every i € [m].
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In Section 3, the counting formulas of £ (x;, 0"~!) and £2(x,, x, 0"~2) are
obtained for various properties 9, such as |B;| = I (mod k) (¥ i € [m]), |B| # |B;|
Vi, jelm), i#j),|Blzk(Vie[m]), Bl<k(Mie[m]),|Bl+k(Vie [mf)
etc., where I, k are nonnegative integers.

2 The expressions of f.(xi, 0¥, X2, 0°, X403, 0™ *#%-3) and
fm(xl, X2, Ou, Xy+3s Ooa Xo+u+ds Om-p—;l—4)

In this section, the recurrences of fu(x1, 0%, xyu2, 0P, Xp4y43, 0" #P73) and
Sm(xX1, X2, 04, X443, 0P, Xpyusq, OMPH~4) are obtained, respectively.

Note that f,, is well defined and fi,(x1, ..., Xpn) = fuOV1, ... » Ym), Wwhenever
the sequence (y), ..., ym) Or its reverse is a cyclic permutation of (x;, ..., Xp).

Therefore, for frn(x1, 04, Xui2, 0°, Xpips3, O™#P3), the variants u, p can be
restricted as 1 < u < p < m - p —u - 3. Similarly, suppose that 1 < u < p <

m=p—u—4afor fu(x;, x2, 0°, X443, 0P, Xpiysa, 0" PH%),
Theorem 2.1 Foreverym, p, ue Nwithl Su<p<m-p-pu-3,
fm(xl, (y‘» Xp+2, (}0: Xo+u+3s 0m—y-p-3)

X1
= me-l(a, 0! X2, 0, Xpuyss, O HP3)
a=0
x; Kpe2=l B
+ Z Z me-p—l(a"'y’ yv Xp+u+3s Om-”_p‘?') ‘fy(ﬁ‘)’, (yl—l)
a=0 B=0 y=0
X Apepe3=l o
D0 2y DS ®@=0 07 xua ) fopyr(a 46, O7HD)
a=0 =0 6=0
Xy Xus2=1 Xyapez =1

* Z Z Z Zﬁ‘,iﬂm(so—my, 0°)

a=0 B=0 =0 ¥=0 =0
Sr-p-u-2@ +6, 0" H P £ (B —y, 04N,
Proof. Clearly, foreverym, p, ye Nwithl Sp<p<m-p—pu-3,
SuCxt, 0, Xui2, O, Xpuua3, O0"#7P3) = INC(X, [m))|
with X = [m] U (Uieq1, us2, prsrXi), Xi = X N (i, i + 1) and x; = |X;], where
ie{l, u+2, p+u+3}.
We partition the set NC(X, [m]) into sets A,, B, By Ca,p0and Dy g 4 . 0
(with @, B, v, ¢, 8 € N), which are defined as follows:;

Each set A, consists of all x € NC(X, [m]) with the property that [B, N X | =
X1 —@, BN Xy42| = 0,1B2 N Xpyu43] = 0. Therefore, 0 < @ < x; and

Aol = fin-1 (@, 0! Xue2s 0, Xo+p+3s 0m-y—p—3)'
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Each set B, g,y consists of all # € NC(X, [m]) such that |B, N X| = x; —a,
1Ba N Xysal = Xus2 = B Iy € Xpua |y > max{x € B}l = 7, |Ba N Xpppa3l = 0.
HencedlSG5x1,0575B<x,,+2and
|Bq, B yl = fm-y—l(a +v, 0P, Xo+p+3» 0'"_”-”-3) . f;l(ﬂ iy £ Ou-l)-

Each set Cg, ,, ¢ consists of all 7 € NC(X, [m]) such that |B, N Xil=x—-a,
B2 0 X2 = 0, 1By 0 Xyl = Xpauas = 0, Y € X3 |y > maxix € Ba})l = 6.
Hence6$ a<x,0< 55 ¥ < Xpeu+3 and
(Ca. .81 = Forus1(@ = 6, 01, usz, 0°) - frnopoyoa(er +6, OMPH73),

Each set Dq, g, y, 4, o consists of all x € NC(X, [m)) such that |B;NX,| = x;—a,
1B2NX42] = Xus2=B, [y € Xus2 |y > max{x € B}l = 7,1B2NXpipa3l = Xprus3—¢ps
iy € )’Z,,,,,”; |'y > max{x € Bo}}l = 6. Hence 0 < @ £ x1,0 <y £ 8 < xua2,
0<6<¢ < X443 and

|Da, B. Y., ol = f;wl (p—-0+7y, 0°)- fm-p-y-Z(a +86, Om—y—p—J) . f;:(,B il 0“—1)~
By combining the above cases, we have

x_ fu2=l B

Su(x1, O, Xu+2s o, Xo+p+3s 0m-p-4) = i |Acl + Z Z Z |Ba, g, 41

a=0 a=0 p=0 y=0

x1_ Kpreasd=t xi X2~ Gu3=l B

S IDI SIS I D WH P

a=0 ¢=0 68=0 a=0 B=0 =0 y=08=0
Consequently, the desired result is obtained. o

Theorem 2.2 Foreverym, p, ye Nwithl Suy<psm-p-u-4,

-p-pu—4
fm(xh X2, UJ) Xu+3, 00, Xp+p+ds Om o )
X X2

= szm-l(a+ m U‘: Xu+3s (y)’ Xp+u+ds om-;l—p—4)

a=0 n=0

X x xa-l g

* ZZ Z Zﬂnl(']*‘ﬁ—‘}', 0"« fn-u-2(@ + 7, 0°, Xpspsas nHoP4y

a=0 p=0 B=0 y=0

x1 X2 Xpepea=l @

+ ZZ Z Zf;)+p+2(n+‘p-9' o, Xp+3 0"

a=0 n=0 =0 6=0
'fm—y-p-3(a +4, Om—‘”-p—“)

Xy X2 Xusd— 1 Xpepsd =

+ ZZZ Z]iiﬁm(wﬁ—y,o")

a=07=0 B=0 =0 y=0 8=0
For@ 49 =0, ) fryop-s(@ +6, 07,
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Proof. Note that f,(xi, x2, 0%, xu.3, 0P, X,uyea, O P#%) = INC(X, [m])|
with X = [m) U (Uiel1, 2, o3, praest XDy X = X O (i, i + 1) and x; = |X,|, where
i€fl,2, u+3, p+u+ 1 ence the set NC(X, [m]) can be partitioned into sets
Ad, 9o Bap gy Ca. ne6and Dy ppy oo (Withe, 7, B8, v, ¢, 8 € N), which
are deﬁneg as follows:

Each set A,, , consists of all # € NC(X, [m]) such that |B, N Xy| = x; - a,
|BoNXs| = xp — 1, |Ba ﬂXF+3| =|B, ﬂX”+p...4| =0. Thus0<a<x,0< n<x
and IAa, r}l = fu-1(@ + n, ¢, Xyua3s 0, Xo+p+4, Om-/l—p-"v).

Each set By, ,, g, , consists of all 7 € NC(X, [m]) such that |[B, N X)| = x; — e,
1B N Xl = X2 = 0, B2 0 Xyu3| = Xua3 =B, 3 € Ko |y > max{x € Byll| = v,
B2 N Xyspsal = 0. Hence 0 < @ < x,0 < < x2,0 < ¥ < B < x,03 and
|Ba, By = Sy +B =7y, OF)- fm-p-z(a' +7v, 0°, Xp+p+as om#pd),

éach set Cq, 5. o, o consists of all ¥ € NC(X, [m]) such that|B, N X;| = x; —a,
|BaNXs| = x3—1, IBZnXp+3| =0,|B; nxy+p+4| = Xyepra—and |{y € Xp+p+4 ly>
max{x € B2}}] = 6. Consequently, 0 <a £ x,0<7<x,050<¢< Xuspsds
and |C,, n @ ol = f;z+y+2(77 +9-6, 0¥, x3, 0°)- fm-y- -3(a + 0, 0m-ﬂ—p-4).

Each set D, y, g, 4, », o COnsists of aﬁ m € NC(X, [m]) such that |B, N X;| =
X1 =@, |BaNXo| = x3-1, 1B2NXya3] = Xue3 =B, [y € Xyu3 |y > max{x € Byl}| = y,
|B2 N Xp+p+4l = Xpsp+d — P and |{y € Xyspra |y > max{x € Ba})| = 6. Thus
0<a<x,0<7<x00<y<SB<x:1,0 <0 <9< Xuup41, 1Da, 5,5, 0. 6l
= furt(n+B -7y, O4)- .f;)-!-l(y +p-6, 0°): fm—p—p-3(a' + 8, 0m—;4—p—4).

Similarly as in Theorem 2.1, the result follows. o

3 Noncrossing partitions with fixed points having property &

Let P[m; n; 2] denote the number of positive integer solutions of the equation
h+n+---+t, =n,wheret, ..., t, satisfy property 2 ([7, 8]). To begin with,
a useful lemma for characterizing f,,? (x1, 0™') is obtained.

Lemma 3.1 For every m € N*, f,,?(xl, 0™Yy = Plm; x; + m; ).

Proof. We deal with the set NC(X, [m], &) with X = [m]U Y, where Y C (1, 2)
and |Y] = x,. Then £ 2 (x;, 0™') = INC(X, [m], 2P)|. Consequently, the proof of
Lemma 3.1 is similar to that of Proposition 3.2 of [1]. (u]

Now for various properties &, the counting formulas of f,f’ (x;, 0"y and
£2(x, x3, 0™2) are investigated.

Let £,/ ™ Py, x, ..., Xm) = INC(X, [m), j(modk))|, wheren = B,/ /By,
in NC(X, [m], j (mod k)) (j, k € N with k > j > 0) satisfies |B;| = J (mod k)
(Vi € [m]). In particular, fu(x1, X2, ..., Xm) = £, ™ D(x;, X0, ... ) X).

Theorem 3.2 (/) For everym, k € N*, and x; = m(j — 1) (mod k),

=1 ; 5
. : ifj=0;
f J (mod k)(xh 0’"']) = ,":;({-)l)_
o (T, ifizo.

X +m
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(2) For everym, k € N* withm 2 2, and x| + x = m(j — 1) (mod k),

: (TR, ifi=o;
fj (mod k)(-’fly X2, 0m-2) = { = wv'»'s;—zl)(k-[on_ o
" Zz;o v( m-2 l): lf J * Ov

where the sum 3, is over all integers 0 < v < xp withv = x)+xp—u—j+1 (mod k).
Proof. (1) By Lemma 3.1, for every m € N* and x; = m(j — 1) (mod k),
£l ™Bx, 071y = Plm; xi +m; 4= j (mod k) (¥ i € [m])).
When j = 0, let t; = ks; (¥ i € [m]); it follows that

x|+m]_ a1
k " \m-1])

[ ot Dxy, 071y = Pim;

When j # 0, let t; = k(s; — 1) + j (¥ i € [m]); then we have

7l ™40, ooty = ppmy, DETEZTE D =(

xi+mk—j+1) 1
k
k )

m-1

(2) Notice that f,/ ™ ¥ (x,, x5, 0"2) = INC(X, [m], j(mod k))| with X =
muY,Yecd, U@, 3)I¥Yn(, 2)=x and [Y N (2, 3)| = x2. Then we
partition the set NC(X, [m), j (mod k)) into sets A, v (u, VEN, u < x, v< x2),
where each set A, , consists of all # = B|/Ba/ -+ [Bn € NC(X, [m], j(mod k))
with the property that B, contains x; — u elements of (1, 2) and x; — v elements
of (2, 3), |Bi| = j(mod k) (¥ i € [m]). Thus, by (1), we get

. N i ':0;
Au vl = £ P+, 072 = _»’;"__2_);. .fj
(1, ") ifi#o.

Moreover, notice that (x; — u) + (x2 = v) + 1 = j (mod k), and hence v
X) + X2 —u— j+ 1 (mod k). This completes the proof.

Let £,2"(x1, X2, -+, Xm) = INC(X, [m], even)|, where 7 = B,/Ba/ - /Bn
in NC(X, [m), even) satisfies |B;| (V i € [m]) is even. (Analogously, we can define
£, (xy, x2, ++, Xm) = INC(X, [m), odd)|.) Then f,/*"(x1, X2, ..., Xm) =
£ D s o, Xm)yand £k, Koy oy Xm) = fr P00, X2y ey ).
From Theorem 3.2, for k = 2 we obtain the following resuits.

‘,»y;g-] -1

Oomwm

Corollary 3.3 (1) For every m € N* such that x| + m even,

_ n+m _ 1
e, o= (2
(2) For every m € N* and x) even,
L4+m-1
odd m-1y | 2
foxy, 0" ( o )
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Let f2(x1, X2, ..., Xm) = INC(X, [m], #)|, where 7 = B,/By/---/B, in
NC(X, [m], #)satisfies |[Bj| # |B;| (Y i, j € [m], i # j). Let Pp(n) (resp. PZ(n))
denote the number of partitions of n into m (resp. distinct) parts. Obviously,

Pi(n) = 1, Pu(m) = 1, Pu(n) = 0 (m > n), and P}(n) = Ppu(n — 2552 (7).
Theorem 3.4 For every m € N*,

m(m - 3)

2 )

foGa, 0" Y =m! Pi(xy+m)=m! Pn(x, -

Proof. By Lemma 3.1, for every m € N*,
S, 0771 = Plm; xy +m; 4 # ) fori, j€[m), i # ]
m(m —3)

=m! - Py(x; +m)=m! - Pp(x) - 5 ).
w}
Remark 1 In particular, since Py(n) = |}] and Py(n) = I_"if ], we have
+1 2 +3
.f;(XI, 0)=2'I-XI2 J’ andf;(xla 01 0)=6l' l12 J
Let f2*(x1, x3, ..., Xw) = INC(X, [m),> k), where 7 = B{/By/ - /B in

1
NC(X, [m], = k) satisfies |B;| = k (¥ i € [m]).
Theorem 3.5 (1) For every m, k € N*, and x| 2 m(k — 1),

1 —mk-2)-1
m-1 ’

f2x, 0y = ("
(2) For every m, k € N* withm > 2, and x) + x; > m(k — 1),
d "*‘i"‘*‘ (u +v—(m-1)k-2)- 1)

e, x, 0= )
u=0 v=0

m-—2
Proof. (1) By Lemma 3.1, for every m, k € N*, and x, > m(k - 1),
2, 0™y = Plm; xy +m; ;> k(Y i € [m])).
Lett; = si + k-1 (i € [m]). It follows that

Xi —m(k—2)-1)
m-1 )

f20n, 0" = Plm; xy —m(k-2)] = (

(2) Note that f2*(x;, x5, 0™2) = INC(X, [m},> k)| with X = [m]U Y, Y C
(1, 22U (2, 3), IYn (1, 2)] = x; and |[Y N (2, 3)| = x,. We partition the set
NC(X, [m],z k) into sets A, , (&, vE N, u < x;, v < x;) defined as follows:
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Each set A, , consists of all m = By/By/ -+ [Bn € NC(X, [m], 2> k) with the
property that B, contains x; — u elements of (1, 2) and x; — v elements of (2, 3),
|Bi| = k (¥ i € [m]). Thus, using (1), we get

u+v—(m-1)(k-2)—1)

WAu ol = £2% (u+v, 072 =( 2

Besides, note that (x; =) + (x2 —v) + 1 > kimpliesv < xy + xa —u—k + 1,
The proof is finished. n]

Let f55(xy, x2, ..., %m) = INC(X, [m), < k)|, where 7 = Bi/By/ - /By in
NC(X, [m], < k) satisfies |B;| < k (V i € [m]).

Theorem 3.6 (1) For everym, k € N*, and x; < m(k - 1),
<k 1y _ Am\(xi +m—ki-1
£, 07 = Z;( o7 )( |
(2) For everym, k € N* withm 2 2, and x| + xo < m(k - 1),

geanon=5 5 ST

u=0 v=xy+x3-u-k+1 i=0
Proof. (1) By Lemma 3.1, for every m, k € N* and x| < m(k - 1),
35y, 0™ Yy = Plm; xy +m; t; Sk (Vi€ [m]))

According to the principle of Inclusion-Exclusion, we have

f,,s.k(x;, 0™ = Plm; x +m]+Z(—1)i(':1)-P[m; xp+m;n, ty, ..., i 2 k+1)

= Z(—l)t( )P[m, X +m-— k,]_z( 1)‘( )( H—::_:a )

i=0 i=0
(2) Similarly to the proof of Theorem 3.5 (2), combining with Theorem 3.6
(1), we obtain the desired result. (n]

Let f2%(x1, X3, ..., Xm) = INC(X, [m], # k)|, where 7 = By/By/---/Bn in
NC(X, [m], # k)suchthat|Bj| # k (Vi€ [m]).

Theorem 3.7 (1) For every m, k € N*,

; xp+m-=ki-1
faka, 0 )—Z( 1)( )( e )

(2) For everym, k € N* withm 2 2,

fr:k(xla X2, Om-z) = :Z—:;‘ Z Z( ])!( )(” + Vm‘*'_": _1;1 2).

vEr oaz -u-kol
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Proof. (1) Applying Lemma 3.1, for every m, k € N*,
Ry, 0" = Plm; xy +m; 1, # k (Vi € [m])].

According to the principle of Inclusion-Exclusion, we have

i

m ) m ] —ki-1
= Z(-l)'(':‘)P[m ik x +m—ki] = Z(-l)'(';’)("' ;'f i_‘] )

i=| i=0

S, 0771y = Plm; x) +ml+z(-1)'(m)~1’[m; XiHmin, b, ., 4= 4]
i=1

(2) Analogously to the proof of Theorem 3.5 (2), combining with Theorem
3.7 (1), the desired result is obtained. u]

Finally, let £ 180=k(x, x5, ..., xw) = INC(X, [m), max{|Bil} = k)|, where
m = B\/By/--- By in NC(X, [m], max{|Bil} = k) satisfies max{|B;| | i € [m]} =
k. Let frimBlikey  xo o) xw) = INC(X, [m], min{|Bi]} = k)|, where 7 =
By/B3/ -+ [By in NC(X, [m), min{|B;|} = k) satisfies min{|B;| | i € [m]} = k.

Theorem 3.8 (/) Letm, k € N*. For x; < m(k — 1),
m=1 m-i K . ,
maxi| B;l)=k m—1 = IRTY; mifm—1\fx +m—kl—(k"' 1)_]— 1)
rexiBli=k(z,, gm-1y ZUZ(;( 1)(i)( ; )( i :
For x; > m(k - 1),

FrintBll=k 1y MZ-I (m)(x: -mk~1)- l).

¢ i m-i-1
i=1
(2) Letm, k € N*. For x| + x, <m(k - 1),

maxllBlie e DS fm= 1\ +xp+2m = k(i 1) =2
fresen k(x,,xz,O'"Z):Z[Z(-l)( ; )( s )

u=0 =0

X2 m-2m-i-| A ) )
fm-WNm—i-N\u+v+2m—ki-(k-1)j-3
+ (-1)1( . )( . )( , )]_
V=X|+;2-u-k; ;): ! J m—i-2
For xy + x, > m(k - 1),

Ik o 2y i[(n +x—k~(m=1)k—- 3))
=0

m-2
+kai m-1 u+v—(m-1)(k-2)‘1)]
; m-—i-2 .

v=0 i=1
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Proof. (1) By Lemma 3.1, Theorems 3.5 and 3.6, for every m, k € N°,

fraxtiBili=k(y, ™1y = Plm; xy + m; maxieym{ti} = K]

m-1
-_-Z('?)'P[m—i; Xy +m—ki; stk_l(je[m—i])]
i=1

mmy = o m—i\x +m—ki-(k—-1)j-1
=Z(i)'Z(—l)’( j )( meil ), where x; < m(k — 1).

i=1 j=0
f,;,""‘"B’”="(x1, 0""") = P[m; x; + m; mingm{t;} = k)

m-1
=Z(m)-P[m—i; X +m—kizsjzk+1(j€m=i]]
i=1

i

m-1
= Z (’:’)(x' —mtk=1) = l), where x; > m(k - 1).
i=1

m—i-1

(2) Similarly to the proof of Theorem 3.5 (2), we have

X1
frodBh=k(e, xp, 0" ) = 3 [fE (1 + 3+ m -k, 0"
u=0
X2
+ Z frestBi=ky 4y 4 m -1, 02,

v=x+X2+2-u-k

X1

f';"'"(IB‘l|=k(X|, x2, 0"“2) = Z[f:l_‘l(xl +x +m—k, Om-Z)
u=0
xi+x2—u—k

+ Z f';nir:{lﬂll]‘—"‘(u +v+m-1, Om_z)-
v=0

By Theorems 3.5, 3.6, 3.8 (1), the desired result is obtained. o
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