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Abstract

Packing and covering are dual problems in graph theory. A graph
G is called H—equipackable if every maximal H—packing in G is
also a maximum H-packing in G. Dually, a graph G is called
H —equicoverable if every minimal H—covering in G is also a mini-
mum H—covering in G. In 2012, Zhang characterized two kinds of
equipackable paths and cycles: Pr—equipackable paths and cycles,
Mi.—equipackable paths and cycles. In this paper, P,—equicoverable
(k > 3) paths and cycles, Mr—equicoverable (k > 2)paths and cycles
are characterized.
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1 Introduction

Packing and covering are dual problems in graph theory. The problem
that we study stems from research of H-decomposable graphs and equipack-
able graphs. The path and cycle on n vertices are denoted by P, and C,,
respectively. In this paper, Denote the edges of P, by e, €3, -+ ,en_1. De-
note the edges of C,, by e;,ez,--- ,e,. A vertex with degree 1 of a path
is called an end vertex of the path. A matching in the graph G is a set of
independent edges in G. A matching with k(k > 1) edges is denoted by
M. Let H be a subgraph of G. By G — H, we denote the graph left after
we delete from G the edges of H and any resulting isolated vertices.

A collection of edge disjoint copies of H, say Hy, Hs,-- - , H;, where each
Hi(i =1,2,-.-,l)is asubgraph of G, is called an H—packing in G. A graph
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G is called H—decomposable if there exists an H—packing of G which uses
all edges in G. An H—packing in G with ! copies Hy, Ha,--- ,H; of H is
called maximal if G — U£=1 E(H;) contains no subgraph isomorphic to H.
An H-packing in G with ! copies Hy, Ha,--- , H; of H is called maximum
if no more than [ edge disjoint copies of H can be packed into G. A graph
G is called randomly H—decomposable if every maximal H—packing in G
uses all edges in G. A graph G is called H—equipackable if every maximal
H—packing in G is also a maximum H—packing in G. There have been
many results on randomly H—decomposable and H—equipackable graphs:
L. W. Beineke, P. Hamberger and W. D. Goddard ([1]) characterized all ran-
domly M) —decomposable graphs, all randomly K,~decomposable graphs
and all randomly P—decomposable for k = 4,5,6; B. Randerath and P.
D. Vestergaard ([2]) characterized all P3—equipackable graphs; Zhang and
Fan([3)) characterized all M—equipackable graphs; Zhang([6]) character-
ized two kinds of equipackable paths and cycles.

An H-covering of G is a set L = {Hy,H3,--- ,H;} of subgraphs of G,
where each subgraph H; is isomorphic to H and every edge of G appears
in at least one member of L. If G has an H-covering, G is called H-
coverable. An H-covering of G with ! copies Hy, Hs,--- , H; of H is called
minimal if, for any Hj, U2=1 H; — Hj is not an H—covering of G. An H-
covering of G with ! copies Hy, Hs,- -+ , H; of H is called minimum if there
exists no H-covering with less than [ copies H. Let ¢(G; H) denote the
number of H in the minimum H-covering of G. In 2008, Zhang([4]) gave
the dual definition of H-equipackable: H-equicoverable. A graph is called
H-equicoverable if every minimal H-covering in G is also a minimum H-
covering in G. And Zhang characterized all P3-equicoverable graphs. The
path P, is P3-equicoverable if and only if n = 3,4,5,6,8. The cycle C, is
Ps-equicoverable if and only if n = 3, 4,5, 7. Later, Zhang and Lan({5]) gave
some results on Ms-equicoverable graphs, and characterized some kinds of
special Ms-equicoverable graphs. The path P, is Mz-equicoverable if and
only if n = 5,6. The cycle C, is Ma-equicoverable if and only if n = 4,5.

In this paper, we investigate Pi-equicoverable (k > 3) paths and cycles,
M.-equicoverable (k > 2) paths and cycles.

We first give one lemma which is crucial to our work:

Lemma 1. Let G be an F-coverable graph and H be an F-coverable sub-
graph of G which satisfy: (1) H is not F-equicoverable; (2) G — H is
F-decomposable. Then G is not F-equicoverable.

Proof. Since H is F-coverable but not F-equicoverable, by the definitions of
coverable and equicoverable, H has at least one minimal F-covering which
is not minimum. And G — H is F-decomposable, that is, G — H has an
F-covering which is also an F-packing. The union of the two F-covering
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mentioned above forms a minimal F-covering which is not minimum. So G
is not F-equicoverable. O

2 Main results

2.1 PFi-equicoverable (k > 3) paths and cycles

Theorem 2. A path P, is Py-equicoverable if and only if k < n < 2k or
n=3k-1.

Proof. In each Pg-covering of P,, e; must be covered by H; = {e1,e2,- -,
ex—1} and e,_; must be covered by Hy = {en_k11,€n—k+2,"** ,€n-1}. For
the Pr—covering of a path P,, we have seven cases.

1.n €< k—1. Since P, contains no copy of P, P, can’t be P-
equicoverable.

2. n = k. It’s easy to see the number of P in the minimal Pi-covering
of P, only can be 1. By the definition, P, is Pi-equicoverable.

3. k+1 <n < 2k—1. It’s easy tosee ¢(Py,; Py) is 2. L = {H,, H,} covers
all edges of P,. So the number of P, in the minimal Py-covering of
P, only can be 2. By the definition, P, is Pi-equicoverable.

4. n = 2k. It’s easy to see ¢(Py; Py) is 3. Besides H; and H, only one
edge has not been covered, and we need only one copy of P to cover
it. So the number of Py in the minimal Pj-covering of P, only can
be 3. By the definition, P, is Pi-equicoverable.

5. 2k+1 < n < 3k-2. Obviously, ¢(P,; P;) is 3. There exists a minimal
Pi-covering with 4 copies of P denoted by L = {H;, Ha, Hi, H,},
where Hy = {ez,es, - ,ex}, Hy = {ex41,€r42, ++ ,€26_1}. By the
definition, P, is not Pi-equicoverable.

6. n = 3k — 1. Besides H; and Hj, there must be one copy H; =
{ei,eir1, - ,eirk—2} (2 < i < k) to cover the edge ex. There also
must be one copy Hj = {ej,€j41, + ,ej4k2}(k+1<j<i+k—1)
to cover ej x_1. Since j <i4+k—-1<2%k-1<j+k-2, H; also
covers the edges e;4k, -~ ,e2x—1. L = {Hy, Hp, H;, H}} contains all
possible minimal Pj-coverings of P,. So the number of P; in the
minimal Pg-covering of P, only can be 4. By the definition, P, is
Py-equicoverable.

7.n23k n-Q2k+1)=r(mod k—-1)(r=0,1,--- ,k—2), n—(2k +
l+r)=(k-Ntte Z,t >21). n— (2k+1) > k—1.
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(a) 0<r<k-3. P, — Pyy14r has (k — 1)t(t € Z,t > 1) edges, so
P, — Papyy4r is Pr-decomposable. Since 2k +1<2k+1+7 <
3k—2, from case 5, Pap414r is N0t Pr-equicoverable. By Lemma
1, P, is not Px-equicoverable.

(b) r=k—2. P, = Py_p or P, — Pyx_3 is Pr-decomposable. It's
easy to see ¢(Pyx_2; Px) is 5. There exists a minimal Py-covering
of Pyj_o with 6 copies of P, denoted by L = {H,, Ha,--- , Hg},
where H3 = {62) €3, 1ek}’ H4 = {ek+lyek+2’ Ty er—l}» HS =
{eak—1,€26, -+ reak—3}, He = {€3k—2,€3k—1,"** ,€4k—4}, 50 P2
is not Py-equicoverable. By Lemma 1, P, is not Pc-equicoverable.

From the above, a path P, is P-equicoverable if and only if k < n < 2k
orn=3k-1. a

Theorem 3. A cycle C, is P.—equicoverable if and only if k < n <
%) orn=2k-1.

Proof. By the symmetry of the cycle, we can choose the first copy of P to
be H, = {e1,e2, - ,ex—1} in this proof. For the Pi—covering of a cycle
C,, we have seven cases.

1.n € k—1. Since C, contains no copy of P, C, can't be Pj-
equicoverable.

2. n = k. It's easy to see c(Cp; Py) is 2. Besides Hj, only one edge has
not heen covered, and we need only one copy of Pi to cover it. So the
number of Pi in the minimal Pi-covering of C, only can be 2. By
the definition, C,, is Pi-equicoverable.

3. k+1<n< 2k —2. It’s easy to see ¢{Cp; Pr) is 2.
In the covering, besides the copy H; , there must be another copy
H; = {ei,eir1, " ,eipk—2}(2 < i < k) to cover the edge ex, where
for Vey,z + = mod n.

(a) i+k—22>n,i—1< k- 1. Then {H,, H;} is the only possible
minimal Pi-covering of C,, with 2 copies.

(b) i+k—2 < n—1, since the edge e;1x—1 has not been covered, there
must be the third copy H} = {ej, €41, sejpk—2}(k+1 <5 <
i+ k —1) to cover it.

e Wheni+k—-1<n<[¥],(n+i-1)-(G+k-2)=
n+i-j—k+1<n+(n—-k+l)—(k+1)—-k+1=
2n—3k+1 < 2%3 —3k+1=1. Thatis,n+i—1< j+k-2.
So{HJ’:, H;} can cover all edges of Cy,, H) is redundant. So
when n < [%], there exists no minimal Pi-covering with 3
copies, Cy, is Pi-equicoverable.
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e Whenn > [3#], (n+i-1)-(j+k-2)=n+i—j—
k+l=n+(n-k+1)—(k+1)—-k+1=2n-3k+1>
2*%—3k+1 =1. Thatis,n+¢—1> j+ k — 2. there
exists a minimal Pi—covering with 3 copies of P; denoted
by H = {Hy, H}, H;}. so C,, isn't Pi-equicoverable.

4. n =2k — 1. C, is Pr-equicoverable.

In the covering, besides the copy H; , there must be another copy
H; = {ei,eiq1,-+ ,€ipr-2}(2 < i < k) to cover the edge ex. Since
the edge e;+x—1 has not heen covered, there must be the third copy
H: = {ej,ejr1, - ,ej1k—2}(k+1 < j < i+k—1) to cover it. where for
Vez,z ¢z mod n. Sincej < i+k—1<2k—1<j+k-2, H} always
covers the edges ejrk—1,€itk, " ,€2k—1. {Hl,Hi,HJ‘:} contains all
possible minimal Pj-coverings of C,. So the number of P, in the
minimal Pj-covering of C,, only can be 3. By the definition, C, is
Pi.-equicoverable.

5. 2k < n < 3k—3. It’s easy to see ¢(Cy; Py) is 3. There exists a minimal
Pi-covering with 4 copies of Py denoted by L = {H,, H,, H3, Hy},

where Hy = {e3,e3, - ,ex}, H3 = {ery1,€x42, " €261}, Hy =
{en—k+2:€n-k43,* ,en}. So Cy is not Py-equicoverable.

6. n =3k —2. It’s easy to see ¢(Cr; Pi) is 4. There exists a minimal P;-
covering with 5 copies of Py denoted by H = {H,, Ha, H3, Hy, Hs},
where

Hp = {e3,eq, - ,er,exy1}, Hz = {€ks1,€ks2, - ,€0k-2,€2k~1},
Hy = {ex+3,€xt4,* , €2k, €0k01 }, Hs = {e2k41, €2k42, - - , €3k—2,€1}.

By the definition, so C,, is not Pi-equicoverable.
7.n23k—-1,n-2k=r(modk—1) (r=0,1,--- ,k—2).

() 0<r<k-3.
Cn_P2k+l+r has (k - l)t(t € Zat > 1) edges: so Cn_P2k+l+r is
Py~-decomposable. By Theorem 2, Py ;1 is not Py-equicoverable.
By Lemma 1, C,, is not Py-equicoverable.

(b) r=k-2.
e When n = 4k — 3, it’s easy to see ¢(Cyk—3; Pr) is 5. There
exists a minimal Pg-covering with 6 copies of P, denoted by
L= {Hla H2, H3, H4: H5a HG}; where H2 = {eZa €3, 1ek}y
H3 = {exy1,€xs2, €201}, Hy = {ear—1, €0k, - , €35-3},
Hs = {e3k_2,e3k—1, - ,e4x—a}, He = {€31-1,
€3k, -+ ,€4k—3}, SO Cai—3 is not Pr-equicoverable.
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e When n # 4k — 3, C,, — Psx—2 is Pi-decomposable. By
Theorem 2, Pyx_» is not Pi-equipackable. By Lemma 1, C,
is not Py-equicoverable.

From the above, C,, is Pr—equicoverable if and only if £ < n < [%] or
n=2k-1.
a

2.2 M;-equicoverable (k > 2) paths and cycles

To get the results, we first give several lemmas.
Lemma 4. Let P, be an Mj.-coverable path, then c(Pn; Mi) = [222].

Proof. Since P, is Mj-coverable, by the definition of minimal covering, it
is easy to see c(Pn; M) is at least [21]. To get the desired result, clearly
it suffices to find a minimal Mj-covering of P, with ["—k—“l] copies.
Let E(P,) = AU B, where A = {ey,e3,¢5,--- ,e2p_1}, B = {e2, e4,€s,
- ,ezq}. Let L= {Hy, Ha,--- ,Hr:_El‘I} be a set of subgraphs of P,, where
H is shown in Fig.1, and let t =n -1 mod k.

€1 €3 € - €2k-1  E2k+1 €2k+3 ‘' €dk-1
H, H,

€2k(i—1)+1 ©€2k(i—1)+3 €2k(i-1)+5 ' ©E2ki~1
H,;

€2ki+1 €2ki+3 " €2p-1 €2 €4 ‘' E€o(k—(p—ki))
Hip

€2(g+1—t) €2(qg+1-t) "°* €2¢ €2 €4 ‘' €2(k—t)
Hrogy

Figl L of P,

We claim that each subgraph H; is isomorphic to Mj. For example, L =
{Hh, Hz, H3, Hy} is a collection of subgraphs of Py7, whose each subgraph
is isomorphic to My, which is illustrated in Fig.2.

e] e3 es e7 €9 e1; ez €3 €l7 ey eq eg
H, Ha Hs
€8 €10 €12 €14 €16 €2 €4 €¢

H, Hy

Fig.2 L Of P17

114



Now we prove the above claim. Obviously H;(j # i+1, [22]) is isomor-
phic to M}, we only need to prove H;,; and H regiy is isomorphic to My,
respectively. In H;.,, comparing the subscript of ezx;4; and €2(k —(p—ki))>

2ki+1-2(k-(p—-ki))=2p-2k+12>2+1>2(p>k),

€2ki+1 and ea(x_(p—ki)) are not adjacent, and H; 4, has k edges, thus H;,, is
acopyof M. In H [zl comparing the subscript of ez(g4+1-¢) and €2(k—t)

20@+1-t)-2k-t)=2(g-k)+2>2
(since P, is M-coverable, ¢ > k holds). That is, €2(¢+1-t) and ep(x_q) are

not adjacent, and H [zt has k edges, thus H [z is also a copy of M.

From the above, we know that L is an Mj-covering of P, with [21]
copies. More specifically, L is a minimal Mj-covering of P,. This completes
the proof. O

Lemma 5. In a path P, if n—2k+1 > [221], then P, is not M-
equicoverable.

Proof. First we give a minimal M-covering of P,, say L = {H,,Hy,--- ,
Hn—2k+l}9 where

'H1 {e1,es, - ,e2r_3,€261}
= {e2,e4, -+ ,e26_2, €2k}
H3 = {e1,€3, - ,€2k_3, €2k41}
{ Ha = {e1,€3,- - , €213, €242}
Hp or = {ej, 3, ,e2x_3,€n_3}
\Hn—2k+l = {61,63,"' ,€2k—3,en—1}

By Lemma 4, we know ¢(Py,; M) is [252]. Since n — 2k +1 > [2£1], L
is a minimal Mj-covering of P, whlch is not minimum. Thus P, is not
My.-equicoverable. O

Lemma 6. Let Cp, be an Mj-coverable cycle, then c(Cp; My) = [1].
We omit the proof, which is similar to the proof of Lemma 4.

Lemma 7. In a cycle Cp, if n —2k+2 > [}], then C, is not M-
equicoverable.
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Proof. There is a minimal Mj-covering of C,,,say L = {H,,Ha,- -+, Hp—2k42},
say

(H) = {e1,€3, " , €263, €2k—1}

Hy = {e1,e3, -+ ,e2x—3,€2k}

J Hs = {ej,e3, -~ ,€x-3,€2k+1}

Hy ok = {61,63,"' ,ezk—s,en-l}

| Hn—2k42 = {e2,€4,* ,€2k-2,€n}

By Lemma 6, we know ¢(Cn; M) is [2]. Since n — 2k +2 > [%], L
is a minimal Mj-covering of C,, which is not minimum. Thus C,, is not
Mj.-equicoverable. 0O

Theorem 8. A path P, is M-equicoverable if and only if n = 2k + 1.
Proof. For the M, —covering of a path P,, we have four cases.
1. n < 2k. Since P, is not Mj-coverable, P, is not M,-equicoverable.

2. n =2k + 1. There must be one copy H; = {e2,e4,- - ,€2x} to cover
es. And there also must be another copy Hs = {ej,es3, - ,eax—1} to
cover egx—1. Then L = {H,, Hp} covers all edges of the path P,, so
L = {H;,H,} is the unique minimal M-covering of F,,. The number
of My in the minimal Mj-covering of P, only can be 2, so P, is
M.-equicoverable.

3. When n = 2k +2, it’s easy to see ¢(Pp; M) is 3. There exists a mini-
mal Mj-covering with 4 copies of M denoted by H = {H;, H, H3, Hs},

where
H = {ezk+1,€2k—3, €2k—5,€2k—7,€2k—9, " ** 1 €1},
Hp = {eak, e2k-2, €2k—5,€2k—7,€2k-9, " ** 1 €1},
H3z = {e2k+1,€2k—1,€2k—5,€2k—7,€2k~9, " " * 1 €1},

Hy = {e2k+1, €2k—2, €2k—4, €2k—6, €2k—8, * * * 1 €2}
By the definition, so P, is not Mj-equicoverable.

4. When n > 2k + 3, it's easy to verify that n — 2k +1 > [22], by
Lemma 5, P, is not My-equicoverable, a contradiction.

From the above, a path P, is Mj-equicoverable if and only if n =
2k +1. O

Theorem 9. A cycle C, is My-equicoverable if and only if n = 2k or
n=2k+1.
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Proof. For the M. —covering of a cycle C,, we have four cases.

1. n < 2k-1. Since C, is not My-coverable, C,, is not Mj.-equicoverable.

2. n =2k H) = {eyeq, - ,ex} is the unique copy of My to cover

e2. Hy = {ey,e3, -+ ,eax_1} is the unique copy of My to cover egy_;.
And L = {H,, Hy} covers all edges of the cycle C,, so L = {H, Hq}
is the unique minimal Mj-covering of C,,. The number of M, in the
minimal Mj-covering of C,, only can be 2, so C,, is My-equicoverable.

. n=2k -+ 1. We use induction on k to prove C,, is My-equicoverable.
For k = 2, it’s easy to verify that Cs is Ms-equicoverable. For k > 2,
we suppose that the claim is true for k— 1. In the following, we prove
the claim is also true for k.

For any Mj-covering of Coxt1, say L = {Hy, Hy, -+, Hi}{ > 3),
where the elements of H; are labled in increasing order. Let H} denote
the set of the former k—1 elements of H;. Let L* = {H{,H3,--- ,H}}.

(a) eak—1 is not covered by L*. Thus L* is an M;._q-covering of
Py or Coi_y. Whatever Po_; or Cor_o, there must be one
copy H{ = {e1, €3, -+ ,e2x—5,€2k—3} to cover egx_3. There must
be another copy H} = {es,eq,- - ,€2k—4,E2k—2} tO cover e.
H}UHj is the unique minimal Mj._-covering of Py;_; or Cak—o.
Since egk—1,e2x and eax4) have not been covered, H; — H} may
be egr_1 or eg,Hy — H; may be ey or €ok+1- We have the
following possibilities.

o If H, — Hi' = {82k_1} and Hy — Hf = {ezk}, eor+1 has not
been covered, there needs only one copy of M denoted by
Hj to cover eag43. So HyUH,UHj; is a minimal M.-covering
of Co+1. In the same way, if Hy — Hf = {ezx—_1} and
Hy — H3 = {eak41}, or if H; —H} ={ex}and Hy — H; =
{e2k+1}, H1 U Hy U H;3 is a minimal M-covering of Cor41.

o If Hy — Hf = Hy — H3 = {ea}, eax—1 and eg1 have not
been covered. Since eg—; is not covered by H*, there must
be the unique copy Hsz = {ej, e3,-- -, e2k—3, €2x~1} to cover
egk-1. Since HY C Hs, Hy — H; C H,, Hy U Hj covers
the edge e, ez, - - ,€2k—1,€2x. There needs only one copy of
M;. denoted by Hy to cover egryq. Thus HoU H3 U Hy is a
minimal Mg-covering of Coiy ;. ,

(b) e2x—y is covered by L*. Thus L* is an Mj_;-covering of Car_;.
By the induction hypothesis, Co_; is Mi_ 1-equicoverable. So
the number of M_; in every minimal M;._,-covering of Cor_;
is 3. We arbitrarily select a minimal Mj_,-covering of Cox_,
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denoted by Hy, Hj, H; from L*. Suppose ezx~1 € Hj, then
Hy — H} = {eak+1}. Let E = (Hy — H{)U(H2 — H3), there are
two possibilities.

o If ey € E, esr,e2k—1, €2rc+1 and all the former edges are all
covered by Hy U Ho U H3, so L = {H;, H2, H3} is 2 minimal
Mj-covering of Caog41.

o If exi ¢ E, since the copy of My covering e; doesn’t contain
€2k+1, €2k+1 Can not belong to Hy, Ha, Hz at the same time.
Thus, we suppose eax+1 & Hy, and exr ¢ Hy,s0o Hy — Hf =
{e2k-1}, then Hy can only be {e;,e3, - ,e2x-3,€2k—-1}. So
H, — H} = {eax+1}. Otherwise,H; = H;. H; may contain
eok—1 Or eax—2. If Hy contains ezx_3, then esx—_2 is not cov-
ered by Hy U H3 U H3, which contracts to the fact that Hj'U
Hj U Hj is an Mj._,-covering of Cg_;. Therefore H3 con-
tains egx—o. Hy can only be {e2, €4, ,€2k-2,€2k41}. H1U
H, covers the edges e;, ez, - ,€2k—3,€2k—2, €2k—1, €2k +1-
There needs only one copy of Mj to cover ez; denoted by
Hy. HyU H,U Hy is a minimal M.-covering of Cory 1.

4. n > 2k + 2. It’s easy to verify that n — 2k +2 > [%], by Lemma 7,
C,, is not My-equicoverable.

From above, we can get the conclusion that the number of My in every
minimal Mj-covering of Cok; is 3. Thus Cy, is Mi-equicoverable.
So a cycle C,, is My-equicoverable if and only if n = 2k or n = 2k+1. O
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