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Abstract: Multisender authentication codes allow a group of senders to
construct an authenticated message for a receiver such that the receiver
can verify authenticity of the received message. In this paper, a new
multisender authentication codes with simultaneous model is constructed
base on singular symplectic geometry over finite fields. The parameters
and the maximum probabilities of deceptions are also computed.
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§1.Introduction

The construction of authentication codes is an important topic in cryp-
tography. Based on Simmons model of unconditionally secure authentica-
tion[1], authentication systems with multiple senders were introduced in
(2], in the system ,there are multiple senders and construction of a code-
word requires collaboration of a subset of them. In a simultaneous model,
there are four participants: a group of senders U = {U;,U,,--- yUn} ;s a
Key Distribution Center (KDC), distribute keys to senders and receiver;
a combiner C which is a public algorithm; a receiver which receives the
authenticated message and verifies the message truth or not. In order to
authenticate a message, there are four phases in a multisender model with
simultaneous:

1. Key Distribution: KDC randomly selects an encoding rule e € E
and secretly sends it to the receiver R , and sends e; = m;(e) to the i—th
sender U;, i = 1,2,..-,n;
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2. Broadcast: For a source state s € S, if the transmitters Uy, -,U,
would like to send a source state s to the receiver R, U; computes t; =
fi(s,er.), and sends m; = (s, ;) to the combiner through a public channel;

3. Combination: The combiner receives the messages m; = (s,t;), (i =
1,---,n), and calculates t = (¢, - - ,tn)using the combiner algorithm ¢,
then sends the message m = (s,t) to the receiver R;

4. Verification: When the receiver receives the message m = (s,t), he
checks the authenticity by verifying whether ¢ = g(s, e) or not. If the equal-
ity holds, the message is regarded as authentic and is accepted. Otherwise,
the message is rejected.

In a multisender authentication system, the whole senders are cooper-
ation to form a valid message, but there are some malicious senders which
they together cheat the receiver, the part of senders are not credible, they
can take impersonation attack and substitution attack.

We adopt Kerckhoff’s principle that everything in the system except
the actual keys of the sender and receivers is public. This includes the
probability distribution of the source states and the sender’s keys.

Assume that Uy, Us,,---,U, are transmitters, R is a receiver, Ey, is
the encoding rules of U;, Eg is the decoding rules of receiver R. D =
{ilyi21"'1id} C {1,2,"',”}, d < n, UD = {UipUiz"”and}) ED =
{Ev.,»Ev.,» -, Eu,, }. Next we consider the attacks from malicious groups
of transmitters.

Impersonation attack: Up, after receiving their secret keys, send a mes-
sage m to receiver. Up is successful if the receiver accepts it as legitimate
message. Denote P;{D] is the maximum probability of success of the im-
personation attack. It can be expressed as

P;[D] = max max P(m is accepted by Rlep).
1[D] = max max ( pted by Rlep)

Substitution attack: Up, after observing a legitimate message m, sub-
stitutes it with another message m’'. Up is successful if m’ is accepted by
receiver as authentic. Denote Ps[D)] is the maximum probability of success
of the substitution attack. It can be expressed as

Ps[D] = Jmax max m";‘ﬁ’éM P(m is accepted by R|m,ep).

Many scholars have studied multi-receiver and multi-sender authentica-
tion codes, some constructions are given in[3-8], and it is well known that
authentication codes which are constructed by the geometry of classical
groups over finite fields are easy to compute, and a series of authentica-
tion codes with arbitration(A2-codes) are constructed see [9-12]. There is
a great relationship between A2-codes and multi-receiver/multi-sender au-
thentication codes. In this paper we construct a new multi-sender code
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from singular symplectic geometry over finite fields, and parameters and
the probabilities of deceptions of the code are also computed.

§2.Preliminaries

Singular symplectic geometry over finite fields is introduced in {13]. Let
n = 2v 41 and define the (2v + {) x (2v + {) alternate matrix

0o IV
K= -1»y 0
o

The set of all (2v + 1) x (2v + 1) nonsingular matrices T over F, satisfying
TK\T = K forms a group , called the singular symplectic group of 2v + |
over the finite field F, , denoted by Spav 41, (Fg). There is an action of

SP2u+1,,(Fy) on F$**) defined as follows:
F((l2u+l) X Sp2u+l,u(]Fq) N F‘(I2u+l)

(1 zy 2, T) = (2120 -y )T
Then the vector space F.(,2"+l) together with the above action of the group
Sp,, 1., (Fq) is called the 2v + l-dimensional singular symplectic space over

Fy. Let e;(1 < i < 2v + 1) be the row vector in IFS,z"H) whose i-th coordi-
nate is 1 and all other coordinates are 0. Denote by E the I-dimensional
subspace of IFf,z"“) generated by ez, 11, €2,42, - -, €2,41. An m-dimensional
subspace P of F((,zu“) is called a subspace of type(m, s, k) if

(i) PK,P" is cogredient to M(m,s) ,and
(ii) dim(P ) E) = k, where

0 I
M{m,s)=| -I®) 0
olm—9)

Let v,u two non-zero vectors in ngz"“), they are said to be orthogo-

nal(with respect to K;) if uK;v* = 0, we say that u is orthogonal to v.
Furthermore, for any subspace P we denote by PL the following set :
Pt = {u e F®"*luKvt =0, for all v € P).

More properties of singular symplectic geometry over finite fields can
be found in [13].
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§3.Construction

Let F, be a finite field with ¢ elements. Assume that 1 < n <

n < v, n+n < v. v(l £ ¢ < 2v) be a row vector in IF(2"+I) U =
(v1,v2,---,v,, €2,41)and U' is a fixed subspace of type(n +1,0,1),Uisa
fixed subspace of type (n+1,0,1), andU c U ,W; = (v1,-+,Vi—1,Vit1 -

v,+). The set of source states S={s|sis a subspace of type (2n+k,0,k) and
U C s C Ut} the set of i—th transmitter’s encoding rules Ey,={ey,|ev,
isa subspace of type (n +2,1,1) and U C ey, ey, L W;}; the set of
receiver’s decoding rules ER—{egleR is a subspace of type (2n + 1,n,1)
and U C eg}; the set of i—th transmitter’s tags T;={t;|t: is a subspace of
type (2n + k 4+ 1,1,k) and U C t; € W;L,t; ¢ UL}, the set of receiver’s
tags T={t|t is a subspace of type (3n + k,n,k) and U C t}.

Define the encoding map

fi:Sx Ey, —T;, fils,ev,)=s+ey, 1<i<n’.
The decoding map
f:SxEr—T, f(s,er) =s+egr.
The synthesizing map
g xTyx - xTp, —T, g(t1,t2,- - ta) =t1 +ta+ -+t +w,

where w is a subspace and t; +t2 + - + t, + w is a subspace of type
(Bn+ k,n, k).

This code works as follows:

1. Key Dnstrlbutlon KDC randomly chooses a ep € Ep and selects
atype (2n +1,n 1) subspace e such that U’ C e, and selects ey, € Ey, so
that ey, + ey, +--- + ey, = e. w is a subspace and satisfying er = (e, w).
KDC secretly sends er, ey, to the receiver and the senders, respectively,
and sends w to the combiner C.

2. Broadcast: If the senders want to send a source state s € S, U;
calculates ¢; = fi(s,ev,) = s + ey,, and then sends t; to the synthesizer C
through a public channel, 1 <i<n'.

3. Combination: The synthesizer receives t;,ts,- - -, t,, he calculates
t =g(t1,t2,- ", tn) = t1 +t2 + - + tn + w, and then sends (s,t) to the
receiver R.

4. Verification: The receiver R receives (s,t), he calculates t' =
f(s,er) = s+ egr. If t =t/, he accepts ¢, otherwise, rejects it.

Assume that the encoding rules of the transmitter and the receiver
are chosen according to an uniform probability distribution. From the
transitivity properties of singular symplectic group we can assume that:
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I®) 0 0 0 0

UL 0 I»™ 0 0 0
- 0 0 0 I¥wm g
0 0o 0 o0 IO

n v—n n v—n !

Next, we will show that the above construction of this multisender au-
thentication code is well defined.

Lemma3.1 Let C = (S, Eg,T; f), Ci = (S, Ey,,T; f;), then C and C;
are Cartesian authentication codes, 1 <i < n.

Proof: For s € S, egr € Eg , from the definition of s and er, we can

assume that
s = U n+1 a d ep = U n+1l
“\Q ntk—1 THCER= | p n
then
T 0 0 O
( g )Kz( g ) = 0 0 0}.
0 0O
and

T 0 I o
(g>m(g)= —I™ o o
0 0 0
Obviously, for any ¢ € Q and g # 0, we have ¢ ¢ eg, therefore

t=s+ep=| Q |, and

R
T 0 0 I™ o
g K g _ 0 0 x 0
R R Tl -I™ o« 0 o0
0o 0 O



so t is a subspace of type(3n + k, n, k),and U C t.
On the other hand , for any t € T, t is a subspace of type (3n+k, n, k),
so there is a subspace V' C ¢, satisfying

T 0 I(")O n
(g)K,Gf) =|-1™ 0 0}~
0 0 0/ 1

U

we can assume that t = (V) satisfying
P

U AN 0 IM™Mo\ »
VIKI|IV] =(-I™ 00] =
P P 0 00 n+k

Denote s = ( g ) , then s is a subspace of type(2n + k,0,k), and U C
ScULt,soseS. Foranyv € Vandv;éo,wehavev¢s,sos=tr'\UJ-,
then er = ( g is an encoding rule and t = s + epg.

If there is another source state s’ contained in ¢, from the definition of
s, we know &' C tN UL = s, and dim (s') =dim (s), so s’ = s,ie., s is the
unique source state contained in t. So C is Cartesian authentication code.

Similarly, we can prove that C;(1 < ¢ < n) are also Cartesian authenti-
cation code.

From the Lemma 3.1, we know the construction is well defined. Next,
we compute the parameters of the code.

Lemma 3.2 The number of the source states is
18] = ¢**~FIN(n,0;2(v — n))N(k — 1,1 - 1).

Proof: From the definition of s, s is a subspace of type (2n + k, 0, k)
and U ¢ S ¢ UL, so s has the form as follows

Im o 0 0 0 0 0 n
0 X, 0 X2 0 0 X3 n
0 0 0 0 1 O 0 1
0 0 0 0 0 I&D o k-1

v—n n v-n 1 k-1 -k

S =

where(X; Xz) is a subspace of type(n,0) in ]FE("_") and X3 arbitrarily.
Therefore the number of the source states is

18| = ¢*4"9IN(n,0;2(v — n))N(k - 1,1 - 1).
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Lemma 3.3 The number of the i—th transmitter’s encoding rules is
|Ey,| = qz(”'" H-1 1 << n,

Proof: From the definition of Ey,, it has the form as follows

I 0 0 0 0 0 o0\ o
Ey, = 0 Y., Y3 0VY, Y 1
0 0 0 0 1 0 0/ 1

n v—n' a v-n'1 k-1 -k

where Y, has the form(0,0---,2,4;,0---0),z,4; # 0 and Y1,Y3,Ys,Ys
arbitrarily. So the number of the i—th transmitter’s encoding rules is
|Eu|—q2("’")+l l1<i<n.

Lemma 3.4 For any t; € T;, the number of ¢; which containing ey, is
q2n—‘n+k 1 1<z<n

Proof: t; is a subspace of type (2n+k+1,1,k), and U C t;, so we can
assume ¢; has the form as the follows

I 0 0 0 o 0 0 0 0 0 o0 O O i-1
0 1 0 0 O 0 0 0 0 0 O O0 O 1
0 0 I 0 o0 O 0 0 0 0 0 O0 O n—i
t;i =10 0 0 I O 0 0 0 0 0 O O O n
0 0 0 0 o0 0O 1.0 0 0 0 O O 1
0 0 0 0 O 0 0 0 0 0 1 0 O 1
0 0 0 0 o 0O 0 0 0 0 0 I O k-1

i-1 1 n-i n v-2n i-1 1 n—i n wv=2n 1 k-1 I-k

If ey, C t;, then

I 0 0 0O 0 00 0 00O O O O i—-1
01 0 0 60 00 0 00O O O O 1
ev,=| 0 0 I 0 0 00 0 00O 0 0 0 | n
0 0 0 Xl X2 00 X3 0 00O 0 X4 0 1
0 0 0 o 0 00 O O0O0OO0OT1 O O 1

i-1 1 n'=i n=n’ n v=2n4i-1 1 n-i n v=2n 1 k=1 I—k

where X3 # 0, and and X, X», X, arbitrarily, so the number of ; which
containing ey, is g2~ tk-1
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Lemma 3.5 The number of the i—th transmitter’s tags is
|Ti| = q"("""m*‘l"“"l+2"N(n,0; 2(v—n))N(k—-1,l-1).

Proof: Since any t; contains only one source state and the number of
ey, contained in a t; has been computed,we can compute |T;| by |T;| =
|S||E'u‘|/q2"'"'+"‘1, then the number of the i—th transmitter’s tags is
g=k=DH—k=n' 42 N (. 0:2(v — n))N(k — 1,1 — 1).

Lemma 3.6 The number of the receiver’s decoding rules is |er| =

qn(2u-—2n+l— 1) .

Proof: The number of the receiver’s decoding rulesis N' (n+1,0, 1; 2n+
1,n,1;2v +1,v), that is the number of subspaces of type(2n +1,n,1) con-
taining a given subspace of type (n + 1,0,1), and

N'(n+1,0,1;2n + 1,7, 1;20 + ,v)

_ N(n+1,0,1;2n+1,n,1;2v +,v)N(2n 4+ 1,n,1;2v + L,v)
- N(n+1,0,1;2v + ,v)

= qn(Zv-2n+l— 1)'

Lemma 3.7 For any t € T, the number of eg which contained in ¢ is
qn(n+k—l).

Proof: t is a subspace of type (3n + k,n,k), and U C ¢, so we can
assume t has the form as the follows

™ 0 0 o 0 0 0 o0 O n
0o Im™ o 0 0 0 0 o0 O n

t= 0 0 0 Im o o0 0 O 0 n
0 0 0 0 0 0 1 0 0 1
0 0 O 0 0 0 0 I*1D 0/ k1
n n v-2n n n v-2n 1 k=1 -k

IfegCt, then

0 0 0 00 1

n n v—2n n n v-2n 1 k-

™ o0 0 0 00 0 O

er = 0 X, 0 I™m 00 0 X
( 0 0

1

n

n

1
-k

where X, X, arbitrarily, then the number of encoding rules eg contained
in t is gtk

~
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Lemma 3.8 The number of the receiver’s tags is
ITI n(2u—3n+2l Zk)N(n 0; 2(,/ _ )N(k -1,1- 1)
Proof: Similarly to Lemma 3.5.

Theorem 3.1 In the above construction of multisender authentication
codes, the parameters are computed as follows

|S| = gn(- ")N(n 0;2(v — n))N(k -1,1-1).
|Ey,| = q2v—m+-1 1 <5<,

|T;| = gnli=k-2)+i- ke 420 N(n,0;2(v = n))N(k—-1,1-1),1<i<n.
IeR, — qn(2u—2n+l-—1)'

|T| = gn(2=3n+2-25) N (n, 0; 2(v ~ n))N(k — 1,1 — 1).

Without loss of generality, we assume that Up = (U1, Uy, ---,Ua}, Ep =

{Ey, x Ey, x - -+ x Ey,}, where d < n’. Next we consider the attacks from
Up on R.
Lemma 3.9 For any ep = (ey,,euv,, -, ey,) € Ep, the number of eg

containing ep is g(?~9)(2v~2n+i-1)

Proof: For any ep = (ey,,ev,, -, ev,) € Ep, we assume ep as fol-
lows:
I 0 0 0 0 0 0 0 o 0O 0 0 d
ep = 0 I 0 0 0 0 0 o0 o 0 0 O n'—d
0 0 X1 Xg X3 I 0 X4 X5 Xﬁ 0 X7 d
0 0 0 0 0 0 0 o0 0 0 1 0 1
d n'=d n-n' n v-2n d n'—=d n-n' n v=2n 1 -1
If ep C ep, then
I 0 0 0 0 0 0 0 o 0 0 0 d
0 I 0 0 0 0 0 0 o0 0 0 o n' —d
6 0 I 0 0 0 0 0 o0 0 0 0 n—n'
eRp = 0 0 X1 Xz X3 I 0 X4 X5 Xs 0 X7 d
00 0 Y2 Y3 0 I 0 Y5 Ys 0 Y-{ n' —d
00 0 Z, Z3 0 O I Zs Z¢ 0 Z; n—n’
c 0 O 0 0 0 0 0 o 0 1 ¢ 1
d n'~d n—n' n v-2n d n'—d n-n' =n v=2n 1 -1

where Y3,Y3,Ys,Ys, Y7, 22, Z3, Z5, Zs, Z7 arbitrarily, then the number of eg
containing ep is ("~ @v—2n+i-1)
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Lemma 3.10 For anyt € T, ep = (ey,,ev,, - ,ev,) € Ep, ep C t,
the number of er which contained in ¢ and containing ep is g(*+5=1)(n=d),

Proof: For any t € T, assume that

r I 0 0 0 0 0O OO O O O OO \ d
o I 0 0 0 0 0 00 0 0 0 O n'—d
0o o I 0 0 0O O O O o0 O O0 O n—n'
0 0 0 I 0 0 O O OOTU O O O n
t=y 0 0 0 0 0 I 0 O O O O O O d
o 0 0 0 0 0 I 0 0 0CO0O0CTO n'—d
0 0 0 006 0 0 I 0 0O O0OTUDO n—n’
0o 0 0 0 0 00 0 0 01 0 O 1
\o 0 0 0 0 0000 00 I 0} k1
d n'—dn-n'n v-2n d n'=d n-n' nv—2n 1 k-1l-k
Since ep C t, then
I 0 0 0O 00 0 O O O O o0 O d
o1 o o0 00O O O 0O 0 O n'—d
0=100 X; X 0 I 0 X, 0 0 0 X5 0 d
00 0 0 0O OO O O 1 0 O
d n'=dn-n' n v-2nd n'=d n-n' n v-2n 1 k-1 I-k
Ifep C eg C t, then
I 0 0 0O 0 00 0 0 O O O O d
07 O 0O 0 00 0 0 0 0 O O n' —d
(V) Xl X2 0 I 0 X4 0 0 0 Xs 0 d
er=|0 0 I 0 0 00 0 O O O O O n—n’
00 0 Z, 0 0TI Z, 0 0 0 Zs O '_d
00 0 Qo 0 00 I 0 0 0 Qs O n—n’
00 0 0 0 00 O O O 1 0 O 1
d n=dn-n' n v=2n d n'=dn-n"n v-2n 1 k=1 Ik

where Z,, Q2,, Zs, Qg arbitrarily, so the number of the number of eg which
contained in t and containing ep is g(*+*-1{n—d),

Lemma 3.11 Assume thatt and ¢ are two distinct tags are decoded
by receiver’s key er, s; and sz contained in t' and t", respectively. Let
so = $; N sg, dimsg = ky, then n+1 < k; < 2n + k — 1, the number of eg
contained in ¢ Nt~ and containing ep is gtk1—n—Nn=d),
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Proof: From the definition of source states, it is easy to know that
n+1<k <2n+k—1. Now we assume that

™ o 0 0 0 0 n
0 A, 0 0 0 0 n
ti= 0 0 ™ 0 0 n
0 0 0 o 1 0 1
0 0 0 0 0 A, k—1
n v—n n v—n 1 -1
SO
™ o 0 0 0 0 n
) 0 A 0 O 0 0 n
tnt' = 0o 0o I™ o o 0 n
0 0 0 O 1 0 1
0 0 0 o 0 A, k—1
n v—-n n v—n 1 -1
Since dim(t' Nt") = ky +n, then
. 0 A, 000 O _
dlm(o 0 00 0 A ) =k —n-—1
For ep = (ey,,eu,, -+, eu,) € Ep, assume that
I@ 0 0 o0 0 0 0 0 O 0
en = 0 I=-d o 0 0 0 0 0 0
D =
0 0 X1 X I® 0 X, 0 0 Xs
0 0 0 0 0 0 0 0 1 0
d n’—d n—n’ v—n d n—d n—n' v—-n 1 -1
Ifegct nt’, and ep C eg, then
I 0 o 0 o0 0 0 0 0 0 d
0 I o 0O o0 0 0 0 0 0 n' —d
0 0 I 0O 0 O 0 0 o 0 n-n
er = 0 0 X1 Xg I 0 X4 0 0 Xs d
0 0 0 Y, 0 I Yy 0 o0 Y; n' —d
0 0 o Zy 0 0 I 0 0 Zs n—n
0 0 o 0 0 0 0 0 1 0 1
d nl—d n—n’ v—-n d n-d n—nl v—-n 1 -1
Since

. 0 Ay, 000 O _
dlm(o 0 0 0 0 ) =k -n-1,
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then the number of eg which contained in t Nt and containing ep is
gtki-n=1)(n—d)

Theorem 3.2 The maximum probability of success in impersonation
attack and substitution attack from Up on R are

1

1
Pi(D) = e Ps(D) = 7

Proof: Impersonation attack: Up, after receiving keys, encodes a mes-
sage and sends it to the receiver, Up is successful if the receiver accepts
it as legitimate message. Denote Pr(D) is the maximum probability of
success of the impersonation attack, it can be expressed as

{l {er € Erlep C er, er C t'} I}
| {er € Erlep C er} |

P;(D) = max max
ep€Ep teT

gntk-D(n-d)
= gD @v—2n+T-1)

1
q2u—3n+l—~k

Substitution attack: Up, after observing a legitimate message m, sub-
stitutes it with another message m’. Up is successful if the receiver accepts
it as legitimate message. Denote Ps(D) is the maximum probability of
success of the substitution attack, it can be expressed as '

| {eR € ER|eD Cepr, eg C t'l ﬂt'2} |}

J2) =
s(D) = max max max { [{er € Erlep C er, eRC U} |

ep€EEp teT t#t'eT
q(kl—n—l)(n—d)
T RN (n=d)

1
= max —s5————
ky q2n+k—k1

_ 1
7
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