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Abstract

For a positive integer k, let Zx = (Zi,+,0) be the additive
group of congruences modulo k& with identity 0, and Z; is the usual
group of integers Z when k = 1. We call a finite simple graph
G = (V(G), E(G)) to be Zi-magic if it admits an edge labeling
¢ : E(G) — Zi\{0} such that the induced vertex sum labeling
£t : V(G) — Zy defined by £*(v) = 2 wweE(q) {(w) is constant.
The constant is called a magic sum index, or an index for short,
of G under the labeling ¢, which follows R. Stanley. The null set
of G, which is defined by E. Salehi as the set of all k& such that G is
Z-magic with zero magic sum index, and is denoted by Null(G). For
fix integer k, we consider the set of all possible magic sum indices »
such that G is Zx-magic with a magic sum index r, and denote it by
I;(G). We call I(G) the index set of G with respect to Z. In this
paper, we investigate the properties and relations of the index sets
Ix(G) and the null sets Null(G) for Zx-magic graphs. Among others,
we determine the null sets of generalized wheels and generalized fans,
and also construct infinitely many examples of Z;-magic graphs with
magic sum zero. Some open problems are presented.
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1 Introduction and Terminology

For any additive abelian group A, let A* = A — {0} where 0 is the additive
identity element. Given a graph G, any mapping ¢ : E(G) — A* is called
an edge labeling of G. A graph G is said to be A-magic if there exists an
edge labeling such that the induced vertex labeling £* : V(G) — A defined

by
)= Y lw)

uvEE(G)

is a constant map. We call the constant a magic sum index of G, an
indez for short, and I4(G) = {r : G is A-magic with an index 7} the in-
dex set of G with respect to A. In this article we focus on A = Z; and
denote 14(G) by Ix(G). The notion of index sets is first introduced and
studied by C-M Lin and T-M Wang in [3]. A related notion is the null
set of G, which is defined as the set of all k such that G is Zi-magic with
index 0. The problems related to the null sets was studied by E. Salehi
in (13, 12]. E. Salehi also studied a particular class of graphs called un:i-
formly null, which is defined as the graphs G with the property that, if
G is Zi-magic, then the magic sum is zero only. He identified the class of
complete bipartite graphs Ky n+1 to be uniformly null in [13].

In general, a graph may admit more than one edge labeling to become
an A-magic graph. At present, no generally efficient algorithm is known
for finding magic labeling for general graphs. It is well-known {2, 11, 20}
that a graph G is N-magic if and only if every edge of G is contained in a
{1,2}-factor. For a list of properties of N-magic graphs, see [1, 4, 6, 18, 19].
Stanley studied Z-magic graphs in [16, 17); he demonstrated that magic
labelings can be found by solving a system of linear diophantine equations.
Being Z-magic is a weaker condition than being N-magic. Given a graph
G, the set of all k such that G is Zg-magic is defined as the integer-magic
spectrum of G, and is denoted by IM(G). The integer-magic spectra of
some families of graphs can be found in [5, 7, 8, 9]. The concepts of the
index sets, the null sets, and the integer magic spectra of graphs are closely
related. Note that the case of Z;-magicness is easy to settle. Since every
edge must be labeled with 1, the magic sum is the degree of any vertex
modulo 2. Therefore the degrees of the vertices must have the same parity.
This leads to the following result.

Lemma 1.1 A graph G is Zy-magic if and only if its degrees are all even
or all odd.

However the discussion of Zy-magic graphs is completely different from
that of Z,-magic graphs for k > 3 or k = 1. It is quite challenging to obtain
similar characterizations of Zi-magic graphs for k > 3 or k= 1.
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In [13], E. Salehi introduced the null set of a graph, and obtained some
interesting results regarding various classes of graphs. Formally we define
the null set of a graph as follows.

Definition 1.2 The null set of a graph G is the set of all possible positive
integers k, such that G has a zero magic sum indez under a Zi-magic edge
labeling, and is denoted by Null(G).

We define in (3] a related and more general notion index sets as follows:

Definition 1.3 For a graph G, we define the set of all magic sum indices
T such that G is Zy-magic with magic sum indez T to be the indez set of
G with respect to Zy, and denote such a set by I(G). That is, I(G) =
{r: G is Zr-magic with magic sum indez r}.

Remark. In terms of the above definition, we may see that Null(G) =
{k : 0 € I(G)}. Therefore if enough information of the index set Ix(G) is
provided, then one may completely determine the null set of G.

We have the following basic observations over the index sets in [3):

Theorem 1.4 LetG =G, ® Gy P-+---- ® G, be the edge disjoint union
of spanning subgraphs G1,Gz, - - and Gn,. Suppose for fiz k the graphs G;
is Zi-magic with index r; fori=1,---,k. Then we have:

(1) G=G1®G®--+--- ® G is Zx-magic with an index Y .- ;.

(2) I(G1) + Ie(Ga) +------ +1k(Gm) CI(G1 ®G2® -+ - ® Gm), and
in particular, In(G1 ®Go@®---- - ®Gn) = Zi if It(G;) = Zy. for some
7.

(3) Let nG = the vertez disjoint union of n copies of G. Then nG has the
same inder set as G, that is, It(nG) = I(G).

(4) Let G and H be any two graphs, and both are Zi-magic with indices
Ty and 1o, respectively. Then the Cartesian product G x H has an
indez vy + 12, and the index set Ix(G x H) = Z; whenever I (G) or
I.(H) = Zy..

(5) Let G and H be any two graphs, and H is Zi-magic. Then the index
set of their lexicographic product is It(G o H) = Zy.

Remark. In case the graphs G1,Ga, - - and G,, are Z;-magic with indices
0 for each G;, where i = 1,---,k. Then we have the resulting arbitrary
union graph |J G; by attaching these m graphs in any "edge disjoint” way
is still Zx-magic with an index 0.

In general, the index set may not be the full Z;. We have the following
fact for index sets of cycles in [3]:
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Proposition 1.5 Let C,, be an n-cycle, where n > 3, and k be a positive
integer. We have the following:

(1) Ii(Cp) =2Z} = {2z : = #0, z € Z}, for n odd.

(2) Ix(C,) = Zy, for n even.

Note that we may have many examples of regular graphs with index
sets Z;. More generally, we have the following theorem for index sets of
regular graphs admitting a 1-factor in (3].

Theorem 1.6 Let G be a r-regular graph (r > 2) which admits a 1-factor,
then

Zy, k=1, k>3.
Ii(G)=( Zy-{0}, k=2, r odd
Zy - {1}, k=2, r even.

In later sections, we study the index sets, the null sets of various classes
of graphs, and relations between them. Among others we determine the
null sets of generalized wheels and generalized fans and also construct in-
finitely many examples of uniformly null Zi-magic graphs, and mention
some applications to the calculation of Zi-magicness. Some open problems
are presented in the concluding remarks.

2 Null Sets of Generalized Fans and Gener-
alized Wheels

In this section, the null sets of windmills, fans, wheels, and their variants
and generalizations are discussed and determined completely.

Note that at first for any Z;-magic labeling f of a graph G with index
r, we have the following equation by summing all vertex sums:

2 Y fley=r-|V(G)| (mod k).

e€E(G)

Hence we have 2. e f(e)=0 (mod k) for any magic labeling with
index 0, and also note that the sum of labels for all the incident edges with
one single vertex is 0, therefore we have the following Lemma:

Lemma 2.1 Let f be a Zi-magic labeling of G with an index 0, v be a
verter of G, and G' = G — {v}. Then we have:

Z fle) = -’25 or 0 (mod k), for k even,
e 0 (mod k) for k odd.
e€E(G)
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and

Z fle) = g or 0 (mod k), for k even,
€ =1 0 (mod k), for k odd.
e€E(G’)

We will determine the null sets of generalized fan graphs, the null sets of
generalized wheel] graphs, and the null sets of generalized windmill graphs
completely in this section.

Definition 2.2 A fan graph F,, = {v} + P, is formed by adding a vertez
v to the vertex set of P, and joining this verter to every vertex of P,,
and a wheel graph W, = {v} 4 C, is formed by adding a vertez v to the
vertez set of C, and joining this vertez to every verter of C,, for n > 3.
A generalized fan graph is formed by joining one vertex to each verter
of a disjoint union of paths, and a generalized wheel graph is formed by
Jjoining one vertex to each vertex of a disjoint union of cycles. We call the
vertez v the center, and the edges connecting the center v and vertices of
paths P, or cycles C, spokes.

Therefore, by the above Lemma 2.1, we observe that for the zero-sum
Zi-magic labeling of {v} + H (In particular H = W,,, H = F,, or H =
disjoint union of paths or cycles), the sum of edge labels on H (that is
cycles Cp, and paths P, respectively) must be 0 or g modulo an even k,
and also the induced vertex sum of every vertex on H must be non-zero
since the edge labels on spokes are non-zero.

Remark. We observe that fans F;, and wheels W,, for n > 3 have no
Zy-magic labeling with index 0. Therefore 2 ¢ Null(F},) and 2 ¢ Null(W,,).

Note that the null sets of wheels and fans have already been determined
and presented at the 40th Southeastern International Conference on Com-
binatorics, Graph Theory and Computing, March 2-6, 2009(Please see the
abstract of the talk ”Zero-Sum Magic and Null Sets of Planar Graphs”,
E. Salehi and S. Hansen, University of Nevada Las Vegas). We work inde-
pendently regarding this subject, and obtain the null sets of fans, wheels,
and other graphs, respectively. Therefore we omit our proof and just put
the result for the null set of the fans F, for n > 2 in the following for
reference. Note that the proof is based upon the induction and a method
of subdivision.

Theorem 2.3 Forn > 2,
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2N, n =2,

_ 2N\ {2}, n=23,
Null(F2) =\ N\{2}, n>3 n=1(mod3),
N\{2,3}, n>3, n=0,2 (mod 3).

More precisely, we define the generalized fans as follows.

Definition 2.4 A generalized fan F(n1,ng,- - ,nm) = {v} + (Pp, UP,, U

-++UP,, ), where P,, are disjoint paths on n; > 2 vertices, fori=1,---,m
and m > 2.

We first deal with the Z3 case for a generalized fan F(nj,ng,:--,nm)
where n; > 2 vertices, fori =1,---,m:

Lemma 2.5 Forn; >2,Vi=1,---,m, letS = {n;: n; =0 or 2 (mod 3)}.
Then we have that 0 € I3(F(n1,n2,- -+ ,nm)) if and only if |S| # 1.

Proof. Suppose 0 € I3(F(ny,na,---,nm)). By Lemma 2.1, we note that
every label restricted on each path is either 1 or —1 for any zero sum Zs-
magic labeling of the generalized fan. If we label all 1s on some path Py,
then there are (n; — 2) 1's and two (—1)’s on the spokes incident with each
vertex of such path. Therefore, the partial vertex sum of the center with
respect to P,, is n; —4 = n; — 1 (mod 3). On the other hand, if we choose
to label all (—1)’s on the path P,,, the partial vertex sum of the center
with respect to Py, is 4 —n; =1 —n; (mod 3).

Let the total vertex sum of the center be T, we have the following four
cases:
Case 1: S| =1.

Then T is never zero (mod 3).
Case 2: |S| =3k, k e Nu{0}.

Label 1 on all the edges, then T = 3k = 0 (mod 3).
Case 3: |[S|=3k+1, keN.

Label two fans such that the partial vertex sums of the center with
respect to them are —1, and 3k — 1 fans such that the partial vertex sums
with respect to them are 1, then T = (3k — 1) — 2 = 0 (mod 3).

Case 4: [S|=3k+2,k€N.

Label one fans such that the partial vertex sum of the center is —1, and
3k + 1 fans such that the partial vertex sums of the center with respect to
them is 1, then T = (3k + 1) — 1 = 0 (mod 3).

The converse is clear from the given labeling. a
Note that we may view F(n1,n2, -, nm) as the one vertex union of Fy,,,
fori=1,---,m, and write it as F(n1,n2,"**,m) = Fp, O F, .- O Fyy,,.
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Since N(Fy,) D N\{2,3}, for all n > 4, that is F, (n > 4) is Z,-magic with
index O for all k£ > 4, therefore if we can show that F(n,,ng,--,n,) with
certain n; £ 3 admits a Z,-magic labeling with zero sum, for all & > 4,
then the null set of F(n1,ng, -+, n,) is completely determined. We proceed
with the following steps.

Lemma 2.6 The double fans F(2,m) and F(3,m) admit a Z-magic la-
beling with 0 indez, for allm > 4 and k > 4.

Proof. Clearly, F(2,4), F(2,5), F(3,4), and F(3,5) admit Zs-magic la-
beling with 0 index, for all k > 4, as shown in the Figure 1 and Figure 2.

F(2.4)k=4 F(2.4)k>4

Figure 1: F(2,4) and F(2,5)

12 2 1
F(3,5), k=4 F(3.5) k>4

Figure 2: F(3,4) and F(3,5)

Note that the given labeling has 1-edge and (—1)-edge over the F; and
Fs sides, then by inserting spokes labeled 2 and —2, we may get a Z-
magic labeling with 0 index for general F(2,m + 2) from F(2,m), and get
F(3,m +2) from F(3,m), respectively, for all m > 4 by induction. Please
see the Figure 3 for the above mentioned method, which is also used in our
proof in obtaining the null sets of fans. m}
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Figure 3: F(x,m) to F(x,m +2): a method of subdivision

Corollary 2.7 For k > 4 and m > 2, suppose {n,na,---,nm} contain
only one 2 or only one 3. Then F(ny,ny,--+,nm) admits a Zx-magic la-
beling with zero sum indexz.

Proof. If 2 (or 3) appears once in {n1,n2, - -,2m}, then F(n1,n2,: - yPom)
is a vertex union of F(2,t) (or F(3,t)) for t > 4 and other fans F; with
jiz4 m]

Theorem 2.8 The generalized fan F(ny,ng, -+ ,npm), 7 22, Vi=1,---,m
and m > 2, admits a Zy-magic labeling with zero indez, for all k > 4.

Proof. For convenience and without loss of generality, we may express the
generalized fan as the one vertex union of a copies of F', b copies of F3, and
c copies of F3, where F is an a vertex union of fans F;, j > 4. That is, we
assume that F(nj,ng,---,nm) = aF © bF; © cF3 where b, c non-negative
and a is 0 or 1. Note that Fj, j > 4 admits Z,-magic labeling with zero
sum for k > 4. Then we have the following cases:

Case 1. b, c are both even.

Note that this case can be reduced to F(2,2) and F(3,3). For F(2,2),
it admits a Z,-magic labeling with zero index, for k > 4, since it is Eulerian
of even size. For F(3,3), it admits a Zx-magic labeling with zero index, for
k > 4, see the Figure 4. Therefore, bFoOcF; = (%Fg@%Fg)@(%F:;O%Fs) =
gF(2,2) © £F(3,3) admits a Z,-magic labeling with zero index, k > 4.
Case 2. b even, ¢ odd.

In case b > 2 it reduces to the case F(3,2,2), see the Figure 5. In case
b =0 and c = 1, since a # 0, that is F' # ¢, it reduces to the case F'(3,p),
p > 4. In case b =0 and ¢ > 3 odd, it reduces to the case F'(3,3,3), see
Figure 6.

Case 3. b odd, c even.

In case b= 1, ¢ = 0. Then a # 0, that is F # ¢, it reduces to the case
F(2,p), p > 4. In case b > 3 odd, c = 0, it reduces to the case F(2,2,2), see
Figure 6. In case ¢ > 2, it reduces to the case F(2,3,3), see the Figure 5.
Case 4. b,c are both odd.
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F(2.2.3)

Figure 5: F(2,3,3) and F(2,2,3)

In this case it reduces to the case F(2,3), see the Figure 4.

Summarizing all up,

Theorem 2.9 Let F(ny,ng,---,nm) be a generalized fan, where n; > 2,

fori=1,--- m and m > 2. The null set is
N, fni=no=.=n;,=2
Null(F(ny,ng, -, nm)) = ¢ N\{2,3}, 3 unigue n; =0 or 2 (mod 3),
N\{2}, otherwise.

Remark. In particular, we have shown in the above Theorem, assuming
ny =mny = --+ = ny = 2, that the windmill graphs (see the Figure 7)
WM, = F(2,2,---,2) = {v} +nP,, n > 2, admits Z;-magic zero sum
labeling for all k£ € N, that is, the null set Null(WM,) =N, n > 2.

Now we proceed to determine the null sets of generalized wheel graphs.

First we put the results here without proof for the null set of the wheel
graphs W,, n > 3, for reference. Note that the proof is also based upon the
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K
F(3.3.9)
LC)

Figure 6: F(2,2,2) and F(3,3,3)

Figure 7: Windmill WM,

induction and a method of subdivision as in the case of fans and generalized
fans.

Theorem 2.10 Forn > 3,

_ [ N\{2}, =0 (mod 3),
Null(W) = { N&z,}s}, n; 1,2 (ﬁod 3).

To be more precise about the generalized wheel graphs, we define as
follows:

Definition 2.11 A generalized wheel graph W(ny,ng, -, nm) = {v} +
(Cry UCp, U---UCh,,), where Cy, are disjoint cycles on n; > 3 vertices,
fori=1,---,m and m 2 2.

Similar to the situation in the Zz-magic case of generalized fans, we
have the following Lemma for the generalized wheels W(ny,na,- -+, nm).
The proof is straightforward and similar to the one in Lemma 2.5, hence it
is left to the reader.

Lemma 2.12 Letn; >3,Vi=1,.--,m,and S = {n;: n; =1 or 2 (mod 3)}.
Then we have that 0 € I3(W(ny,nz, -, nm)) if and only if |S| # 1.

Theorem 2.13 Let W(ny,na,-++,nm) be a generalized wheel, where n; >
3 fori=1,---,m, and m > 2. The null set is
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N\{2,3}, 3 uni : =1 or 2 (mod 3),
Null(W(ny,ng,- - ,nm)) = { Nth},} unique n. or os::r)‘wise)z.

Proof. Directly from Lemma 2.12 and Theorem 2.10. ]

3 New Classes of Uniformly Null Graphs

In this section we study another class of graphs related to the null sets. A
graph is uniformly null if every Z;-magic labeling induces 0 magic sum
index, which was studied by E. Salehi in [13, 12]. Note that this definition
implies all non-magic (that is non-Z,-magic for all k) graphs are uniformly
null in Salehi’s sense. He identified the class of complete bipartite graphs
K, 741 to be uniformly null.

Definition 3.1 We call G an almost equi-bipartite graph if G is a
bipartite graph (without isolated vertices) with bipartition (X,Y) and || X| -
Y| =1.

We have the following observation for the index sets of almost equi-
bipartite graphs:

Proposition 3.2 Let G be an almost equi-bipartite graph with bipartition
(X,Y), and ||X| - |Y|| = 1. If G is Zx-magic, then it is uniformly null,
that is, I.(G) = {0}, Vk > 3.

Proof. Suppose G admits a Z;-magic labeling f with index 7, and | X| = m,
|Y| = m+1. By adding all the vertex sums in X, and adding all the vertex
sums in Y respectively, we have

mr=3" fle)=(m+1)r,

e€E(G)

which implies 7 = 0 (mod k). Thus the proof is complete.

Remark. If G is an almost equi-bipartite graph, and if moreover G is an
even graph (that is in G every vertex is of even degree), then G is Z-magic
with an index 0 since it is a disjoint union of Eulerian graphs of even size.
However conversely we have examples of uniformly null graphs which are
not even graphs, namely, the complete almost equi-bipartite graphs Kp n41
for n > 3, as E. Salehi pointed out in [13].
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3.1 (C,-Construction of Almost Equi-bipartite Graphs

The following is a construction with C; of an infinite family of almost
equi-bipartite graphs G whose degrees are all even and for which Ix(G) =
{0}, Vk > 3. In fact, It(G) = {0}, for k = 1,2 as well.

Note that since almost equi-bipartite graphs G with degree one vertices
are not Zg-magic with zero sum, the minimum degree 6(G) > 2 and hence
G contains cycles and only even cycles. Therefore, we may have that the
order |V(G)| > 7 and is odd. So the minimum order of such graphs is 7
as shown in the graph of Figure 8, which is isomorphic to the dumbbell
graph D(4,4), one vertex union of two four-cycles. We denote it by By,
and clearly Ix(B7) = 0, Vk > 3. Let B; € 37 be the first family of almost
equi-bipartite graphs with the least order 7 and By is the one with the least
number of edges.

Figure 8: Construction from B; = D(4,4) to Bg € (o

Construct families Bn42 from B, using the following steps to obtain
B, ;2 € Prn42 from B, € G, forn > 1:

Step 1. Choose vertices z,y in B, € 3, such that their distance d(z,y)
is odd and strictly greater than 1, that is d(z,y) € {3,5,7,---}. Hence z,y
are in different partite sets and non-adjacent.

Step 2. Then we add two new vertices w, z such that z, z and y, w are in
the same partite sets, respectively, and join the edges to get zy, zw, yz,wz
to create a graph B, 12 € Bn42.

In such a way we attach a Cj to the chosen vertices z,y to create new
graphs B2 € Bp42. Note that the new graphs are still Eulerian of even
size and, in fact, are of the smallest size in 8,42 if the construction starts
from By = D(4,4). Therefore, we obtain an infinitely family 8 of uniformly
null almost equi-bipartite graphs via the above constructions.
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3.2 One Point Union Construction of Almost Equi-
bipartite Graphs

We have another infinite set of examples of uniformly null graphs, which is
constructed by attaching even cycles in a particular way. The construction
is as follows.

Step 1. Pick a path of even length, and make each edge to be two
parallel edges between every pair of adjacent vertices.

Step 2. Insert even number (including none) of vertices of degree 2 in
each edge so that the resulting graph is simple and a one point union of
even cycles.

Then it is routine to check that the resulting graph is an almost equi-
bipartite graph, therefore it is a uniformly null graph by the above Propo-
sition 3.2. Please see Figure 9.

Figure 9: One Point Union of Even Cycles

3.3 Application to Integer Magic Spectrum of Corona
Product

Let G and H be two graphs, where |[V(G)| = n. Take one copy of G and n
copies of H, for each ¢ from 1 to n, join the ith vertex of G to each vertex
in the ith copy of H. The resulting graph is called the corona product of
G with H, which we shall denote G@H. On the other hand, given a graph
G, the set of all k such that G is Zi-magic is defined as the integer-magic
spectrum of G, and is denoted by IM(G). Please see [5, 7, 8, 14, 15].

We obtain the following criterion to get the integer magic spectra of the
corona G@©N,, using the information of index sets of G in [3], where N,,
is the null graph (empty graph) with m isolated points.

Proposition 3.3 For fitedm andk > 2, letd = ged(k,1-m). We analyze
IM(G®Ny,) in the following cases:

Case 1. d > 1, then k € IM(GONy,) if and only if d|r;, for some
r; € It(G).
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Case 2. d = 1, then k € IM(GON,) if and only if I(G) has an
non-zero element.

Therefore,

1. If It(G) contains both 0 and another non-zero element, then k €
IM(GO©Nm).

2. In particular if 0 € I(G), then k € IM(GONm).

3. Moreover, for all non-negative integer n, G@©Npk+1 is Zi-magic if
and only if 0 € I;(G).

Hence we have the following observation for calculating the integer
magic spectra of the corona products of uniformly null graphs with null
graphs:

Proposition 3.4 If I;(G) = {0} for all k > 3, then the integer magic
spectrum

IM(G@Nn) = {k: ged(1-m,k) > 1} = JpN,

i=1
where m — 1 = p{'p3? - --p;* the prime divisor decomposition.

Therefore we have obtained the integer magic spectra of infinitely many
examples of corona products of G with null graphs N, by the above Propo-
sition 3.4, where G could be any of previously constructed uniformly null
graphs, say Ky n+1, graphs in the family 8 by Cj-construction, or graphs
constructed by one point union of even cycles.

4 Concluding Remarks

Note that we have obtained the null sets of generalized wheels and general-
ized fans in this article. Also we have created infinitely many examples of
uniformly null graphs using the different even cycle constructions. There-
fore in particular we answer the open problems posted by E. Salehi in [13],
which are finding the null sets of wheels and fans, and identifying families
of uniformly null graphs other than the complete bipartite graphs K, n+1.

We conclude this paper by posting the following open problems left out
of the discussion over these related topics:

1. Determine the index sets of the generalized fans and the generalized
wheels.
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2. Characterize the class of graphs G for which Ix(G) = {0}, Vk > 3.

3. Characterize the class of almost equi-bipartite graphs G which are
uniformly null.
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