The minimal size of a graph with given generalized 3-edge-connectivity*

Xueliang Li, Yaping Mao Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, China lxl@nankai.edu.cn; maoyaping@ymail.com

Abstract

For $S\subseteq V(G)$ and $|S|\geq 2$, $\lambda(S)$ is the maximum number of edge-disjoint trees connecting S in G. For an integer k with $2\leq k\leq n$, the generalized k-edge-connectivity $\lambda_k(G)$ of G is then defined as $\lambda_k(G)=\min\{\lambda(S):S\subseteq V(G) \ and \ |S|=k\}$. It is also clear that when |S|=2, $\lambda_2(G)$ is nothing new but the standard edge-connectivity $\lambda(G)$ of G. In this paper, graphs of order n such that $\lambda_3(G)=n-3$ are characterized. Furthermore, we determine the minimal number of edges of a graph G of order n with $\lambda_3(G)=1, n-3, n-2$ and give a sharp lower bound for $2\leq \lambda_3(G)< n-4$.

Keywords: edge-connectivity, Steiner tree, edge-disjoint trees, generalized edge-connectivity.

AMS subject classification 2010: 05C40, 05C05, 05C75.

1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to the book [1] for graph theoretical notation and terminology not described here. For a graph G, let V(G) and E(G) denote the set of vertices and the set of edges of G, respectively. As usual, the union of two graphs G and H is the graph, denoted by $G \cup H$, with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Let mH be the disjoint union of m copies of a graph H. For $X,Y\subseteq V(G)$, let $E_G[X,Y]$ denote the set of edges of G with one end in X and the other end in Y. The generalized connectivity of a graph G, introduced by Chartrand et al. in [2], is a natural and nice generalization of the concept of (vertex-)connectivity. For a graph G = (V, E) and a set $S \subseteq V(G)$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T = (V', E')of G that is a tree with $S \subseteq V'$. Two Steiner trees T and T' connecting S are said to be internally disjoint if $E(T) \cap E(T') = \emptyset$ and $V(T) \cap V(T') = S$. For $S \subseteq V(G)$ and $|S| \ge 2$, the generalized local connectivity $\kappa(S)$ is the maximum number of internally disjoint Steiner trees connecting S in G. For an integer k with $2 \le k \le n$, the generalized k-connectivity $\kappa_k(G)$ of G is defined as

^{*}Supported by NSFC No.11071130 and 11371205.

 $\kappa_k(G) = \min\{\kappa(S) : S \subseteq V(G) \text{ and } |S| = k\}.$ Clearly, when |S| = 2, $\kappa_2(G)$ is nothing new but the connectivity $\kappa(G)$ of G, that is, $\kappa_2(G) = \kappa(G)$, which is the reason why one addresses $\kappa_k(G)$ as the generalized k-connectivity of G. By convention, for a connected graph G with less than k vertices, we set $\kappa_k(G) = 1$. Set $\kappa_k(G) = 0$ when G is disconnected. Results on the generalized connectivity can be found in [2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 12].

As a natural counterpart of the generalized connectivity, we introduced the concept of generalized edge-connectivity in [11]. For $S \subseteq V(G)$ and $|S| \geq 2$, the generalized local edge-connectivity $\lambda(S)$ is the maximum number of edge-disjoint Steiner trees connecting S in G. For an integer k with $1 \leq k \leq n$, the generalized k-edge-connectivity $1 \leq k \leq n$, the generalized $1 \leq k \leq n$ and $1 \leq k \leq n$. It is also clear that when $1 \leq k \leq n$ and $1 \leq k \leq n$ is nothing new but the standard edge-connectivity $1 \leq k \leq n$ as the generalized edge-connectivity of $1 \leq k \leq n$ as the generalized edge-connectivity of $1 \leq k \leq n$. Also set $1 \leq k \leq n$ and $1 \leq k \leq n$ are included as $1 \leq k \leq n$.

In addition to being a natural combinatorial measure, the generalized connectivity and generalized edge-connectivity can be motivated by its interesting interpretation in practice. Suppose that G represents a network. If one considers to connect a pair of vertices of G, then a path is used to connect them. However, if one wants to connect a set S of vertices of G with $|S| \ge 3$, then a tree has to be used to connect them unless the vertices of S lie on a common path. This kind of tree with minimum order for connecting a set of vertices is usually called a Steiner tree, and popularly used in the physical design of Very Large Scale Integration (see [13]). For a set S of vertices, usually the number of totally independent ways

to connect S is a local measure for the reliability of a network. Then the generalized k-connectivity and generalized k-edge-connectivity can serve for measuring the global capability of a network G to connect any k vertices in G.

Observation 1. If G is a connected graph, then $\kappa_k(G) \leq \lambda_k(G) \leq \delta(G)$.

The following two observations are easily seen.

Observation 2. If H is a spanning subgraph of G, then $\kappa_k(H) \leq \kappa_k(G)$ and $\lambda_k(H) \leq \lambda_k(G)$.

In [11], we obtained some results on the generalized edge-connectivity. The following results are restated, which will be used later.

Lemma 1. [11] For every two integers n and k with $2 \le k \le n$, $\lambda_k(K_n) = n - \lceil k/2 \rceil$.

Lemma 2. [11] For any connected graph G, $\lambda_k(G) \leq \lambda(G)$. Moreover, the upper bound is sharp.

Lemma 3. [11] Let k, n be two integers with $2 \le k \le n$. For a connected graph G of order $n, 1 \le \kappa_k(G) \le \lambda_k(G) \le n - \lceil k/2 \rceil$. Moreover, the upper and lower bounds are sharp.

In [11], we characterized the graphs attaining the above upper bound, namely, the graphs with $\kappa_k(G) = n - \lceil \frac{k}{2} \rceil$ and $\lambda_k(G) = n - \lceil \frac{k}{2} \rceil$.

Lemma 4. [11] Let k, n be two integers with $2 \le k \le n$. For a connected graph G of order n, $\kappa_k(G) = n - \lceil \frac{k}{2} \rceil$ or $\lambda_k(G) = n - \lceil \frac{k}{2} \rceil$ if and only if $G = K_n$ for k even; $G = K_n \setminus M$ for k odd, where M is an edge set such that $0 \le |M| \le \frac{k-1}{2}$.

But it is not easy to characterize the graphs with $\kappa_k(G) = n - \lceil \frac{k}{2} \rceil - 1$ or $\lambda_k(G) = n - \lceil \frac{k}{2} \rceil - 1$. In [5], we focus on the case k = 3 and characterize the graphs with $\kappa_3(G) = n - 3$. Like [5], here we will consider the generalized 3-edge-connectivity. In Section 2, graphs of order n such that $\lambda_3(G) = n - 3$ are characterized.

Let $g(n, k, \ell)$ be the minimal number of edges of a graph G of order n with $\lambda_k(G)=\ell\ (1\leq \ell\leq n-\lceil rac{k}{2}
ceil).$ From Lemma 4, we know that $g(n,k,n-\lceil rac{k}{2}
ceil)=$ $\binom{n}{2}$ for k even; $g(n,k,n-\lceil \frac{k}{2} \rceil) = \binom{n}{2} - \frac{k-1}{2}$ for k odd. It is not easy to determine the exact value of the parameter $g(n, \tilde{k}, \ell)$ for a general k $(3 \le k \le n)$ and a general ℓ $(1 \le \ell \le n - \lceil \frac{k}{2} \rceil)$. So we put our attention to the case k = 3. The exact value of $g(n, 3, \ell)$ for $\ell = n - 2, n - 3, 1$ is obtained in Section 3. We also give a sharp lower bound of $g(n, 3, \ell)$ for general ℓ ($2 \le \ell \le n - 4$).

Graphs with $\lambda_3(G) = n - 3$

For the generalized 3-connectivity, we got the following result in [5].

Theorem 1. [5] Let G be a connected graph of order $n \ (n \ge 3)$. Then $\kappa_3(G) =$ n-3 if and only if G is a graph satisfying one of the following conditions.

- $\bullet \ \overline{G} = P_4 \cup (n-4)K_1;$
- $\overline{G} = P_3 \cup rP_2 \cup (n-2r-3)K_1 \ (r=0,1);$ $\overline{G} = C_3 \cup rP_2 \cup (n-2r-3)K_1 \ (r=0,1);$
- $\bullet \overline{G} = sP_2 \cup (n-2s)K_1 \ (2 \le s \le \lfloor \frac{n}{2} \rfloor).$

But, for the edge case, we will show that the statement is different. Before giving our main result, we need some preparations. Choose $S\subseteq V(G)$. Then let $\mathscr T$ be a maximum set of edge-disjoint trees connecting S in G. Let $\mathscr T_1$ be the set of trees in $\mathscr T$ whose edges belong to E(G[S]), and let $\mathscr S_2$ be the set of trees containing at least one edge of $E_G[S,\bar{S}]$, where $\bar{S}=V(G)\setminus S$. Thus, $\mathscr{T}=\mathscr{T}_1\cup\mathscr{T}_2.$

In [11], we obtained the following useful lemma.

Lemma 5. [11] Let $S \subseteq V(G)$, |S| = k and T be a tree connecting S. If $T \in \mathcal{G}_1$, then T uses k-1 edges of $E(G[S]) \cup E_G[S, \bar{S}]$; If $T \in \mathscr{S}_2$, then T uses at least k edges of $E(G[S]) \cup E_G[S, \tilde{S}]$.

By Lemma 5, we can derive the following result.

Lemma 6. Let G be a connected graph of order $n \ (n \ge 3)$, and ℓ be a positive integer. If we can find a vertex subset $S \subseteq V(G)$ with |S| = 3 satisfying one of the following conditions, then $\lambda_3(G) \leq n - \ell$:

- (1) $\overline{G}[S] = 3K_1$ and $|E_{\overline{G}}[S, \overline{S}] \cup \overline{G}[S]| \ge 3\ell 7$;
- (2) $\overline{G}[S] = P_2 \cup K_1$ and $|E_{\overline{G}}[S, \overline{S}] \cup \overline{G}[S]| \ge 3\ell 7$;
- (3) $\overline{G}[S] = P_3$ and $|E_{\overline{G}}[S, \overline{S}] \cup \overline{G}[S]| \ge 3\ell 8$;
- (4) $\overline{G}[S] = K_3$ and $|E_{\overline{G}}[S, \overline{S}] \cup \overline{G}[S]| \ge 3\ell 8$.

Proof. We only show that (1) and (3) hold, (2) and (4) can be proved similarly.

(1) Since $|E_{\overline{G}}[S,\bar{S}] \cup \overline{G}[S]| \geq 3\ell - 7$, we have $|E(G[S]) \cup E_G[S,\bar{S}]| \leq 3 + 3(n-3) - (3\ell-7) = 3n - 3\ell + 1$. Since $\overline{G}[S] = 3K_1$, we have $G[S] = K_3$. Therefore, |E(G[S])| = 3, and so there exists at most one tree belonging to \mathscr{T}_1 in G. If there exists one tree belonging to \mathscr{T}_2 , namely $|\mathscr{T}_1| = 1$, then the other trees connecting S must belong to \mathscr{T}_2 . From Lemma 5, each tree belonging to \mathscr{T}_2 uses at least 3 edges in $E(G[S]) \cup E_G[S,\bar{S}]$. So the remaining at most $(3n-3\ell+1)-2$ edges of $E(G[S]) \cup E_G[S,\bar{S}]$ can form at most $\frac{3n-3\ell-1}{3}$ trees. Thus $\lambda_3(G) \leq \lambda(S) = |\mathscr{T}| = |\mathscr{T}_1| + |\mathscr{T}_2| = 1 + |\mathscr{T}_2| \leq n - \ell + \frac{2}{3}$, which results in $\lambda_3(G) \leq n - \ell$ since $\lambda_3(G)$ is an integer. Suppose that all trees connecting S belong to \mathscr{T}_2 . Then $\lambda(S) = |\mathscr{T}| = |\mathscr{T}_2| \leq \frac{3n-3\ell+1}{3}$, which implies that $\lambda_3(G) \leq \lambda(S) \leq n - \ell$.

(3) Since $|E_{\overline{G}}[S, \overline{S}] \cup \overline{G}[S]| \ge 3\ell - 8$, it follows that $|E(G[S]) \cup E_G[S, \overline{S}]| \le 3 + 3(n-3) - (3\ell - 8) = 3n - 3\ell + 2$. Since $\overline{G}[S] = P_3$, we have $G[S] = P_2 \cup K_1$. Clearly, |E(G[S])| = 1 and hence there exists no tree belonging to \mathscr{I}_1 . So each tree connecting S must belong to \mathscr{I}_2 . From Lemma 5, $\lambda(S) \le |\mathscr{I}| = |\mathscr{I}_2| \le \frac{3n-3\ell+2}{3}$, which implies that $\lambda_3(G) \le \lambda(S) \le n-\ell$ since $\lambda_3(G)$ is an integer.

Lemma 7. Let G be a connected graph with minimum degree δ . If there are two adjacent vertices of degree δ , then $\lambda_k(G) \leq \delta(G) - 1$.

Proof. From Observation 1, $\lambda_k(G) \leq \delta(G)$. Suppose that there are two adjacent vertices of degree δ , say u_1 and u_2 . Besides u_1 and u_2 , we choose some vertices in $V(G \setminus \{u_1, u_2\})$ to get a k-subset S containing u_1, u_2 . Pick up a vertex $u_3 \in S \setminus \{u_1, u_2\}$. Suppose that $T_1, T_2, \cdots, T_\delta$ are δ pairwise edge-disjoint trees connecting S. Since G is simple graph, obviously the δ edges incident to u_1 must be contained in $T_1, T_2, \cdots, T_\delta$, respectively, and so are the δ edges incident to u_2 . Without loss of generality, we may assume that the edge u_1u_2 is contained in T_1 . But, since T_1 is a tree connecting S, it must contain another edge incident with u_1 or u_2 , a contradiction. Thus $\lambda_k(G) \leq \delta(G) - 1$.

A subset M of E(G) is called a matching of G if the edges of M satisfy that no two of them are adjacent in G. A matching M saturates a vertex v, or v is said to be M-saturated, if some edge of M is incident with v; otherwise, v is M-unsaturated. M is a maximum matching if G has no matching M' with |M'| > |M|.

Theorem 2. Let G be a connected graph of order $n \ (n \ge 3)$. Then $\lambda_3(G) = n-3$ if and only if G is a graph satisfying one of the following conditions.

- $\overline{G} = rP_2 \cup (n-2r)K_1 \ (2 \le r \le \lfloor \frac{n}{2} \rfloor);$
- $\overline{G} = P_4 \cup sP_2 \cup (n-2s-4)K_1 \ (0 \le s \le \lfloor \frac{n-4}{2} \rfloor);$
- $\bullet \overline{G} = P_3 \cup tP_2 \cup (n-2t-3)K_1 \ (0 \le t \le \lfloor \frac{n-3}{2} \rfloor);$
- $\bullet \overline{G} = C_3 \cup tP_2 \cup (n-2t-3)K_1 \ (0 \le t \le \lfloor \frac{n-3}{2} \rfloor).$

Proof. Necessity: Assume that $\lambda_3(G) = n - 3$. From Lemma 4, for a connected graph H, $\lambda_3(H) = n - 2$ if and only if $0 \le |E(\overline{H})| \le 1$. Since $\lambda_3(G) = n - 3$, it

follows that $|E(\overline{G})| \geq 2$. We claim that $\delta(\overline{G}) \leq 2$. Assume, to the contrary, that $\delta(\overline{G}) \geq 3$. Then $\lambda_3(G) \leq \delta(G) = n - 1 - \delta(\overline{G}) \leq n - 4$, a contradiction. Since $\delta(\overline{G}) \leq 2$, it follows that each component of \overline{G} is a path or a cycle (note that an isolated vertex in \overline{G} is a trivial path). We will show that the following two claims hold.

Claim 1. G has at most one component of order larger than 2.

Suppose, to the contrary, that \overline{G} has two components of order larger than 2, denoted by H_1 and H_2 (see Figure 1 (a)).

Let $x,y\in V(H_1)$ and $z\in V(H_2)$ such that $d_{H_1}(y)=d_{H_2}(z)=2$ and x is adjacent to y in H_1 . Thus $d_G(y)=n-1-d_{\overline{G}}(y)=n-1-d_{H_1}(y)=n-3$. The same is true for z, that is, $d_G(z)=n-3$. Pick $S=\{x,y,z\}$. This implies that $\delta(G)\leq d_G(z)\leq n-3$. Since all other components of \overline{G} are paths or cycles, $\delta(G)\geq n-3$. So $\delta(G)=n-3$ and hence $d_G(y)=d_G(z)=\delta(G)=n-3$. Since $yz\in E(G)$, by Lemma 7 it follows that $\lambda_3(G)\leq \delta(G)-1=n-4$, a contradiction.

Claim 2. If H is the component of \overline{G} of order larger than 3, then H is a 4-path.

Assume, to the contrary, that H is a path or a cycle of order larger than 4, or a cycle of order 4.

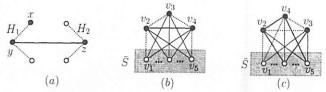


Figure 1: Graphs for Claims 1 and 2.

First, we consider the former. We can pick a P_5 in H. Without loss of generality, let $P_5 = v_1, v_2, v_3, v_4, v_5$. Choose $S = \{v_2, v_3, v_4\}$. Then $\bar{S} = G \setminus \{v_2, v_3, v_4\}$ (see Figure 1 (b)). Clearly, $|E(\overline{G}[S]) \cup E_{\overline{G}}[S, \bar{S}]| \geq 4$. Since $v_2v_3, v_3v_4 \in E(\overline{G}[S])$, it follows that $\overline{G}[S] = P_3$. From (3) of Lemma 6, $\lambda_3(G) \leq n-4$ (Note that if $3\ell-8=4$, then $\ell=4$). This contradicts to $\lambda_3(G) = n-3$.

Now we consider the latter. Let $H=v_1,v_2,v_3,v_4$ be a cycle. Choose $S=\{v_2,v_3,v_4\}$ (see Figure 1 (c)). Then $|E(\overline{G}[S])\cup E_{\overline{G}}[S,\bar{S}]|\geq 4$. Since $v_2v_3,v_3v_4\in E(\overline{G}[S])$, it follows that $\overline{G}[S]=P_3$. From (3) of Lemma 6, $\lambda_3(G)\leq n-4$ (Note that if $3\ell-8=4$, then $\ell=4$), which also contradicts to $\lambda_3(G)=n-3$.

From the above two claims, we know that if \overline{G} has a component P_4 , then it is the only component of order larger than 3 and the other components must be independent edges. Let s be the number of such independent edges. \overline{G} can have as many as such independent edges, which implies that $s \leq \lfloor \frac{n-4}{2} \rfloor$. From Lemma $4, s \geq 0$. Thus $0 \leq s \leq \lfloor \frac{n-4}{2} \rfloor$.

By the similar analysis, we conclude that $\overline{G} = rP_2 \cup (n-2r)K_1$ $(2 \le r \le r)$

 $\lfloor \frac{n}{2} \rfloor$) or $\overline{G} = P_4 \cup sP_2 \cup (n-2s-4)K_1$ $(0 \le s \le \lfloor \frac{n-4}{2} \rfloor)$ or $\overline{G} = P_3 \cup tP_2 \cup (n-2t-3)K_1$ $(0 \le t \le \lfloor \frac{n-3}{2} \rfloor)$ or $\overline{G} = C_3 \cup tP_2 \cup (n-2t-3)K_1$ $(0 \le t \le \lfloor \frac{n-3}{2} \rfloor)$.

Sufficiency: We will show that $\lambda_3(G) \ge n-3$ if G is a graph satisfying one of the conditions of this theorem. We have the following cases to consider.

Case 1. $\overline{G} = P_3 \cup tP_2 \cup (n-2t-3)K_1$ or $\overline{G} = C_3 \cup tP_2 \cup (n-2t-3)K_1$ $(0 \le t \le \lfloor \frac{n-3}{2} \rfloor)$.

We only need to show that $\lambda_3(G) \geq n-3$ for $t = \lfloor \frac{n-3}{2} \rfloor$. If $\lambda_3(G) \geq n-3$ for $\overline{G} = C_3 \cup tP_2 \cup (n-2t-3)K_1$, then $\lambda_3(G) \geq n-3$ for $\overline{G} = P_3 \cup tP_2 \cup (n-2t-3)K_1$. It suffices to check that $\lambda_3(G) \geq n-3$ for $\overline{G} = C_3 \cup \lfloor \frac{n-3}{2} \rfloor P_2 \cup (n-2\lfloor \frac{n-3}{2} \rfloor -3)K_1$.

Let $C_3 = v_1, v_2, v_3$ and $S = \{x, y, z\}$ be a 3-subset of G, and $M = \lfloor \frac{n-3}{2} \rfloor P_2$. It is clear that M is a maximum matching of $\overline{G} \setminus V(C_3)$. Then $\overline{G} \setminus V(C_3)$ has at most one M-unsaturated vertex.

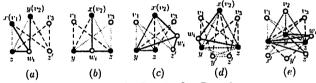


Figure 2: Graphs for Case 1.

If $S = V(C_3)$, then there exist n-3 pairwise edge-disjoint trees connecting S since each vertex in S is adjacent to every vertex in $G \setminus S$. Suppose $S \neq V(C_3)$. If $|S \cap V(C_3)| = 2$, then one element of S belongs to $\in V(G) \setminus V(C_3)$, denoted by z. Since $d_G(v_1) = d_G(v_2) = d_G(v_3) = n - 3$, we can assume that $x = v_1$, $y = v_2$. When z is M-unsaturated, the trees $T_i = w_i x \cup w_i y \cup w_i z$ together with $T_1 = xz \cup yz$ form $T_1 \cap S$ pairwise edge-disjoint trees connecting S, where $\{w_1, w_2, \cdots, w_{n-4}\} = V(G) \setminus \{x, y, z, v_3\}$. When z is M-saturated, we let z' be the adjacent vertex of z under M. Then the trees $T_i = w_i x \cup w_i y \cup w_i z$ together with $T_1 = xz \cup yz$ and $T_2 = xz' \cup yz' \cup z'v_3 \cup zv_3$ form n-3 pairwise edge-disjoint trees connecting S (see Figure 2 (a)), where $\{w_1, w_2, \cdots, w_{n-5}\} = V(G) \setminus \{x, y, z, z', v_3\}$. If $|S \cap V(C_3)| = 1$, then two elements of S belong to $\in V(G) \setminus V(C_3)$, denoted by y and z. Without loss of generality, let $x = v_2$. When y and z are adjacent under M, the trees $T_i = w_i x \cup w_i y \cup w_i z$ together with $T_1 = xy \cup yv_1 \cup v_1 z$ and $T_2 = xz \cup zv_3 \cup v_3 y$ form n-3 pairwise edge-disjoint trees connecting S (see Figure 2 (b)), where $\{w_1, w_2, \cdots, w_{n-5}\} = V(G) \setminus \{x, y, z, v_1, v_3\}$. When y and z are nonadjacent under M, we consider whether y and z are M-saturated. If one of $\{y, z\}$ is Munsaturated, without loss of generality, we assume that y is M-unsaturated. Since $G \setminus V(C_3)$ has at most one M-unsaturated vertex, z is M-saturated. Let z' be the adjacent vertex of z under M. Then the trees $T_i = w_i x \cup w_i y \cup w_i z$ together with $T_1=xy\cup yz$ and $T_2=v_1y\cup v_1z\cup z'v_1\cup z'x$ and $T_3=xz\cup zv_3\cup v_3y$ form n-3 pairwise edge-disjoint trees connecting S (see Figure 2 (c)), where $\{w_1, w_2, \cdots, w_{n-6}\} = V(G) \setminus \{x, y, z, z', v_1, v_3\}$. If both y and z are Msaturated, we let y', z' be the adjacent vertex of y, z under M, respectively. Then the trees $T_i=w_ix\cup w_iy\cup w_iz$ together with $T_1=xz\cup yz, T_2=xy\cup yz'\cup z'y'\cup y'z, T_3=yv_3\cup z'v_3\cup zv_3\cup xz'$ and $T_4=yv_1\cup y'v_1\cup zv_1\cup y'x$ form n-3 pairwise edge-disjoint trees connecting S (see Figure 2 (d)), where $\{w_1,w_2,\cdots,w_{n-7}\}=V(G)\setminus\{x,y,z,y',z',v_1,v_3\}$. Otherwise, $S\subseteq G\setminus V(C_3)$. When one of $\{x,y,z\}$ is M-unsaturated, without loss of generality, we assume that x is M-unsaturated. Since $G\setminus V(C_3)$ has at most one M-unsaturated vertex, both y and z are M-saturated. Let y',z' be the adjacent vertex of y,z under M, respectively. We pick a vertex x' of $V(G)\setminus\{x,y,y',z,z',v_1,v_2,v_3\}$. When x,y,z are all M-saturated, we let x',y',z' be the adjacent vertex of x,y,z under M, respectively. Then the trees $T_i=w_ix\cup w_iy\cup w_iz$ together with $T_j=xv_j\cup yv_j\cup zv_j$ ($1\le j\le 3$) and $T_4=xy\cup yx'\cup x'z$ and $T_5=xy'\cup zy'\cup zy$ and $T_6=zx\cup xz'\cup z'y$ form n-3 pairwise edge-disjoint trees connecting S (see Figure 2 (e)), where $\{w_1,w_2,\cdots,w_{n-9}\}=V(G)\setminus\{x,y,z,x',y',z',v_1,v_2,v_3\}$.

From the above discussion, we get that $\lambda(S) \ge n-3$ for $S \subseteq V(G)$, which implies $\lambda_3(G) \ge n-3$. So $\lambda_3(G) = n-3$.

Case 2. $\overline{G} = rP_2 \cup (n-2r)K_1$ $(2 \le r \le \lfloor \frac{n}{2} \rfloor)$ or $\overline{G} = P_4 \cup sP_2 \cup (n-2s-4)K_1$ $(0 \le s \le \lfloor \frac{n-4}{2} \rfloor)$.

We only need to show that $\lambda_3(G) \geq n-3$ for $r=\lfloor \frac{n}{2} \rfloor$ and $s=\lfloor \frac{n-4}{2} \rfloor$. If $\lambda_3(G) \geq n-3$ for $\overline{G}=P_4 \cup \lfloor \frac{n-4}{2} \rfloor P_2 \cup (n-2\lfloor \frac{n-4}{2} \rfloor -4)K_1$, then $\lambda_3(G) \geq n-3$ for $\overline{G}=\lfloor \frac{n}{2} \rfloor P_2 \cup (n-2\lfloor \frac{n}{2} \rfloor)K_1$. So we only need to consider the former. Let $P_4=v_1,v_2,v_3,v_4,\ S=\{x,y,z\}$ be a 3-subset of G, and $M=\overline{G}\setminus E(P_4)$. Clearly, M is a maximum matching of $\overline{G}\setminus V(P_4)$. It is easy to see that $\overline{G}\setminus V(P_4)$ has at most one M-unsaturated vertex. For any $S\subseteq V(G)$, we will show that there exist n-3 edge-disjoint trees connecting S in \overline{G} .

If $S\subseteq V(P_4)$, then there exist n-4 pairwise edge-disjoint trees connecting S since each vertex in S is adjacent to every vertex in $G\setminus V(P_4)$. Since $d_G(v_1)=d_G(v_4)=n-2$ and $d_G(v_2)=d_G(v_3)=n-3$, we only need to consider $S=\{v_1,v_2,v_3\}$ and $S=\{v_1,v_2,v_4\}$. These trees together with $T=yv_4\cup v_4x\cup v_4z$ for $S=\{v_1,v_2,v_3\}$, or $T=xy\cup yz$ for $S=\{v_1,v_2,v_3\}$ form n-3 pairwise edge-disjoint trees connecting S. Suppose $S\cap V(P_4)\neq 3$. If $|S\cap V(P_4)|=2$, then one element of S belongs to $\in V(G)\setminus V(P_4)$, denoted by z. Since $d_G(v_1)=d_G(v_4)=n-2$ and $d_G(v_2)=d_G(v_3)=n-3$, we only need to consider $x=v_1,y=v_2$ or $x=v_2,y=v_3$ or $x=v_1,y=v_4$. When z is M-unsaturated, the trees $T_i=w_ix\cup w_iy\cup w_iz$ together with $T_1=xz\cup yz,T_2=xv_4\cup yv_4\cup zv_4$ for $x=v_1,y=v_2$, or $T_2=xv_4\cup v_4v_1\cup v_1y\cup v_4z$ for $x=v_2,y=v_3$, or $T_2=xv_3\cup yv_3\cup zv_3$ for $x=v_1,y=v_4$ form x-3 pairwise edge-disjoint trees connecting S, where $\{w_1,w_2,\cdots,w_{n-5}\}=V(G)\setminus (V(P_4)\cup \{z\})$. When z is M-unsaturated, we let z' be the adjacent vertex of z under z. For $z=v_2,y=v_3$, the trees z is z under z for z and z a

(d)), where $\{w_1, w_2, \cdots, w_{n-6}\} = V(G) \setminus \{x, y, z, v_1, v_3, v_4\}$. The same is true for $x = v_1$ (see Figure 3 (e)). When y and z are nonadjacent under M, we consider whether y and z are M-saturated. If one of $\{y, z\}$ is M-unsaturated, without loss of generality, we assume that y is M-unsaturated. Since $G \setminus V(P_4)$ has at most one M-unsaturated vertex, z is M-saturated. Let z' be the adjacent vertex of z under M. For $x = v_2$, the trees $\underline{T}_i = w_i x \cup w_i y \cup w_i z$ together with $T_1 = xz \cup yz$, $T_2 = v_4x \cup v_4y \cup v_4z$, $T_3 = v_1y \cup v_1z \cup zx$ and $T_4 = v_1z \cup v_2z$ $z'x \cup v_3y \cup z'v_3 \cup zv_3$ form n-3 pairwise edge-disjoint trees connecting S (see Figure 3 (f)), where $\{w_1, w_2, \dots, w_{n-7}\} = V(G) \setminus \{x, y, z, z', v_1, v_3, v_4\}$. The same is true for $x = v_1$ (see Figure 3 (g)). If both y and z are M-saturated, we let y', z' be the adjacent vertex of y, z under M, respectively. For $x = v_2$, the trees $T_i = w_i x \cup w_i y \cup w_i z$ together with $T_1 = xz \cup yz$, $T_2 = yv_3 \cup zv_3 \cup zx$, $T_3 = xv_4 \cup yv_4 \cup zv_4, T_4 = yv_1 \cup y'v_1 \cup zv_1 \cup xy'$ and $T_5 = xz' \cup z'y \cup z'y' \cup y'z$ form n-3 pairwise edge-disjoint trees connecting S (see Figure 3 (h)), where $\{w_1, w_2, \cdots, w_{n-8}\} = V(G) \setminus \{x, y, z, y', z', v_1, v_3, v_4\}$. The same is true for $x = v_1$ (see Figure 3 (i)). If $S \subseteq G \setminus V(P_4)$, when one of $\{x, y, z\}$ is Munsaturated, without loss of generality, we let x is M-unsaturated, then both y and z are M-saturated. Let y', z' be the adjacent vertex of y, z under M, respectively. We pick a vertex x' of $V(G) \setminus \{x, y, y', z, z', v_1, v_2, v_3\}$. When x, y, z are all Msaturated, we let x', y', z' be the adjacent vertex of x, y, z under M, respectively. Then the trees $T_i = w_i x \cup w_i y \cup w_i z$ together with $T_j = x v_j \cup y v_j \cup z v_j (1 \le x)$ $j \le 4$) and $T_5 = yx \cup xy' \cup y'z$ and $T_6 = yx' \cup zx' \cup zx$ and $T_7 = zy \cup yz' \cup z'x$ form n-3 pairwise edge-disjoint trees connecting S (see Figure 3 (j)), where $\{w_1, w_2, \cdots, w_{n-10}\} = V(G) \setminus \{x, y, z, x', y', z', v_1, v_2, v_3, v_4\}.$

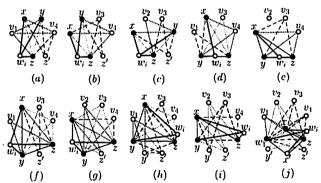


Figure 3: Graphs for S in Case 2.

From the above arguments, we conclude that for any $S \subseteq V(G)$ $\lambda(S) \ge n-3$. From the arbitrariness of S, we have $\lambda_3(G) \ge n-3$. The proof is now complete.

The minimal size of a graph G with $\lambda_3(G) = \ell$ 3

Recall that $g(n, k, \ell)$ is the minimal number of edges of a graph G of order n with $\lambda_k(G) = \ell$ $(1 \le \ell \le n - \lceil \frac{k}{2} \rceil)$. Let us focus on the case k = 3 and derive the following result.

Theorem 3. Let n be an integer with $n \geq 3$. Then

- (1) $g(n, 3, n-2) = \binom{n}{2} 1;$ (2) $g(n, 3, n-3) = \binom{n}{2} \lfloor \frac{n+3}{2} \rfloor;$ (3) g(n, 3, 1) = n 1;
- (4) $g(n,3,\ell) \ge \lceil \frac{\ell(\ell+1)}{2\ell+1} n \rceil$ for $n \ge 11$ and $2 \le \ell \le n-4$. Moreover, the bound is sharp.
- *Proof.* (1) From Lemma 4, $\lambda_3(G) = n 2$ if and only if $G = K_n$ or $G = K_n \setminus e$ where $e \in E(K_n)$. So $g(n, 3, n-2) = {n \choose 2} - 1$.
- (2) From Theorem 2, $\lambda_3(G) = n-3$ if and only if $\overline{G} = rP_2 \cup (n-2r)K_1$ (2 \leq $r \leq \lfloor \frac{n}{2} \rfloor$ or $\overline{G} = P_4 \cup sP_2 \cup (n-2s-4)K_1 \ (0 \leq s \leq \lfloor \frac{n-4}{2} \rfloor)$ or $\overline{G} =$ $P_3 \cup tP_2 \cup (n-2t-3)K_1 \ (0 \le t \le \lfloor \frac{n-3}{2} \rfloor) \text{ or } \overline{G} = C_3 \cup tP_2 \cup (n-2t-3)K_1 \ (0 \le t \le \lfloor \frac{n-3}{2} \rfloor)$ 3) K_1 $(0 \le t \le \lfloor \frac{n-3}{2} \rfloor)$. If n is even, then $\max\{e(\overline{G})\} = \frac{n+2}{2}$, which implies that $g(n,3,n-3) = \binom{n}{2} - \max\{e(\overline{G})\} = \binom{n}{2} - \frac{n+2}{2}$. If n is odd, then $\max\{e(\overline{G})\} = \frac{n+3}{2}$, which implies that $g(n,3,n-3) = \binom{n}{2} - \max\{e(\overline{G})\} = \binom{n}{2} - \frac{n+3}{2}$. So $g(n,3,n-3) = \binom{n}{2} - \lfloor \frac{n+3}{2} \rfloor.$
- (3) It is clear that the tree T_n is the graph such that $\lambda_3(T_n) = 1$ with the minimal number of edges. So g(n, 3, 1) = n - 1.
- (4) Since $\lambda_k(G) = \ell$ $(2 \le \ell \le n-4)$, by Lemma 7, we know that $\delta(G) \ge \ell$ and any two vertices of degree ℓ are not adjacent. Denote by X the set of vertices of degree ℓ . We have that X is an independent set. Put $Y = V(G) \setminus X$ and obviously there are 2|X| edges joining X to Y. Assume that m' is the number of edges joining two vertices belonging to Y. It is clear that $e = \ell |X| + m'$. Since every vertex of Y has degree at least $\ell+1$ in G, then $\sum_{v\in Y}d(v)=\ell|X|+2m'\geq (\ell+1)|Y|=(\ell+1)(n-|X|)$, namely, $(2\ell+1)|X|+2m'\geq (\ell+1)n$. Combining this with $e=\ell|X|+m'$, we have $\frac{2\ell+1}{\ell}e(G)=(2\ell+1)|X|+\frac{2\ell+1}{\ell}m'\geq (2\ell+1)n$ $1)|X|+2m'\geq (\ell+1)n$ Therefore, $e(G)\geq \frac{\ell(\ell+1)}{2\ell+1}n$. Since the number of edges is an integer, it follows that $e(G) \ge \lceil \frac{\ell(\ell+1)}{2\ell+1} n \rceil$.

To show that the upper bound is sharp, we consider the complete bipartite graph $G=K_{\ell,\ell+1}$. Let $U=\{u_1,u_2,\cdots,u_\ell\}$ and $W=\{w_1,w_2,\cdots,w_{\ell+1}\}$ be the two parts of $K_{\ell,\ell+1}$. Choose $S\subseteq V(G)$. We will show that there are ℓ edge-disjoint trees connecting S.

If $|S \cap U| = 3$, without loss of generality, let $S = \{u_1, u_2, u_3\}$, then the trees $T_i = u_1 w_i \cup u_2 w_i \cup u_3 w_i$ $(1 \le i \le \ell + 1)$ are $\ell + 1$ edge-disjoint trees connecting S. If $|S \cap U| = 2$, then $|S \cap W| = 1$. Without loss of generality, let $S = \{u_1, u_2, w_1\}$. Then the trees $T_i = u_1 w_i \cup u_i w_i \cup u_i w_1$ $(4 \le i \le \ell + 1)$ and $T_1 = u_1 w_1 \cup u_1 w_3 \cup u_2 u_3$ and $T_2 = u_2 w_1 \cup u_2 w_2 \cup u_1 w_2$ are ℓ edge-disjoint trees connecting S. If $|S \cap U| = 1$, then $|S \cap W| = 2$. Without loss of generality,

let $S=\{u_1,w_1,w_2\}$. Then the trees $T_i=u_1v_{i+1}\cup u_iw_{i+1}\cup u_iw_1\cup u_iw_2\ (2\leq i\leq\ell)$ and $T_1=u_1w_1\cup u_1w_2$ are ℓ edge-disjoint trees connecting S. Suppose $|S\cap W|=3$. Without loss of generality, let $S=\{w_1,w_2,w_3\}$, then the trees $T_i=w_1u_i\cup w_2u_i\cup w_3u_i\ (1\leq i\leq\ell)$ are ℓ edge-disjoint trees connecting S. From the above arguments, we conclude that, for any $S\subseteq V(G),\ \lambda(S)\geq\ell$. So $\lambda_3(G)\geq\ell$. On the other hand, $\lambda_3(G)\leq\delta(G)=\ell$ and hence $\lambda_3(G)=\ell$. Clearly, $|V(G)|=2\ell+1,\ e(G)=\ell(\ell+1)=\lceil\frac{\ell(\ell+1)}{2\ell+1}n\rceil$. So the lower bound is sharp for k=3 and $2\leq\ell\leq n-4$.

Acknowledgement: The authors are very grateful to the referee's comments and suggestions, which helped us to improve this paper.

References

- [1] J. A. Bondy, U. S. R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [2] G. Chartrand, S. F. Kappor, L. Lesniak, D. R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2(1984), 1-6.
- [3] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360-367.
- [4] H. Li, X. Li, Y. Sun, The generalied 3-connectivity of Cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14(1)(2012), 43-54.
- [5] H. Li, X. Li, Y. Mao, Y. Sun, Note on the generalized connectivity, Ars Combin. 114(2014).
- [6] S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, Ars Combin. 104(2012), 65-79.
- [7] S. Li, W. Li, X. Li, The generalized connectivity of complete equipartition 3-partite graphs, Bull. Malays. Math. Sci. Soc.(2) 37(1)(2014), 103-121.
- [8] S. Li, X. Li, Note on the hardness of generalized connectivity, J. Combin. Optimization 24(2012), 389-396.
- [9] S. Li, X. Li, Y. Shi, The minimal size of a graph with generalized connectivity $\kappa_3(G)=2$, Australasian J. Combin. 51(2011), 209-220.
- [10] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_3(G)$, Discrete Math. 310(2010), 2147-2163.
- [11] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Australasian J. Combin. 58(2)(2014), 304-319.
- [12] F. Okamoto, P. Zhang, The tree connectivity of regular complete bipartite graphs, J. Combin. Math. Combin. Comput. 74(2010), 279-293.
- [13] N.A. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd Edition, Kluwer Acad. Pub., London, 1999.