Two kinds of equicoverable paths and cycles *

Liandi Zhang¹ Caifeng Zhou² Yuqin Zhang^{2†‡}

¹Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, 300071, P.R.China ²Department of Mathematics, Tianjin University, Tianjin, 300072, P.R.China

Abstract

Packing and covering are dual problems in graph theory. A graph G is called H-equipackable if every maximal H-packing in G is also a maximum H-packing in G. Dually, a graph G is called H-equicoverable if every minimal H-covering in G is also a minimum H-covering in G. In 2012, Zhang characterized two kinds of equipackable paths and cycles: P_k -equipackable paths and cycles, M_k -equipackable paths and cycles. In this paper, P_k -equicoverable (k > 3) paths and cycles, M_k -equicoverable (k > 2) paths and cycles are characterized.

Keywords: Equicoverable, coverable, path, matching.

1 Introduction

Packing and covering are dual problems in graph theory. The problem that we study stems from research of H-decomposable graphs and equipackable graphs. The path and cycle on n vertices are denoted by P_n and C_n , respectively. In this paper, Denote the edges of P_n by e_1, e_2, \dots, e_{n-1} . Denote the edges of C_n by e_1, e_2, \dots, e_n . A vertex with degree 1 of a path is called an end vertex of the path. A matching in the graph G is a set of independent edges in G. A matching with $K(k \geq 1)$ edges is denoted by M_k . Let H be a subgraph of G. By G - H, we denote the graph left after we delete from G the edges of H and any resulting isolated vertices.

A collection of edge disjoint copies of H, say H_1, H_2, \dots, H_l , where each $H_i (i = 1, 2, \dots, l)$ is a subgraph of G, is called an H-packing in G. A graph

^{*}E-mail addresses: yuqinzhang@126.com; zhangliandi2009@163.com

[†]Corresponding author.

[‡]Foundation items: This research was supported by National Natural Science Foundation of China (11401430) and (11071055).

G is called H-decomposable if there exists an H-packing of G which uses all edges in G. An H-packing in G with l copies H_1, H_2, \dots, H_l of H is called maximal if $G - \bigcup_{i=1}^l E(H_i)$ contains no subgraph isomorphic to H. An H-packing in G with l copies H_1, H_2, \dots, H_l of H is called maximum if no more than l edge disjoint copies of H can be packed into G. A graph G is called randomly H-decomposable if every maximal H-packing in G uses all edges in G. A graph G is called H-equipackable if every maximal H-packing in G is also a maximum H-packing in G. There have been many results on randomly H-decomposable and H-equipackable graphs: G. W. Beineke, G. Hamberger and G. D. Goddard ([1]) characterized all randomly G-decomposable graphs, all randomly G-decomposable graphs and all randomly G-decomposable for G-decomposable graphs; G

An H-covering of G is a set $L = \{H_1, H_2, \dots, H_l\}$ of subgraphs of G, where each subgraph H_i is isomorphic to H and every edge of G appears in at least one member of L. If G has an H-covering, G is called Hcoverable. An H-covering of G with l copies H_1, H_2, \dots, H_l of H is called minimal if, for any H_j , $\bigcup_{i=1}^l H_i - H_j$ is not an H-covering of G. An Hcovering of G with l copies $\hat{H}_1, H_2, \cdots, H_l$ of H is called minimum if there exists no H-covering with less than l copies H. Let c(G; H) denote the number of H in the minimum H-covering of G. In 2008, Zhang([4]) gave the dual definition of H-equipackable: H-equicoverable. A graph is called H-equicoverable if every minimal H-covering in G is also a minimum Hcovering in G. And Zhang characterized all P3-equicoverable graphs. The path P_n is P_3 -equicoverable if and only if n=3,4,5,6,8. The cycle C_n is P_3 -equicoverable if and only if n = 3, 4, 5, 7. Later, Zhang and Lan([5]) gave some results on M_2 -equicoverable graphs, and characterized some kinds of special M_2 -equicoverable graphs. The path P_n is M_2 -equicoverable if and only if n = 5, 6. The cycle C_n is M_2 -equicoverable if and only if n = 4, 5.

In this paper, we investigate P_k -equicoverable (k > 3) paths and cycles, M_k -equicoverable (k > 2) paths and cycles.

We first give one lemma which is crucial to our work:

Lemma 1. Let G be an F-coverable graph and H be an F-coverable subgraph of G which satisfy: (1) H is not F-equicoverable; (2) G - H is F-decomposable. Then G is not F-equicoverable.

Proof. Since H is F-coverable but not F-equicoverable, by the definitions of coverable and equicoverable, H has at least one minimal F-covering which is not minimum. And G-H is F-decomposable, that is, G-H has an F-covering which is also an F-packing. The union of the two F-covering

mentioned above forms a minimal F-covering which is not minimum. So G is not F-equicoverable.

2 Main results

2.1 P_k -equicoverable (k > 3) paths and cycles

Theorem 2. A path P_n is P_k -equicoverable if and only if $k \le n \le 2k$ or n = 3k - 1.

Proof. In each P_k -covering of P_n , e_1 must be covered by $H_1 = \{e_1, e_2, \cdots, e_{k-1}\}$ and e_{n-1} must be covered by $H_2 = \{e_{n-k+1}, e_{n-k+2}, \cdots, e_{n-1}\}$. For the P_k -covering of a path P_n , we have seven cases.

- 1. $n \leq k-1$. Since P_n contains no copy of P_k , P_n can't be P_k -equicoverable.
- 2. n = k. It's easy to see the number of P_k in the minimal P_k -covering of P_n only can be 1. By the definition, P_n is P_k -equicoverable.
- 3. $k+1 \le n \le 2k-1$. It's easy to see $c(P_n; P_k)$ is 2. $L = \{H_1, H_2\}$ covers all edges of P_n . So the number of P_k in the minimal P_k -covering of P_n only can be 2. By the definition, P_n is P_k -equicoverable.
- 4. n=2k. It's easy to see $c(P_n; P_k)$ is 3. Besides H_1 and H_2 , only one edge has not been covered, and we need only one copy of P_k to cover it. So the number of P_k in the minimal P_k -covering of P_n only can be 3. By the definition, P_n is P_k -equicoverable.
- 5. $2k+1 \le n \le 3k-2$. Obviously, $c(P_n; P_k)$ is 3. There exists a minimal P_k -covering with 4 copies of P_k denoted by $L = \{H_1, H_2, H_3, H_4\}$, where $H_3 = \{e_2, e_3, \dots, e_k\}$, $H_4 = \{e_{k+1}, e_{k+2}, \dots, e_{2k-1}\}$. By the definition, P_n is not P_k -equicoverable.
- 6. n=3k-1. Besides H_1 and H_2 , there must be one copy $H_i=\{e_i,e_{i+1},\cdots,e_{i+k-2}\}$ $(2\leq i\leq k)$ to cover the edge e_k . There also must be one copy $H_j^i=\{e_j,e_{j+1},\cdots,e_{j+k-2}\}(k+1\leq j\leq i+k-1)$ to cover e_{i+k-1} . Since $j\leq i+k-1\leq 2k-1\leq j+k-2$, H_j^i also covers the edges e_{i+k},\cdots,e_{2k-1} . $L=\{H_1,H_2,H_i,H_j^i\}$ contains all possible minimal P_k -coverings of P_n . So the number of P_k in the minimal P_k -covering of P_n only can be 4. By the definition, P_n is P_k -equicoverable.
- 7. $n \ge 3k$. $n (2k+1) \equiv r \pmod{k-1} (r=0,1,\cdots,k-2), n (2k+1+r) = (k-1)t (t \in \mathbb{Z}, t \ge 1). n (2k+1) \ge k-1.$

- (a) $0 \le r \le k-3$. $P_n P_{2k+1+r}$ has $(k-1)t(t \in Z, t \ge 1)$ edges, so $P_n P_{2k+1+r}$ is P_k -decomposable. Since $2k+1 \le 2k+1+r \le 3k-2$, from case 5, P_{2k+1+r} is not P_k -equicoverable. By Lemma 1, P_n is not P_k -equicoverable.
- (b) r = k 2. $P_n = P_{4k-2}$ or $P_n P_{4k-2}$ is P_k -decomposable. It's easy to see $c(P_{4k-2}; P_k)$ is 5. There exists a minimal P_k -covering of P_{4k-2} with 6 copies of P_k denoted by $L = \{H_1, H_2, \dots, H_6\}$, where $H_3 = \{e_2, e_3, \dots, e_k\}$, $H_4 = \{e_{k+1}, e_{k+2}, \dots, e_{2k-1}\}$, $H_5 = \{e_{2k-1}, e_{2k}, \dots, e_{3k-3}\}$, $H_6 = \{e_{3k-2}, e_{3k-1}, \dots, e_{4k-4}\}$, so P_{4k-2} is not P_k -equicoverable. By Lemma 1, P_n is not P_k -equicoverable.

From the above, a path P_n is P_k -equicoverable if and only if $k \le n \le 2k$ or n = 3k - 1.

Theorem 3. A cycle C_n is P_k -equicoverable if and only if $k \leq n < \lceil \frac{3k}{2} \rceil$ or n = 2k - 1.

Proof. By the symmetry of the cycle, we can choose the first copy of P_k to be $H_1 = \{e_1, e_2, \dots, e_{k-1}\}$ in this proof. For the P_k -covering of a cycle C_n , we have seven cases.

- 1. $n \leq k-1$. Since C_n contains no copy of P_k , C_n can't be P_k -equicoverable.
- 2. n = k. It's easy to see $c(C_n; P_k)$ is 2. Besides H_1 , only one edge has not been covered, and we need only one copy of P_k to cover it. So the number of P_k in the minimal P_k -covering of C_n only can be 2. By the definition, C_n is P_k -equicoverable.
- 3. $k+1 \le n \le 2k-2$. It's easy to see $c(C_n; P_k)$ is 2. In the covering, besides the copy H_1 , there must be another copy $H_i = \{e_i, e_{i+1}, \cdots, e_{i+k-2}\}(2 \le i \le k)$ to cover the edge e_k , where for $\forall e_x, x \leftarrow x \mod n$.
 - (a) $i + k 2 \ge n$, $i 1 \le k 1$. Then $\{H_1, H_i\}$ is the only possible minimal P_k -covering of C_n with 2 copies.
 - (b) $i+k-2 \le n-1$, since the edge e_{i+k-1} has not been covered, there must be the third copy $H_j^i = \{e_j, e_{j+1}, \cdots, e_{j+k-2}\}(k+1 \le j \le i+k-1)$ to cover it.
 - When $i+k-1 \leq n < \lceil \frac{3k}{2} \rceil$, $(n+i-1)-(j+k-2) = n+i-j-k+1 \leq n+(n-k+1)-(k+1)-k+1 = 2n-3k+1 < 2*\frac{3k}{2}-3k+1 = 1$. That is, $n+i-1 \leq j+k-2$. So $\{H_j^i, H_i\}$ can cover all edges of C_n , H_1 is redundant. So when $n < \lceil \frac{3k}{2} \rceil$, there exists no minimal P_k -covering with 3 copies, C_n is P_k -equicoverable.

- When $n \ge \lceil \frac{3k}{2} \rceil$, $(n+i-1)-(j+k-2)=n+i-j-k+1=n+(n-k+1)-(k+1)-k+1=2n-3k+1>2*\frac{3k}{2}-3k+1=1$. That is, n+i-1>j+k-2. there exists a minimal P_k -covering with 3 copies of P_k denoted by $H=\{H_1,H_i^i,H_i\}$. so C_n isn't P_k -equicoverable.
- 4. n = 2k 1. C_n is P_k -equicoverable.

In the covering, besides the copy H_1 , there must be another copy $H_i = \{e_i, e_{i+1}, \cdots, e_{i+k-2}\}(2 \leq i \leq k)$ to cover the edge e_k . Since the edge e_{i+k-1} has not been covered, there must be the third copy $H_j^i = \{e_j, e_{j+1}, \cdots, e_{j+k-2}\}(k+1 \leq j \leq i+k-1)$ to cover it. where for $\forall e_x, x \leftarrow x \mod n$. Since $j \leq i+k-1 < 2k-1 \leq j+k-2$, H_j^i always covers the edges $e_{i+k-1}, e_{i+k}, \cdots, e_{2k-1}$. $\{H_1, H_i, H_j^i\}$ contains all possible minimal P_k -coverings of C_n . So the number of P_k in the minimal P_k -covering of C_n only can be 3. By the definition, C_n is P_k -equicoverable.

- 5. $2k \le n \le 3k-3$. It's easy to see $c(C_n; P_k)$ is 3. There exists a minimal P_k -covering with 4 copies of P_k denoted by $L = \{H_1, H_2, H_3, H_4\}$, where $H_2 = \{e_2, e_3, \dots, e_k\}$, $H_3 = \{e_{k+1}, e_{k+2}, \dots, e_{2k-1}\}$, $H_4 = \{e_{n-k+2}, e_{n-k+3}, \dots, e_n\}$. So C_n is not P_k -equicoverable.
- 6. n = 3k 2. It's easy to see $c(C_n; P_k)$ is 4. There exists a minimal P_k -covering with 5 copies of P_k denoted by $H = \{H_1, H_2, H_3, H_4, H_5\}$, where

$$H_2 = \{e_3, e_4, \cdots, e_k, e_{k+1}\}, H_3 = \{e_{k+1}, e_{k+2}, \cdots, e_{2k-2}, e_{2k-1}\}, H_4 = \{e_{k+3}, e_{k+4}, \cdots, e_{2k}, e_{2k+1}\}, H_5 = \{e_{2k+1}, e_{2k+2}, \cdots, e_{3k-2}, e_1\}.$$

By the definition, so C_n is not P_k -equicoverable.

- 7. $n \ge 3k-1, n-2k \equiv r \pmod{k-1} \ (r=0,1,\cdots,k-2).$
 - (a) $0 \le r \le k-3$. $C_n P_{2k+1+r}$ has $(k-1)t(t \in Z, t \ge 1)$ edges, so $C_n P_{2k+1+r}$ is P_k -decomposable. By Theorem 2, P_{2k+r+1} is not P_k -equicoverable. By Lemma 1, C_n is not P_k -equicoverable.
 - (b) r = k 2.
 - When n=4k-3, it's easy to see $c(C_{4k-3}; P_k)$ is 5. There exists a minimal P_k -covering with 6 copies of P_k denoted by $L=\{H_1,H_2,H_3,H_4,H_5,H_6\}$, where $H_2=\{e_2,e_3,\cdots,e_k\}$, $H_3=\{e_{k+1},e_{k+2},\cdots,e_{2k-1}\}$, $H_4=\{e_{2k-1},e_{2k},\cdots,e_{3k-3}\}$, $H_5=\{e_{3k-2},e_{3k-1},\cdots,e_{4k-4}\}$, $H_6=\{e_{3k-1},e_{2k},\cdots,e_{4k-3}\}$, so C_{4k-3} is not P_k -equicoverable.

• When $n \neq 4k - 3$, $C_n - P_{4k-2}$ is P_k -decomposable. By Theorem 2, P_{4k-2} is not P_k -equipackable. By Lemma 1, C_n is not P_k -equicoverable.

From the above, C_n is P_k —equicoverable if and only if $k \leq n < \lceil \frac{3k}{2} \rceil$ or n = 2k - 1.

2.2 M_k -equicoverable (k > 2) paths and cycles

To get the results, we first give several lemmas.

Lemma 4. Let P_n be an M_k -coverable path, then $c(P_n; M_k) = \lceil \frac{n-1}{k} \rceil$.

Proof. Since P_n is M_k -coverable, by the definition of minimal covering, it is easy to see $c(P_n; M_k)$ is at least $\lceil \frac{n-1}{k} \rceil$. To get the desired result, clearly it suffices to find a minimal M_k -covering of P_n with $\lceil \frac{n-1}{k} \rceil$ copies.

Let $E(P_n) = A \cup B$, where $A = \{e_1, e_3, e_5, \dots, e_{2p-1}\}$, $B = \{e_2, e_4, e_6, \dots, e_{2q}\}$. Let $L = \{H_1, H_2, \dots, H_{\lceil \frac{n-1}{k} \rceil}\}$ be a set of subgraphs of P_n , where H is shown in Fig.1, and let $t = n-1 \mod k$.

Fig.1 L of P_n

We claim that each subgraph H_i is isomorphic to M_k . For example, $L = \{H_1, H_2, H_3, H_4\}$ is a collection of subgraphs of P_{17} , whose each subgraph is isomorphic to M_4 , which is illustrated in Fig.2.

Now we prove the above claim. Obviously $H_j(j \neq i+1, \lceil \frac{n-1}{k} \rceil)$ is isomorphic to M_k , we only need to prove H_{i+1} and $H_{\lceil \frac{n-1}{k} \rceil}$ is isomorphic to M_k , respectively. In H_{i+1} , comparing the subscript of e_{2ki+1} and $e_{2(k-(p-ki))}$,

$$2ki+1-2(k-(p-ki))=2p-2k+1\geq 2+1>2(p>k),$$

 e_{2ki+1} and $e_{2(k-(p-ki))}$ are not adjacent, and H_{i+1} has k edges, thus H_{i+1} is a copy of M_k . In $H_{\lceil \frac{n-1}{k} \rceil}$, comparing the subscript of $e_{2(q+1-t)}$ and $e_{2(k-t)}$,

$$2(q+1-t)-2(k-t))=2(q-k)+2\geq 2$$

(since P_n is M_k -coverable, $q \ge k$ holds). That is, $e_{2(q+1-t)}$ and $e_{2(k-t)}$ are not adjacent, and $H_{\lceil \frac{n-1}{2} \rceil}$ has k edges, thus $H_{\lceil \frac{n-1}{2} \rceil}$ is also a copy of M_k .

From the above, we know that L is an M_k -covering of P_n with $\lceil \frac{n-1}{k} \rceil$ copies. More specifically, L is a minimal M_k -covering of P_n . This completes the proof.

Lemma 5. In a path P_n , if $n-2k+1 > \lceil \frac{n-1}{k} \rceil$, then P_n is not M_k -equicoverable.

Proof. First we give a minimal M_k -covering of P_n , say $L = \{H_1, H_2, \cdots, H_{n-2k+1}\}$, where

$$\begin{cases} H_1 = \{e_1, e_3, \cdots, e_{2k-3}, e_{2k-1}\} \\ H_2 = \{e_2, e_4, \cdots, e_{2k-2}, e_{2k}\} \\ H_3 = \{e_1, e_3, \cdots, e_{2k-3}, e_{2k+1}\} \\ H_4 = \{e_1, e_3, \cdots, e_{2k-3}, e_{2k+2}\} \\ \cdots \\ H_{n-2k} = \{e_1, e_3, \cdots, e_{2k-3}, e_{n-2}\} \\ H_{n-2k+1} = \{e_1, e_3, \cdots, e_{2k-3}, e_{n-1}\} \end{cases}$$

By Lemma 4, we know $c(P_n; M_k)$ is $\lceil \frac{n-1}{k} \rceil$. Since $n-2k+1 > \lceil \frac{n-1}{k} \rceil$, L is a minimal M_k -covering of P_n which is not minimum. Thus P_n is not M_k -equicoverable.

Lemma 6. Let C_n be an M_k -coverable cycle, then $c(C_n; M_k) = \lceil \frac{n}{k} \rceil$.

We omit the proof, which is similar to the proof of Lemma 4.

Lemma 7. In a cycle C_n , if $n-2k+2 > \lceil \frac{n}{k} \rceil$, then C_n is not M_k -equicoverable.

Proof. There is a minimal M_k -covering of C_n , say $L = \{H_1, H_2, \dots, H_{n-2k+2}\}$, say

$$\begin{cases} H_1 = \{e_1, e_3, \cdots, e_{2k-3}, e_{2k-1}\} \\ H_2 = \{e_1, e_3, \cdots, e_{2k-3}, e_{2k}\} \\ H_3 = \{e_1, e_3, \cdots, e_{2k-3}, e_{2k+1}\} \\ \cdots \\ H_{n-2k+1} = \{e_1, e_3, \cdots, e_{2k-3}, e_{n-1}\} \\ H_{n-2k+2} = \{e_2, e_4, \cdots, e_{2k-2}, e_n\} \end{cases}$$

By Lemma 6, we know $c(C_n; M_k)$ is $\lceil \frac{n}{k} \rceil$. Since $n-2k+2 > \lceil \frac{n}{k} \rceil$, L is a minimal M_k -covering of C_n which is not minimum. Thus C_n is not M_k -equicoverable.

Theorem 8. A path P_n is M_k -equicoverable if and only if n = 2k + 1.

Proof. For the M_k -covering of a path P_n , we have four cases.

- 1. $n \leq 2k$. Since P_n is not M_k -coverable, P_n is not M_k -equicoverable.
- 2. n=2k+1. There must be one copy $H_1=\{e_2,e_4,\cdots,e_{2k}\}$ to cover e_2 . And there also must be another copy $H_2=\{e_1,e_3,\cdots,e_{2k-1}\}$ to cover e_{2k-1} . Then $L=\{H_1,H_2\}$ covers all edges of the path P_n , so $L=\{H_1,H_2\}$ is the unique minimal M_k -covering of P_n . The number of M_k in the minimal M_k -covering of P_n only can be 2, so P_n is M_k -equicoverable.
- 3. When n=2k+2, it's easy to see $c(P_n;M_k)$ is 3. There exists a minimal M_k -covering with 4 copies of M_k denoted by $H=\{H_1,H_2,H_3,H_4\}$, where

$$\begin{split} H_1 &= \{e_{2k+1}, e_{2k-3}, e_{2k-5}, e_{2k-7}, e_{2k-9}, \cdots, e_1\}, \\ H_2 &= \{e_{2k}, e_{2k-2}, e_{2k-5}, e_{2k-7}, e_{2k-9}, \cdots, e_1\}, \\ H_3 &= \{e_{2k+1}, e_{2k-1}, e_{2k-5}, e_{2k-7}, e_{2k-9}, \cdots, e_1\}, \\ H_4 &= \{e_{2k+1}, e_{2k-2}, e_{2k-4}, e_{2k-6}, e_{2k-8}, \cdots, e_2\}. \end{split}$$

By the definition, so P_n is not M_k -equicoverable.

4. When $n \ge 2k + 3$, it's easy to verify that $n - 2k + 1 > \lceil \frac{n-1}{k} \rceil$, by Lemma 5, P_n is not M_k -equicoverable, a contradiction.

From the above, a path P_n is M_k -equicoverable if and only if n=2k+1.

Theorem 9. A cycle C_n is M_k -equicoverable if and only if n = 2k or n = 2k + 1.

Proof. For the M_k -covering of a cycle C_n , we have four cases.

- 1. $n \leq 2k-1$. Since C_n is not M_k -coverable, C_n is not M_k -equicoverable.
- 2. n=2k. $H_1=\{e_2,e_4,\cdots,e_{2k}\}$ is the unique copy of M_k to cover e_2 . $H_2=\{e_1,e_3,\cdots,e_{2k-1}\}$ is the unique copy of M_k to cover e_{2k-1} . And $L=\{H_1,H_2\}$ covers all edges of the cycle C_n , so $L=\{H_1,H_2\}$ is the unique minimal M_k -covering of C_n . The number of M_k in the minimal M_k -covering of C_n only can be 2, so C_n is M_k -equicoverable.
- 3. n=2k+1. We use induction on k to prove C_n is M_k -equicoverable. For k=2, it's easy to verify that C_5 is M_2 -equicoverable. For k>2, we suppose that the claim is true for k-1. In the following, we prove the claim is also true for k.
 - For any M_k -covering of C_{2k+1} , say $L = \{H_1, H_2, \dots, H_l\}(l > 3)$, where the elements of H_i are labled in increasing order. Let H_i^* denote the set of the former k-1 elements of H_i . Let $L^* = \{H_1^*, H_2^*, \dots, H_l^*\}$.
 - (a) e_{2k-1} is not covered by L^* . Thus L^* is an M_{k-1} -covering of P_{2k-1} or C_{2k-2} . Whatever P_{2k-1} or C_{2k-2} , there must be one copy $H_1^* = \{e_1, e_3, \cdots, e_{2k-5}, e_{2k-3}\}$ to cover e_{2k-3} . There must be another copy $H_2^* = \{e_2, e_4, \cdots, e_{2k-4}, e_{2k-2}\}$ to cover e_2 . $H_1^* \cup H_2^*$ is the unique minimal M_{k-1} -covering of P_{2k-1} or C_{2k-2} . Since e_{2k-1}, e_{2k} and e_{2k+1} have not been covered, $H_1 H_1^*$ may be e_{2k-1} or $e_{2k}, H_2 H_2^*$ may be e_{2k} or e_{2k+1} . We have the following possibilities.
 - If $H_1 H_1^* = \{e_{2k-1}\}$ and $H_2 H_2^* = \{e_{2k}\}$, e_{2k+1} has not been covered, there needs only one copy of M_k denoted by H_3 to cover e_{2k+1} . So $H_1 \cup H_2 \cup H_3$ is a minimal M_k -covering of C_{2k+1} . In the same way, if $H_1 H_1^* = \{e_{2k-1}\}$ and $H_2 H_2^* = \{e_{2k+1}\}$, or if $H_1 H_1^* = \{e_{2k}\}$ and $H_2 H_2^* = \{e_{2k+1}\}$, $H_1 \cup H_2 \cup H_3$ is a minimal M_k -covering of C_{2k+1} .
 - If $H_1 H_1^* = H_2 H_2^* = \{e_{2k}\}, e_{2k-1}$ and e_{2k+1} have not been covered. Since e_{2k-1} is not covered by H^* , there must be the unique copy $H_3 = \{e_1, e_3, \cdots, e_{2k-3}, e_{2k-1}\}$ to cover e_{2k-1} . Since $H_1^* \subset H_3$, $H_1 H_1^* \subset H_2$, $H_2 \cup H_3$ covers the edge $e_1, e_2, \cdots, e_{2k-1}, e_{2k}$. There needs only one copy of M_k denoted by H_4 to cover e_{2k+1} . Thus $H_2 \cup H_3 \cup H_4$ is a minimal M_k -covering of C_{2k+1} .
 - (b) e_{2k-1} is covered by L^* . Thus L^* is an M_{k-1} -covering of C_{2k-1} . By the induction hypothesis, C_{2k-1} is M_{k-1} -equicoverable. So the number of M_{k-1} in every minimal M_{k-1} -covering of C_{2k-1} is 3. We arbitrarily select a minimal M_{k-1} -covering of C_{2k-1}

denoted by H_1^* , H_2^* , H_3^* from L^* . Suppose $e_{2k-1} \in H_3^*$, then $H_3 - H_3^* = \{e_{2k+1}\}$. Let $E = (H_1 - H_1^*) \cup (H_2 - H_2^*)$, there are two possibilities.

- If $e_{2k} \in E$, e_{2k}, e_{2k-1} , e_{2k+1} and all the former edges are all covered by $H_1 \cup H_2 \cup H_3$, so $L = \{H_1, H_2, H_3\}$ is a minimal M_k -covering of C_{2k+1} .
- If $e_{2k} \notin E$, since the copy of M_k covering e_1 doesn't contain e_{2k+1}, e_{2k+1} can not belong to H_1, H_2, H_3 at the same time. Thus, we suppose $e_{2k+1} \notin H_1$, and $e_{2k} \notin H_1$, so $H_1 H_1^* = \{e_{2k-1}\}$, then H_1 can only be $\{e_1, e_3, \cdots, e_{2k-3}, e_{2k-1}\}$. So $H_2 H_2^* = \{e_{2k+1}\}$. Otherwise, $H_2 = H_1$. H_2^* may contain e_{2k-1} or e_{2k-2} . If H_2^* contains e_{2k-1} , then e_{2k-2} is not covered by $H_1^* \cup H_2^* \cup H_3^*$, which contracts to the fact that $H_1^* \cup H_2^* \cup H_3^*$ is an M_{k-1} -covering of C_{2k-1} . Therefore H_2^* contains e_{2k-2} . H_2 can only be $\{e_2, e_4, \cdots, e_{2k-2}, e_{2k+1}\}$. $H_1 \cup H_2$ covers the edges $e_1, e_2, \cdots, e_{2k-3}, e_{2k-2}, e_{2k-1}, e_{2k+1}$. There needs only one copy of M_k to cover e_{2k} denoted by H_4 . $H_1 \cup H_2 \cup H_4$ is a minimal M_k -covering of C_{2k+1} .
- 4. $n \ge 2k + 2$. It's easy to verify that $n 2k + 2 > \lceil \frac{n}{k} \rceil$, by Lemma 7, C_n is not M_k -equicoverable.

From above, we can get the conclusion that the number of M_k in every minimal M_k -covering of C_{2k+1} is 3. Thus C_n is M_k -equicoverable.

So a cycle C_n is M_k -equicoverable if and only if n=2k or n=2k+1. \square

References

- [1] L. W. Beineke, P. Hamberger and W. D. Goddard, Random packings of graphs, *Discrete Mathematics*, 125(1994), 45-54.
- [2] B. Randerath and P. D. Vestergaard, All P₃-equipackable graphs, Discrete Mathematics, 310(2010), 355-359.
- [3] Y.Q. Zhang and Y.H. Fan, M₂-equipackable graphs, Discrete Applied Mathematics, 154(2006), 1766-1770.
- [4] Y.Q. Zhang, P_3 -equicoverable graphs-Research on H-equicoverable graphs, Discrete Applied Mathematics, 156(2008), 647-661.
- [5] Y. Q. Zhang, W. H. Lan, Some special M₂-equicoverable graphs(in Chinese), Journal of Tianjin University, 42(2009), 83-85.
- [6] L. D. Zhang, Y. Q. Zhang, Two kinds of equipackable paths and cycles, Ars Combinatoria, 103(2012), 417-421.