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Abstract

For § C V(G) and |S| > 2, A(S) is the maximum number of edge-
disjoint trees connecting S in G. For an integer k with 2 < k < n, the
generalized k-edge-connectivity Ax(G) of G is then defined as A (G) =
min{A(S) : § C V(G) and |S| = k}. Itis also clear that when |S| = 2,
A2(G) is nothing new but the standard edge-connectivity A(G) of G. In
this paper, graphs of order n such that A3(G) = n — 3 are characterized.
Furthermore, we determine the minimal number of edges of a graph G of
order n with A\3(G) = 1,n — 3,n — 2 and give a sharp lower bound for
2S)\3(G) Sn—4.

Keywords: edge-connectivity, Steiner tree, edge-disjoint trees, generalized
edge-connectivity.
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1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer
to the book [1] for graph theoretical notation and terminology not described here.
For a graph G, let V(G) and E(G) denote the set of vertices and the set of edges
of G, respectively. As usual, the union of two graphs G and H is the graph,
denoted by G U H, with vertex set V(G) U V(H) and edge set E(G) U E(H).
Let mH be the disjoint union of m copies of a graph H. For X,Y C V(G), let
Eg[X, Y] denote the set of edges of G with one end in X and the other end in Y.

The generalized connectivity of a graph G, introduced by Chartrand et al. in
[2], is a natural and nice generalization of the concept of (vertex-)connectivity. For
agraph G = (V, E) and aset S C V(G) of at least two vertices, an S-Steiner tree
or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T = (V', E')
of G that is a tree with § C V’. Two Steiner trees T and T’ connecting S are
said to be internally disjoint if E(T) N E(T') = @ and V(T) N V(T") = S. For
SC V(Gg and |S |] 2 2, the generalized local connectivi n(@ is the maximum
number of internally disjoint Steiner trees connecting S in G. For an integer
k with 2 < k < n, the generalized k-connectivity ki(G) of G is defined as
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k,(G) = min{x(S) : S C V(G) and |S| = k}. Clearly, when |S| = 2, x2(G)
is nothing new but the connectivity £(G) of G, that is, k2(G) = «(G), which is
the reason why one addresses xx(G) as the generalized k-connectivity of G. By
convention, for a connected graph G with less than k vertices, we set ki (G) = 1.
Set kx(G) = 0 when G is disconnected. Results on the generalized connectivity
can be found in [2, 3, 4,5,6,7, 8,9, 11, 10, 12].

As a natural counterpart of the generalized connectivity, we introduced the
concept of generalized edge-connectivity in [11]. For § C V(G) and |S| 2> 2,
the generalized local edge-connectivity A(S) is the maximum number of edge-
disjoint Steiner trees connecting S in G. For an integer k with 2 < k < n, the gen-
eralized k-edge-connectivity \i.(G) of G is then defined as Ax(G) = min{A(S) :
S C V(G) and |S| = k}. Itis also clear that when || = 2, A2(G) is nothing
new but the standard edge-connectivity A(G) of G, that is, A2(G) = A(G), which
is the reason why we address Ax(G) as the generalized edge-connectivity of G.
Also set A\ (G) = 0 when G is disconnected.

In addition to being a natural combinatorial measure, the generalized con-
nectivity and generalized edge-connectivity can be motivated by its interesting
interpretation in practice. Suppose that G represents a network. If one considers
to connect a pair of vertices of G, then a path is used to connect them. However,
if one wants to connect a set S of vertices of G with |S| > 3, then a tree has to be
used to connect them unless the vertices of S lie on a common path. This kind of
tree with minimum order for connecting a set of vertices is usually called a Steiner
tree, and popularly used in the physical design of Very Large Scale Integration
(see [13]). For a set S of vertices, usually the number of totally independent ways
to connect S is a local measure for the reliability of a network. Then the general-
ized k-connectivity and generalized k-edge-connectivity can serve for measuring
the global capability of a network G to connect any k vertices in G.

The following two observations are easily seen.

Observation 1. If G is a connected graph, then kx(G) < M(G) < 6(G).
Observation 2. If H is a spanning subgraph of G, then ki(H) < ki (G) and
Me(H) £ M(G).

In [11), we obtained some results on the generalized edge-connectivity. The
following results are restated, which will be used later.

Lemma 1. [11) For every two integers n and k with 2 < k < n, A (Kp) =
n—[k/2].

Lemma 2. [11]) For any connected graph G, M\(G) < MG). Moreover, the
upper bound is sharp.

Lemma 3. [11] Let k, . be two integers with 2 < k < n. For a connected graph
G of order n, 1 < K(G) < M\e(G) < n — [k/2]. Moreover, the upper and lower
bounds are sharp.

In [11), we characterized the graphs attaining the above upper bound, namely,
the graphs with xx(G) = n — [£] and \e(G) = n — [£7.
Lemma 4. [11] Let k, n be two integers with 2 < k < n. For a connected graph
G of order n, ki (G) = n—[£] or Me(G) =n— [£] ifand only if G = K, for k
even; G = K, \ M for k odd, where M is an edge set such that 0 < |M| < k—;l



But it is not easy to characterize the graphs with kx(G) = n — [ %] —1lor
A(G) = n— [£] — 1. In [5), we focus on the case k = 3 and characterize
the graphs with x3(G) = n — 3. Like [5], here we will consider the generalized
3-edge-connectivity. In Section 2, graphs of order n such that \3(G) = n — 3 are

characterized.
Let g(n, k, £) be the minimal number of edges of a graph G of order n with

Ak(G) = (1 < € < n—[£]). From Lemma 4, we know that g(n, k,n — &) =
(3) for k even; g(n,k,n — [£]) = (3) — &5 for k odd. It is not easy to
determine the exact value of the parameter g(n, k, £) for a general k (3 < k < n)
and a general £ (1 < £ < n — [£]). So we put our attention to the case k = 3.
The exact value of g(n, 3,¢) for £ = n — 2,n — 3,1 is obtained in Section 3. We
also give a sharp lower bound of g(n, 3,¢) for general £ (2 < £ < n — 4).

2 Graphs with \3(G) =n —3
For the generalized 3-connectivity, we got the following result in [5].

Theorem 1. [5] Let G be a connected graph of order n. (n > 3). Then k3(G) =
n — 3 if and only if G is a graph satisfying one of the following conditions.
L] _G- = P4 V) (n - 4)K1,’
eG=PUrPU(n—2r-3)K; (r=0,1);
eG=C3UrP,U(n—2r-3)K, (r=0,1);
e G=sP,U(n—2s)K, (2<s< L5])-

But, for the edge case, we will show that the statement is different. Before
giving our main result, we need some preparations. Choose S C V(G). Then
let & be a maximum set of edge-disjoint trees connecting S in G. Let ; be
the set of trees in 7 whose edges belong to E(G[S]), and let Z; be the set of
trees containing at least one edge of Eg[S,S], where § = V(G) \ S. Thus,
T =RU5.

In [11], we obtained the following useful lemma.

Lemma 5. [11] Let S C V(G), |S| = kand T be a tree connecting S. If T € 9,

then T uses k — 1 edges of E(G[S])U Eg|S, S]; If T € P, then T uses at least
k edges of E(G[S]) U Eg[S, S).

By Lemma 5, we can derive the following result.

Lemma 6. Let G be a connected graph of order n (n > 3), and £ be a positive
integer. If we can find a vertex subset S C V(G) with \S| = 3 satisfying one of
the following conditions, then A3(G) < n — ¢€:

(1) G[S] = 3K, and |Ex[S, 5] UG|S]| > 3¢ - 7;

(2) G[S) = UK, and |Ex[S,5|UG[S]| > 3¢ - 7;

(3) G[S] = P and | EgS, S| UG|S]| > 3¢—§;

(4) G[S] = K3 and |E5[S, 5]UG[S]| > 3¢ - 8.
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Proof. We only show that (1) and (3) hold, (2) and (4) can be proved similarly.
(1) Since |E5(S, 5] U G[S}| > 3¢ - 7, we have |[E(G[S]) U Eg[S, S]] <

3+3(n—3)— (3¢—7) = 3n— 3¢+ 1. Since G[S] = 3K, we have G[S] = K3.

Therefore, |[E(G[S])] = 3, and so there exists at most one tree belonging to

Z, in G. If there exists one tree belonging to 43, namely |Z;| = 1, then the
other trees connecting S must belong to Z5. From Lemma 5, each tree belonging

to J; uses at least 3 edges in E(G[S]) U Eg[S, S). So the remaining at most
(3n — 3¢ + 1) — 2 edges of E(G[S]) U Eg|S, 5] can form at most 32=3¢=1 trees.
Thus A3(G) < M(S) = || = |%1|+|%| = 1+|%| < n—£+ 2, which results
in A3(G) < n — £ since A3(G) is an integer. Suppose that all trees connecting
S belong to J5. Then A\(S) = |F| = |%2| < &‘-g‘i, which implies that
A(G) < A(S) < n -2

(3) Since | B[S, 5)UG|S]| > 3¢—8, it follows that | E(G[S])UEglS, 5]| <
3 +3(n — 3) — (3¢ — 8) = 3n — 3¢ + 2. Since G[S] = P3, we have G[S] =
P, U K;. Clearly, |[E(G[S))| = 1 and hence there exists no tree belonging to 7.
So each tree connecting S must belong to Z. From Lemma 5, A(S) < |F| =
|%5| < 3n=36+2 which implies that A3(G) < A(S) < n — £since A3(G) is an
integer. : O

Lemma 7. Let G be a connected graph with minimum degree 6. If there are two
adjacent vertices of degree 6, then \.(G) < §(G) — 1.

Proof. From Observation 1, Ax(G) < §(G). Suppose that there are two adjacent
vertices of degree §, say u; and up. Besides u; and ug, we choose some ver-
tices in V(G \ {u1,u2}) to get a k-subset S containing u;, ug. Pick up a vertex
ugz € S\ {u1,uz}. SgPpose that Ty, T3, - - - , Ts are & pairwise edge-disjoint trees
connecting S. Since G 1s simple graph, obviously the ¢ edges incident to u; must
be contained in Ty, T3, - - - , T, respectively, and so are the & edges incident to u,.
Without loss of generality, we may assume that the edge u;u; is contained in T7.
But, since T} is a tree connecting S, it must contain another edge incident with u;

or ug, a contradiction. Thus A\ (G) < §(G) — 1. O

A subset M of E(G) is called a matching of G if the edges of M satisfy
that no two of them are adjacent in G. A matching M saturates a vertex v, or
v is said to be M-saturated, if some edge of M is incident with v; otherwise,
v is M-unsaturated. M is a maximum matching if G has no matching M’ with
IM'| > |M].

Theorem 2. Let G be a connected graph of order n (n > 3). Then A3(G) = n—3

ifand only if G is a graph satisfying one of the following conditions.
eG=rPU(n-2r)K, (2<r<|3])
eG=PyUsP,U(n—2s—4)K; (0 <s < |234))

eG =P UtPU(n—2t—3)K, (0<t < |253));

eG=CiUtP,U(n—2t—3)K; (0<t < [253)).

Proof. Necessity: Assume that A3(G) = n — 3. From Lemma 4, for a connected
graph H, A\3(H) = n—2ifand only if 0 < |E(H)| < 1. Since A3(G) =n—3, it
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follows that | E(G)| > 2. We claim that §(G) < 2. Assume, to the contrary, that

5(G) > 3. Then A3(G) < §(G) =n—1— 86(G) < n — 4, a contradiction. Since
§(G) < 2, it follows that each component of G is a path or a cycle (note that an
isolated vertex in G is a trivial path). We will show that the following two claims

hold. -
Claim 1. G has at most one component of order larger than 2.

Suppose, to the contrary, that G has two components of order larger than 2,
denoted by H; and H; (see Figure 1 (a)).

Letz,y € V(H,) and z € V(H3) such that dy, (y) = dy,(z) = 2and z is
adjacentto y in Hy. Thus dg(y) =n—1—-dg(y) =n—1—dy,(y) =n —3.
The same is true for z, that is, dg(z) = n — 3. Pick S = {z,y, z}. This implies
that §(G) < dg(z) < n— 3. Since all other components of G are paths or cycles,
6(G) = n—3. So §(G) = n — 3 and hence dg(y) = dg(z) = 6(G) = n - 3.
Since yz € E(G), by Lemma 7 it follows that A3(G) < §(G) -1 =n—4,a

contradiction. —
Claim 2. If H is the component of G of order larger than 3, then H is a

4-path.
Assume, to the contrary, that H is a path or a cycle of order larger than 4, or
a cycle of order 4.

[]
H, e, Hg
& o
Y ‘ - ~
[s] (o]

(a) (b
Figure 1: Graphs for Claims 1 and 2.

First, we consider the former. We can pick a Ps in H. Without loss of
generality, let Ps = vy, vp,v3,v4,v5. Choose S = {vy,v3,v4}. Then S =
G\ {v2,vs,v4} (see Figure 1 (b)). Clearly, |E(G[S]) U E5[S, 8]| > 4. Since
vous, vavy € E(G[S]), it follows that G[S] = P,. From (3) of Lemma 6,
A3(G) < n — 4 (Note that if 3¢ — 8 = 4, then £ = 4). This contradicts to
A3(G) =n— 3.

Now we consider the latter. Let H = wv;,vs,v3,v4 be a cycle. Choose
S = {vs,v3,v4} (see Figure 1 (e)). Then |E(@[S]) U Eg[S, 5’]| > 4. Since
vavg,v3vy € E(G[S)), it follows that G[S] = P;. From (3) of Lemma 6,
A3(G) < n — 4 (Note that if 3¢ — 8 = 4, then ¢ = 4), which also contradicts
to A3(G) =n —3.

From the above two claims, we know that if G has a component Py, then it
is the only component of order larger than 3 and the other components must be
independent edges. Let s be the number of such independent edges. G can have
as many as such independent edges, which implies that s < ["T”*J From Lemma
4,5>0.Thus 0 < s < [ 254 ].

By the similar analysis, we conclude that G = rP, U (n — 2r)K, (2< 1 <
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[2[)orG = PyUsPaU(n—2s—4)K; (0 < s < |25%]) or G = PsUtPU(n—
2t—3)K; (0 <t < |252])or G = C3UtPU(n-2t—-3)K; (0 <t < | 2338)).

Sufficiency: We will show that A\3(G) > n — 3 if G is a graph satisfying one
of the conditions of this theorem. We have the following cases to consider.

Casel. G = P;UtP,U(n—2t—3)K; or G = C3UtP,U(n—2t—3)K, (0 <
t<252)).

We only need to show that A\3(G) > n — 3 fort = |252]. If A3(G) 2
n—3for G = C3UtP, U (n — 2t — 3)Kj, then A\3(G) > n—3forG =
P3 UtPy U (n — 2t — 3)K;. It suffices to check that A3(G) > n — 3 for G =
C3U 253 | P U (n - 2[ 25| — 3)K:.

Let C3 = v,v2,v3 and S = {z,y,z} be a 3-subset of G, and M =
|252)P,. 1t is clear that M is a maximum matching of G \ V(C3). Then
G\ V(C3) has at most one M -unsaturated vertex.

()
Figure 2: Graphs for Case 1.

If S = V(C3), then there exist n — 3 pairwise edge-disjoint trees con-
necting S since each vertex in S is adjacent to every vertex in G \ S. Sup-
pose S # V(C3). If |S NV(C3)| = 2, then one element of S belongs to
€ V(G) \ V(C3), denoted by z. Since d"é}“) = dG(ItIz) =dg(vz) =n -3,
we can assume that £ = v;, ¥y = vp. When z is M-unsaturated, the trees
T; = wizUw;yUw; z together with T = zzUyz form n—3 pairwise edge-disjoint
trees connecting S, where {wy, w2, ,wn-4} = V(G) \ {z,¥,2,v3}. When
z is M-saturated, we let 2’ be the adjacent vertex of z under M. Then the trees
T; = wizUw;yUw, z together with T} = zzUyz and Tp = 22’ Uy2'U2'v3Uzu;
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 2 (a)), where
{'lU1,W2, Tt vwn—S} = V(G) \ {xa Y, 2, 2’103}' If IS N V(Cs)l = 1, then
two elements of S belong to € V(G) \ V(Cs), denoted by y and z. Without
loss of generality, let £ = vp. When y and z are adjacent under M, the trees
T; = w;zUw;yUw;z together with T} = zyUyv,Uv z and Ty = z2Uzv3 Uvay
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 2 (b)), where
{wy,wa, ++ ,wn-s} = V(G) \ {z,y, 2,v1,v3}. When y and z are nonadjacent
under M, we consider whether y and z are M-saturated. If one of {y, z} is M-
unsaturated, without loss of generality, we assume that y is M -unsaturated. Since
G \ V(C3) has at most one M-unsaturated vertex, z is M-saturated. Let 2’ be
the adjacent vertex of z under M. Then the trees T; = w;z U w;y U w; 2 together
withT) = zyUyzand Tp = vyyUvizUZv U2’z and T3 = 22U zu3 U v3y
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 2 (c)), where
{wy, w2, ywn-6} = V(G)\ {z,¥,2,2,v1,v3}. If both y and z are M-
saturated, we let y', 2’ be the adjacent vertex of y, z under M, respectively. Then
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the trees T; = w;z U w;y U w;2 together with T} = z2 Uyz, Tp = xy Uyz' U
2y Uy'z, Ts = yug Uz'v3 Uzug Uzz’ and Ty = youy U y'vy U 2v; U y'z
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 2 (d)), where
{wi,wa, -+ ,wpn_2} = V(G)\ {z,¥,2,¢, 2,1, v3}. Otherwise, S C G\
V(Cs3). When one of {z,y, z} is M-unsaturated, without loss of generality, we
assume that z is M -unsaturated. Since G'\ V(C3) has at most one M -unsaturated
vertex, both y and z are M-saturated. Let 3/, 2’ be the adjacent vertex of y, z
under M, respectively. We pick a vertex z’ of V(G) \ {z,v,¥’, 2, 2/, v1, vs, vs}.
When z, y, 2 are all M-saturated, we let 2, ¢/, 2’ be the adjacent vertex of z, y, z
under M, respectively. Then the trees T; = w;z U w;y U w; 2 together with T; =
zv; Uyv;Uzv;(1 < 5 < 3)and Ty = zyUys’ Uz'z and T = xy' Uzy' U zy and
Ts = 2zUz2z' U2y form n— 3 pairwise edge-disjoint trees connecting S (see Fig-
ure 2 (e)), where {w;,ws,- -+ ,wn_o} = V(G)\ {z,y,2,2',¥, 2', v1, v2, va}.

From the above discussion, we get that A(S) > n — 3 for § C V(G), which
implies A3(G) > n — 3. S0 A\3(G) =n—3.

Case2. G=rPU(n—-2r)K; (2<7<|2))orG=PyUsPU(n—
25~ 4)K; (0<s < |254)).

We only need to show that A3(G) > n —3forr = 3] and s = |25%]. If
A3(G) 2 n—3forG = P,U| 252 | PU(n—2| 254 | —4) K, then \3(G) > n—3
for G = [3]P2 U (n — 2|3 ])K). So we only need to consider the former. Let
Py = v1,v2,v3,v4, S = {z,y,2} be a 3-subset of G, and M = G \ E(P,).
Clearly, M is a maximum matching of G \ V(P). Itis easy to see that G \ V(P;)
has at most one M-unsaturated vertex. For any § C V(G), we will show that
there exist n — 3 edge-disjoint trees connecting S in G.

If S C V(Py), then there exist n — 4 pairwise edge-disjoint trees connecting
S since each vertex in S is adjacent to every vertex in G\ V(P;). Since dg(v1) =
dg(va) = n — 2 and dg(vz) = dg(v3) = n — 3, we only need to consider .S =
{v1,v2,v3} and § = {vy, vg, vs4}. These trees together with T = yvs Uvaz Uvgz
for § = {v1,v2,u3}, or T = 2y Uyz for S = {v},vs,v3} form n — 3 pairwise
edge-disjoint trees connecting S. Suppose SNV (Py) # 3. If |SNV(Py)| = 2,
then one element of S belongs to € V(G)\V(F,), denoted by z. Since dg{v;) =
dg(v4) = n — 2 and dg(v2) = dg(vs) = n ~ 3, we only need to consider z =
VLY =120 = V2, = V3 O T = v,y = v4. When z is M-unsaturated, the
trees T; = w;zUw,;yUw; z together with g‘l = zzUyz, Ty = zv4Uyvya U 2v4 for
T =,y = vy, 0r Io = zv4Un4v; UviyUvgz forz = vg,y = vz, or To = zv3U
yvsUzus for z = vy, y = vg form n—3 pairwise edge-disjoint trees connecting .S,
where {wy, w, -+ ,wn_s} = V(G)\(V(Ps)U{z}). When z is M-unsaturated,
we let 2z’ be the adjacent vertex of z under M. For z = U9,y = vs3, the trees
T; = w;z U wyy Uw; 2 together with Ty = 22U yz, Tp = 22’ U yz' U 2'vg U zuy
and Ty = yv; Uvyv4Uzv Uzvg form n—3 pairwise edge-disjoint trees connecting
S (see Figure 3 (a)), where {wy,ws, -+ ,wn_g} = V(G) \ {z,¥, 2, 2',v1, vs}.
One can check that the same is true for £ = v),y = vy and T = vy,y = ¥4
(see Figure 3 (b) and (c)). If |[S N V(Py)| = 1, then two elements of S belong
to € V(G) \ V(P), denoted by y and z. We only need to consider £ = v; or
2 = vo. When y and z are adjacent under M, the trees T; = w;r U wiy U w;z
together with T = zyUzv,Uyv;, T = x2U2v3Uyvz and T3 = zv4 Uyva U zug
form n — 3 pairwise edge-disjoint trees connecting S for z = v, (see Figure 3
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(d)), where {wy,ws, -+ ,wn-6} = V(G)\ {z,v,2,v1,v3,v4}. The same is
true for z = v, (see Figure 3 (e)). When y and z are nonadjacent under M, we
consider whether y and z are M-saturated. If one of {y, z} is M-unsaturated,
without loss of generality, we assume that y is M-unsaturated. Since G \ V(Py)
has at most one M-unsaturated vertex, z is M-saturated. Let 2’ be the adjacent
vertex of z under M. For = = wv,, the trees T; = w;z U w;y U w;z together
withTy = zz2Uyz, T = yuzU vy Uz, T3 = viyUwvizUzz and Ty =
2’z Uvay U z'va U zv3 form n — 3 pairwise edge-disjoint trees connecting S (see
Figure 3 (f)), where {w;, w2, -+ ,wn—7} = V(G)\ {z,9, 2,2, v1,v3,v4}. The
same is true for z = v; (see Figure 3 (g)). If both y and 2 are M-saturated, we
let ¢/, 2’ be the adjacent vertex of y, z under M, respectively. For z = v,, the
trees T; = w;z U w;y U w; z together with Ty = zz U yz, To = yuz U zv3 U 2z,
Ts = zug UyvyUzvg, Ty = yu, Uy'v Uz Uy’ and Ty = z2' U2y U2’y Uy'2
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 3 (h)), where
{w1, w2, ,wn_g} = V(G)\ {2,v,2,¥,2,v1,v3,v4}. The same is true for
z = v; (see Figure 3 (i)). If S € G\ V(P;), when one of {z,y,2} is M-
unsaturated, without loss of generality, we let z is M-unsaturated, then both y and
2 are M-saturated. Let 3/, z’ be the adjacent vertex of y, z under M, respectively.
We pick a vertex =’ of V(G) \ {z,v,¥, 2, 2, v1,v2,v3}. When z,y, 2 are all M-
saturated, we let ', y’, 2’ be the adjacent vertex of x, y, z under M, respectively.
Then the trees T; = w;T U w;y U w;z together with T; = zv; Uyv; U zv;(1 £
j<4)andTs = yzUzy' Uy'zand Ts = yz'Uzz'Uzz and Ty = zyUyz' U2’z
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 3 (j)), where
{wi,wa, -+ ,wno10} = V(G) \ {z,9, 2,2, ¢/, 2, v1,v2,v3, va}.

Figure 3: Graphs for S in Case 2.

From the above arguments, we conclude that for any S C V(G) X(S) >
n — 3. From the arbitrariness of S, we have A3(G) > n — 3. The proof is now
complete. O
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3 The minimal size of a graph G with \3(G) = ¢

Recall that g(n, k, £) is the minimal number of edges of a graph G of order n
with A\ (G) = £ (1 < £ < n — [£]). Let us focus on the case k = 3 and derive
the following result.

Theorem 3. Let n be an integer withn > 3. Then

1) g(n,3,n-2)=(3) - L,

(2) 9(n,3,n = 3) = (3) — | 22}

(3) g(n? 3, 1) =n-1

(4) g(n,3,8) > [%ﬁ—iln] forn > 11and 2 < £ < n — 4. Moreover, the
bound is sharp.

Proof. (1) From Lemma4, A3(G) =n—2ifandonlyif G =K, orG = K, \ e
where e € E(K,). So g(n,3,n —2) = (}) — 1.

(2) From Theorem 2, A3(G) = n—3ifand only if G = rP,U(n—2r)K; (2 <
r<|2))orG =P UsP,U(n—-2s—4)K, (0 < s < [254]) or G =
PaUtPU(n—2t-3)K; (0<t < [22])or G = C3UtP U (n — 2t —
3)K; (0 <t < |253]). If niseven, then max{e(G)} = 2£2, which implies that
9(n,3,n-3) = (3) —max{e(G)} = (3) ~ 22. If n is odd, then max{e(G)} =
243, which implies that g(n, 3,n — 3) = (3) — max{e(@)} = (7) — 2£2. So
9(n,3,n—3) = (3) — [ 2£2].

(3) It is clear that the tree T}, is the graph such that A\3(T,) = 1 with the
minimal number of edges. So g(n,3,1) =n — 1.

(4) Since Ax(G) = € (2 < £ < n — 4), by Lemma 7, we know that §(G) > ¢
and any two vertices of degree £ are not adjacent. Denote by X the set of vertices
of degree £. We have that X is an independent set. PutY = V(G) \ X and
obviously there are 2| X | edges joining X to Y. Assume that m’ is the number of
edges joining two vertices belonging to Y. It is clear that e = ¢|X| + m’. Since
every vertex of Y has degree at least {+1in G, then )~ ., d(v) = ¢|X|+2m’ >
(¢+1)|Y]| = (£+1)(n—|X|), namely, (2¢+1)|X|+2m’ > (£+1)n. Combining
this with e = £]X| + m’, we have 2 e(G) = (2¢ + 1)| X | + 2t m’ > (2¢ +
1)|X| + 2m' > (£ + 1)n Therefore, e(G) > %—gi—?n. Since the number of edges

is an integer, it follows that e(G) > I'%%Zn].

To show that the upper bound is sharp, we consider the complete bipartite
graph G = Kppp1. Let U = {ug,u,--- ,ue} and W = {wy,ws, - y We1}
be the two parts of K¢ ¢43. Choose S C V(G). We will show that there are £
edge-disjoint trees connecting S.

If |SN U| = 3, without loss of generality, let S = {u;, up,u3}, then the
trees T; = ujw; U ugw; U ugw; (1 < 4 < €+ 1) are £ + 1 edge-disjoint trees
connecting S. If |S N U| = 2, then |S N W| = 1. Without loss of generality, let
S = {u1,u, w; }. Then the trees T; = v w; Uww; Unw; (4 <4< £+1)and
11 = wywy U wywa U ugug and T = ugw; U usws U ujws are £ edge-disjoint
trees connecting S. If [SNU| = 1, then |SNW| = 2. Without loss of generality,
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let S = {uy,w;, wa}. Then the trees T; = uyv;41 Uniwitr Uniwy Uuywr (2<
i <€) and T} = uyw; U ujw, are £ edge-disjoint trees connecting S. Suppose
|S N W] = 3. Without loss of generality, let S = {w;, w2, w3}, then the trees
T, = wyu; U wau; Uway; (1 < 1 < £) are € edge-disjoint trees connecting S.

From the above arguments, we conclude that, for any S C V(G), A(S) > £.
So A3(G) > £. On the other hand, A3(G) < §(G) = £ and hence A3(G) = ¢.
Clearly, [V(G)| = 2¢ + 1, e(G) = £(£ + 1) = [§&tn).

So the lower bound is sharp fork =3and2 < £ <n—4. O
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