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Abstract

For non-negative integers ny,n2,...,n, let GLn, n,.....n, (Fq) de-
note the ¢-singular general linear group of degree ny+n2+- - -+n. and
Fgr+n2++7 denote the (ny +na + - - - + n,)-dimensional ¢-singular
linear space over the finite field F,. Let M be any orbit of subspaces
under GLn, n,....n, (F,;). Denote by £ the set of all intersections of
subspaces in M. Ordered £ by ordinary or reverse inclusion, two
posets are obtained. This paper discusses their geometricity and
computes their characteristic polynomials.

Key words: Lattice; t-singular linear space; Atomic lattice; Geo-
metric lattice; Characteristic polynomial.

1 Introduction

Let P be a partially ordered set (or poset) with a binary relation <.
We use the obvious notation a < b to mean a < b and a # b. We say that
two elements a and b of P are comparable if a < b or b < a, otherwise a and
b are incomparable. If a,b € P, then we say that b covers a or a is covered
by b, denoted a < b, if a < b and no element ¢ € P satisfies a < ¢ < b. An
element m € P is called a minimal (resp. maximal) element if there exists
no a € P such that a < m (resp. m < a). If P has the unique minimal
(resp. maximal) element, then we say that P has the minimum (resp.
maximum) element, denoted by O (resp. 1). From now on we suppose P is
a poset with 0 (resp. 1). If the least upper bound of @ and b exists, then it
is clearly unique and is denoted a vV b. Dually one can define the greatest
lower bound a A b, when it exists. A lattice is a poset L for which every
pair of elements has the least upper bound and the greatest lower bound.
Let L be a finite lattice with 0. An atom of L is an element covering 0,
and L is said to be atomic if every element of L is the least upper hound of
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some atoms. Let P be a finite poset. By a rank function on P, we mean
a function » from P to the set of all the nonnegative integers such that

(i) 7(0) =0,
(ii) 7(b) = r(a) + 1 whenever a < b.

A finite atomic lattice L with 0 is said to be geometric if L admits a
rank function 7 satisfying

r(a Ab) +r(aVb) <r(a)+r(d)

for any two elements a,b € L.
Let P be a finite poset with 0 and 1. The polynomial

X(P.t) = ) u(0,a)r®r
a€EP

is called the characteristic polynomial of P, where r is the rank function
on P.

There have been many interesting results for lattices generated by sub-
spaces, see Huo, Liu and Wan ([7]-[9]), Huo and Wan ([11]), Guo et al.
([1)-[5),[10]) and Wang et al. ([12]-[14]). These research stimulates us to
consider lattices generated by orbits of subspaces in t-singular linear spaces.

This paper is organized as follows. In Section 2, t-singular linear spaces
are introduced. In Section 3, two families of finite atomic lattices are ob-
tained and their geometricity are discussed. In Section 4, we compute their
characteristic polynomials.

2 t-singular linear spaces

Let I, be a finite field with g elements, where g is a prime power. Let
ny,ng,...,n, be non-negative integers and Fy1 724+ be the (n; +ny +
-+ + n,)-dimensional row vector space over F,. The set of all (n; +ng +
v+ 4mn) X (] + ng + -+ - + n,) nonsingular matrix over F,

ny na e ng

T The - T\ m
T22 e T2t na

T= : .
Tu ne

forms a group under matrix multiplication, called ¢-singular general linear
group of degree ny +ng+---+n, over F, and denoted by GLy, n,,...,n, (Fy).
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There is an action of GLp, n,.... n, (Fq) on Fpr#nat-+ne defined as follows:

e
IF;“"""" e GLn;.ng,...,ng(qu) - Fg”'""" +ne
((:El,xg, ey Ty dng ety ), T) — (.’Bl, T2y s Tnytngte+n, )T

The vector space Fy1tn2++n¢ together with the above group action is
called (n; 4+ n3 + - - + n,)-dimensional ¢-singular linear space over F,.

Let P be an m-dimensional subspace of Fgitnate+ne denote also by P
an m X (n; +ny +- - - +n,) matrix of rank m whose rows span the subspace
P and call the matrix P a matrix representation of the subspace P. For
1 < j S nytng+- - -+ny, let e; be the row vector in Fj1 #7247 whose j-th
coordinate is 1 and all other coordinates are 0. For 2 < i < t, denote by E;
the (n; +ni41 +- - - +n.)-dimensional subspace of Fgrtnat+n spanned by
Enytednicy 410 €ngdodni 142y - - Enytebngdotn, . A kj-dimensional sub-
space P of Fp1tnat+n s called a subspace of type (ki,ks,..., k) if
dim(P N E;) = k; for each ¢ with 2 < i < ¢.

Denoted by M(ky, k2, ..., ki;ny,n2,...,n,) the set of all the subspaces
of type (ki, ko, ..., k) of Fpr+72++7 and denoted by M'(ly,la, . .., 1; ki,
ka, ..., ki ny,ng,. .., n) the set of all the subspaces of type (ky, k2, ..., k;)
containing a given subspace of type (I1,1s,...,1).

Proposition 2.1. ({6, Proposition 2.2]) The set M(ky, ks, ..., ki;ny,ng,
..., N;) is non-empty if and only if

0<ki—kis1<n; (1<i<t—-1)and0< k, < n,. (1)
Moreover, if (1) holds, then M(ky,ka, ..., ky;ny,ng,. .. ,ne) forms an orbit
under GLn, ny.....n (Fq) and [M(ky, ks, ..., kiny, na,... ng)| = {;;:]q x
t—1 :

H q(kj-k.i+1)(".i+1+--~+m~kj+x) [ n; ]q .

je1 kj—kjp1
Proposition 2.2. (/6, Corollary 2.3]) The set ML, la, . ek ks,
ke;ny,na,. .., ng) is non-empty if and only if

OSli-li+1 Skz’_ki+l ﬁni (ls’tst—l) andOSlt §k¢$nt. (2)
Moreover, if (2) holds, then |M'(l1,1a,.. sk, ko, kg g, ny))

t=1

kjmkjp1—l;+0; et —ks t—

l(: jer=lite) (et dne—kjp) ne—1, Hl nj=ly
ko=t [ g AL Lkimki=ttm [y

= qj=
3 Lattices generated by orbits of subspaces
Let Fpr+n2+ 47 denote the (ny +nz+- - - +n,)-dimensional ¢-singular

linear space over Fy, and M(ky, ky, ..., ke;;ny,na,...,n,) denote the or-
bit of subspaces of type (ki,k2,..., k). Clearly, {0} and {]F‘Y;x+n2+-..+n,}
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are two trivial orbits in Fg1*m2+ "+ The set of subspaces which are
intersections of subspaces in M(ky, ko, ...,k;n1,n2,...,n;) denoted by
L(ky, ko, ... ke;ny,n2,...,ne) and call L(ky,ka,...,k;n1,n2,...,7¢) the
set of suhspaces generated by M(ky,ka,...,k;ny,n2,...,n,). We agree
that the intersection of an empty set of subspaces is Fy!*"2++"t. Then
Fratnzt-+ne ¢ [.(kl, ko, ... ke; ny,ma,. .., nt).

Partially ordered L(ky,k2,...,kt;n1,n2,...,n:) by ordinary or reverse
inclusion, we get two posets and denote them by Lo(k1, k2, ..., ks, e, . ..
ny) or Lr(ky, ka, ..., ke;ni,n2, ..., ne) respectively. Clearly, for any two el-
ements P,Q € Lo(ky, ka, ..., ke ny,ne, ..., 1),

PAQ=PNQ, PVQ=({Re Lo(k,-...ks;n1,...,ne) : R 2(P,Q)}

where (P, Q) is the subspace spanned by P and Q. Therefore, Lo(ky, ka,...,
ky;ny,ng,...,n) is a finite lattice. Similarly, for any two elements P,Q €
‘CR(kly ceey kt; ny, N2,... 7n2)’

PAQ=n{RE‘CR(kla-“ykt;nls'"vni):RQ(P’Q>}5 PVQ=PnQ

So Lgp(k1, k2, .., kt;n1,n2,...,n,) is also a finite lattice. Both Lo(ki, k2,
... k;ny,na, ..., n) and Lr(ki, ke, ..., ke n,ng, ..., ne) are called the
lattices generated by M(ky, k2, ..., ki1, ng, ..., ne).

If there exists some j with 1 < j <t such that n; = 0, then L(ky,...,
kj—lvkja kj-{-l’ o ik'-; VR LT ES PR O PRI S PR ,nt) = ‘C(kls vey kj—lv kj+l7
v kgng, .., M1, Tjt1y e ,n,). If k, = n;, then Co(kl, ka,..., ki-1,n¢;
N1, N2y ..., N1, nt) (reSP- L:R(kl’ k21 RS ) kt—l’nt;nlanz’ ceey -1, nt) ) is
isomorphic to Lo(ki, ko, ..., ki—1;n1,M2,...,71—1) (resp. Lp(ky, k2,...,
ke_1;n1, n2,...,ne—1)). If ky = 0, then L(ky,...,ki;n1,...,n) = {{0},
1F:,“+“'+“'}. Therefore, in the rest of this paper we always assume that n;
is a positive integer for each j with 1 < j <t, k; <n; and k; > 0.

Before discussing the geometricity of these two lattices Lo(k1, k2, .. ., ki;
ny,n,...,n,) and Lg (k1, k2, ..., ki1, ng,...,n) we first give a lemma
and some useful Theorems.

Lemma 3.1. Let0 < ki —k;y1 <n; (1<i<t—1)and0 <k, <ny. Then
for each j with1 < j < t, we have Lk, —1,...,]93' —l,kj+1,...,k¢;n1,n2,
...,ng)g£(k1,...,kj,ij,...,k,;nl,ng,...,ng).

Proof. If kj — kj+1 = 0, then the result is obvious. Suppose k; —k;j41 2> 1.
For any P € M(ky —1,...,k; — 1,kj41,. .., k311,12, ..., nt), by Proposi-
tion 2.2 the number of subspaces of type (k1, k2, ..., k:) containing P is

|M'(k1'—1,...,kj—'l,kj+1,...,kt;kl,kz,...,kg;nl,ng,...,nt)l > 2, which
impliesP S C(kl,kz,...,kt;nl,nm.. .,nt). So L(kl—l,...,kj—l,kj+1,...,
kt;nla n2s"~snt) c E(kh-"akjvkj+la""kt;n1)n‘2’~ ~'ynt)- O
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Theorem 3.2. Let 0 < k; - ki+1 <y (1 i1 <t- 1) and 0 < ky < .
Then E(ll,lg,...,l,;nl,ng,...,n,) - E(kl,kg,...,kt;nl,ng,...,n,) z'fand
only if

0<li—liy1<ki—kiy) (1<i<t-1)and0< !, <k, (3)

Proof. First, we suppose (3) holds. By Lemma 3.1, we have L(k}, ks, ..., ke;
Tl],'RQ,...,nt) 2‘C(kl_11k2_ls"')kt—'l;nlyn%-*'!nt) 2 Q‘C(kl"'
le — keyko + 1 —kyyo o by + 1, — ki, li;ny,ng,. .., n). Next, we have
E(kl +l¢ —kt,k2+lt —kt, . ..,kt_] +l¢ —kg,lg;nl,ng,. .. ,nc) 2 £(k1+lg bl
kt ot 1,k2 +l¢ - kt - 1,...,k¢_1 + lg - kg - l,lt;nl,ng,...,m) 2 L(kl +
Loy =k ke +leoy =Koy koo +lioy —key, by Iy may ooy mg) 2
< 2L g,y ne, . ).

Conversely, suppose that L(l},la,...,l;ny,na,...,n) C L(ky, ko, ...,
kt;nl,ng,. aey n,). Since M(ll,lz,. .. ,lt;nl,ng, ce ,nt) - [,(l],lg,. .o ,lt; ny,
na,...,ne) C L(k1, k2, ..., ke;ny,n0,...,ne), forany @ € M(ly, Lo, ..., L0y,
ng,...,n), there exists P € M(ky, k2, ..., ki;ny,na,..., ny) such that
@ C P. By Proposition 2.2, the desired result follows. O

Theorem 3.3. Let0 < k;—k;iy1 <ni (1 <i<t—1) and0 < k; < ny. Then
L(ky, kg, ... ki;ny,na, ..., ne) consists of Fpitnzt+ne gnd all subspaces
Of type (11,12, ...,lt) with 0 S li - li+| S ki _kH-l (1 S i S t— 1) and
0<l; <k.

Proof. By Theorem 3.2, it is straightforward. a

Theorem 3.4. Let 0 < k; — ki) <n; (1 <i<t— 1) and 0 < k¢ < n;.
Then Lr(ki,k2,... ki;ny,n2,...,ne) is a geometric lattice if and only if
ki=1Lki=ni+no+---+n—lork =k =n,—1.

Proof. For any X € Lp(k1, ko, ... ki;ny,ng,.. ., M), define

X 0, if X =Fptratotn
rr(X) = { k1 +1—dim(X), otherwise.
Then rp is the rank function on Lg(ki, ks, ..., k0, no,. .. NN

Note that Fg1+m2++7 js the minimum element of Lg(ky, k3, . . ., ke; 1y,
ng,...,n¢), and M(ky, ko, ..., ky;nq,na, ..., n) is the set of atoms of Lg(k,,
ka,...,ky;ny,ng,...,n). For any U € Lg(ky, ka,... kyng,no, ..., ng) \
{Fgitnattne} by definition of Lr(k1, ko, ..., ke;n1,72,...,7,), we have
U is the least upper bound of some atoms, which implies that Lg(k, k2, .. .,
ky;ny,ng, ..., ne) is an atomic lattice.

If ky = 1, then Lp(ky, ko, ..., ki;ny,n2,..., ny) is a lattice of rank 2,
which implies that Lg(ky, ks, ..., kjny,n2,...,n,) is a geometric lattice.
Suppose k) = n1+na+:--+ny—1. Forany U, V € Lg(ky, ks, ..., ki1, ng,
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coc,my) we have UVV = UNV and UAV 2 (U,V), which implies
that dim(U A V) > dim({U,V)). Therefore, rr(U AV) +rr(UV V) =
(k1 +1—dim(UAV)) + (ky + 1 —dim(U VV)) < (k1 + 1 —dim({U, V))) +
(ky+1-dim(UNV)) = (k1 +1—dim U)+ (k1 +1-dim V) < rp(U)+7r(V),
which implies that Lg(ky, ko, ..., kt;n1,n2,...,n,) is a geometric lattice.
If ky = k; < ny — 1, then Lg(ky, ko, ..., kt;n1,n2,...,n) is isomorphic to
Lr(ks;ny), Theorem 5 in [11] tells us that Lr(k:;n;) is a geometric lattice
if and only if k; = n, — 1.

Suppose 2 < k; < ny+ng+---+n;—2and k; > k. Then there exist
two k;-dimensional subspaces U,V in Lg(ky,...,k;n1,...,n,) such that
UAV = Fp+-+m and dim(UVV) = ki —2, which implies that rr(UAV) +
rr(UVV) > rg(U) + rr(V). Therefore Lr(k1,k2,... ke n1,72, .- ,ne) is
an atomic lattice but not a geometric lattice. 0

Theorem 3.5. Let 0 < ki — ki1 <n; (1€i<t—1) and 0 < ke < my.
Then Lo(ki,. .., ke;ny, ... 1) is a geometric lattice if and only if k; =1
or ki = k:.

Proof. For any X € Lo(ki, k2, ..., k;n1,n2,...,1n), define

p— k]. + 1, if X = F31+n3+...+n‘;
ro(X) = { dim(X), otherwise.

Then 7o is the rank function on Lo(ky, k2, ..., ke 11, N2, .., 0t).

Note that {0} is the minimum element of Lo(k1, k2, - .., ks;ni,n2, ..y ng).
ForanyU € Lo(ki, ..., ki, ..., me)\{{0}, Fpr P2t =t} et oy, ..., Cdimu
be a basis for U. By Theorem 3.3, each {&;) with 1 < j < dimU is an atom
of Lo(ky,...,kt;n,...,ne), which implies that U = V?':;U(aj). Hence
Lo(k1, k2, ..., k;n1,n2,...,n) is an atomic lattice.

If k&, = 1, then Lo(k,...,ke;ny,...,ne) is a lattice of rank 2, which
implies that Lo(ki,...,ks;n1,...,n) is a geometric lattice. If ky = ki,
then Lo(k1,...,kt;n1,...,nt) is isomorphic to Lo(k¢;ne), by Theorem 4
in {11} Lo(k:;n:) is a geometric lattice.

Suppose 2 < k; < ny+na+---+n,— 1 and ky > k;. If k; > 0, by The-
orem 3.3 M(ks, ..., ke;n1,...,ne) © Lolk,... ki n1,...,ne). Therefore,
there exist two k;-dimensional subspaces U,V in Lo(ky,... k11, ..., n¢)
such that dim(U AV) = k, — 1 and UV V = Fpr++" which implies
that ro(U A V) + ro(U VV) > ro(U) + ro(V). If k¢ = 0, then there
exists some j with 1 < j < t — 1 such that k; > 0. Without loss of
generality, assume that j := max{l : k > 0 (1 <! <t —1)}. By The-
orem 3.3 M(kj, ‘e ,kj,kt, PN ,Ict;nl,.. . ,’ng) - ﬁo(kl, e ,k,;nl, PN ,nt).
Therefore, there exist two k;-dimensional subspaces U,Vin Lo(ki,... k
im1,...,n;) such that dim(UAV)=k;j—1land UVV = Fprt+7:, which
implies that ro(U AV)+7ro(UVV) > ro(U)+ro(V) for kj < k1. Assume
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that k; = k;. By Theorem 3.3 M(k;— =L k..o keyny, ... ,n) C
Lo(ky,...,k;ny,...,n,). Therefore, there exlst two (k; — 1)- dlmensmnal
subspaces UV in £o(k1, . kesmy, ... ne) such that dim(UAV) = k; — 2
and UVV = Fhtotne whlch 1mp11es that ro(UA V) + ro(U v V) >
ro(U) + ro(V). Therefore Lo(ky,ke,. .., k;ny,ne,...,n,) is an atomic
lattice but not a geometric lattice. |

4 Characteristic polynomials

Theorem 4.1. Let 0 < ki —kip1 <n; (1 <i<t—1)and0 < k, < n,.

Then the characteristic polynomial of Lp(ki, ko, ..., ky;ny,na,...,n;) is
ke keo1—kot+le ko —k3z+l3 ky—ky+12 .
x(Lgr,z) =z +1- % > o) S Myl .. b0y, ng,

=0 {_ l_l, la=l3 li=l,
-y )|y, (), where g, (z) = H (z—¢%), go(z) = 0, where Lp = Lp(ky, k2,
-1kt;nlyn27'- . ’nt)'

Proof. For U € Lp(ki, ka,... k;n1,n2,...,n,), let £V = {WeLp:
W > U}, then LR £ r. Since {0} is the maximum element and
Fp1+n2++7 s the minimum element in £, the characteristic polynomial

of Lpis

X(CR,:L')= Z: u(IF;““"‘”‘--'F"‘,U)x’“*‘l-'n(U)_
Uelp

By the Mébius inversion formula z*1+! = 5~ x(£Y,z). By Theorem 3.3

UeL
and Lemma 3.1,
ke ke—1—ketly
X(Lr,z) = zh+! - > X(£Y,z) = gh+t —
UeLp\Fy1tnattne =0 le_1=l,
k2—ka+i3 ky~ka 412
lM(l]_,lg,...,lt;nl,ng,...,nt)l xgll(x). a

la=ly l,=ly
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