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Abstract A cyclic edge-cut of a graph G is an edge set, the removal
of which separates two cycles. If G has a cyclic edge-cut, then it is said
to be cyclically separable. For a cyclically separable graph G, the cyclic
edge-connectivity cA(G) is the cardinality of a minimum cyclic edge-cut of
G. Let ¢((G)=min{w(X)|X induces a shortest cycle in G}, where w(X) is
the number of edges with one end in X and the other end in V(G) — X.
A cyclically separable graph G with cA(G) = ¢(G) is said to be cyclically
optimal. In this work, we discuss the cyclic edge connectivity of regular
double-orbit graphs. Furthermore, as a corollary, we obtain a sufficient
condition for mixed Cayley graphs which was introduced by Chen and
Meng (3] to be cyclically optimal.
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1 Introduction

In a network, traditional connectivity is an important measure since it can
correctly reflect the fault tolerance of network systems with few processors.
However, it always underestimates the resilience of large networks. There
is a discrepancy because the occurrence of events which would disrupt a
large network after a few processor or link failures is highly unlikely. Thus
the disruption envisaged occurs in a worst case scenario. To overcome
the shortcoming, Latifi et al. [4] proposed a kind of conditional edge-
connectivity, denoted by A¥(G), which is the minimum size of an edge-cut
S such that each vertex has degree at least k in G — S.

Let G be a simple graph and F be a set of edges in G. Call F' a cyclic
edge-cut if G — F is disconnected and at least two of its components contain
cycles. Clearly, a graph has a cyclic edge cut if and only if it has two disjoint
cycles. Lovéz [6] characterized all multigraphs without two disjoint cycles.
We call those graphs which do have cyclic edge cuts cyclically separable.
Following [9], we define the cyclic edge- connectivity of G, denoted by cA(G),
as follows: if G is not connected, then ¢A(G) = 0; if G is connected but
does not have two disjoint cycles, then cA(G) = oco; otherwise, cA(G) is the
minimum cardinality over all cyclic edge-cuts of G.

For any graph G with minimum degree §(G) > 3, it can be seen that
X2(G) = cA. In fact, since every subgraph of G with minimum degree at
least 2 has a cycle, we see that A2(G) > cA. On the other hand, let S be a
minimum cyclic edge-cut of G. By the minimality of S, G — S has exactly
two connected components. If a component of G — S has a degree-one
vertex, then moving it to the other component decreases the number of
edges in the minimum cyclic edge-cut, a contradiction. Hence S is also a
A2-cut, and thus A%(G) < cA.

A graph G is said to be vertex transitive if Aut(G) acts transitively
on V(G). A bipartite graph G with bipartition X; U X3 is called half
vertez transitive [14] if Aut(G) acts transitively both on X; and X;. Let
z € V(G), we call the set {z9 : g € Aut(G)} an orbit of Aut(G). Clearly,
Aut(G) acts transitively on each orbit of Aut(G). Clearly, the half vertex
transitive graph, except for the vertex transitive bipartite graphs, has two
orbits.

For two vertex sets X,Y C V(G), [X,Y] is the set of edges with one
end in X and the other end in Y. G[X] is the subgraph of G induced by
vertex set X, X is the complement of X, w(X) = |[X, X X]| is the number
of edges between X and X in G. If [X, X X is a minimum cyclic edge-cut,
then both G[X] and G[X] are connected. Define
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¢(G) = min{w(X)|X induces a cycle in G}.

In [9], Wang and Zhang shown that {(G) > c\ for any cyclically separable
graph. A cyclically separable graph G is called cyclically optimal if ch =
¢(G). That is, for the cyclically separable graph G, if G is not cyclically
optimal, then cA < {(G).

Some previous studies in this line include [5, 8, 13]. In [8], Nedela and
Skoviera studied the existence of the cyclic edge cut in cubic multigraphs,
showing that a connected cubic graph G has no cyclic edge cut if and only
if it is isomorphic to one of K4, K33 or 62 (the multigraph with two vertices
and three edges between them). Furthermore, cA < ¢(G) in this case. Xu
and Liu [13] shown that a k-regular simple graph G with k > 3 which is not
K4; Ks, and K3 3 is cyclically separable, and cA < ¢(G). Furthermore, they
proved that a connected k-regular vertex transitive graph G with & > 4,
k # 5 and girth g(G) > 5 is cyclically optimal. Wang and Zhang [9] shown
that any vertex transitive graph with regularity degree k > 4 and girth
g 2 5 is cyclically optimal. Tian and Meng [11] reported that any half
vertex transitive regular graph with g(G) > 6 is cyclically optimal. In
this work, we study the cyclic edge-connectivity of regular graph with two
orbits V) and V,. We show that any k(> 4)-regular graph with two orbits
and girth g(G) > 5 is cyclically optimal if G[V;] and G[V;) are connected.
We refer to (3] for the detail of the double-orbits graph.

2 Preliminaries

A vertex set X is a cyclic edge-fragment, if (X, X) is a minimum cyclic edge-
cut. A cyclic edge-fragment with the minimum cardinality is called a cyclic
edge-atom. If no confusion, fragment and atom will stand for cyclic edge-
fragment and cyclic edge-atom respectively. Clearly, if X is a fragment,
then X is also a fragment, and both G[X] and G[X] are connected. The
following observation will be used frequently in the proofs: If X is an aton,
and X’ is a proper subset of X such that (x ,7(7] is a cyclic edge-cut, then
w(X’) > w(X). The concepts of fragment and atom were first proposed
by Mader [7] and Watkins (10], and their variations play an important role
in studying various kinds of connectivity. An atom is said to be trivial, if
it induces a cycle of G, otherwise it is non-trivial. For a vertex u, Ng(u)
denotes the set of neighbors of » in G. Denote by dg(u) = |Ng(u)| the
degree of u in G. If no confusion, we use dx(u) to denote deix)(u) for a
subset X of V(G).

Observation 2.1. Let G be a connected graph with §(G) > 3 and girth
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g > 5, then G is cyclically separable.

Proof. Let C be a shortest cycle in G. Since g(G) > 5, no two vertices
in V(C) have a common neighbor in V(C), that is, 6(G — C) 2 2. Clearly,
[V(C),V(C))] is a cyclic edge cut of G. Hence, G is cyclically separable. []

Let Tpn,n denote the complete m-partite graph on n vertices in which
all part are as equal in size as possible.

Lemma 2.2. (Turdn Theorem [1]). IfG is simple and contains no Kpm i1,
then &(G) < €(Tm.n). Moreover, &(G) = &(Tm,n) only if G = T n.

Lemma 2.3. [9]. Let G be a connected graph with 6(G) > 3 and X be a
fragment. Then

(i) 8(G(X]) 2 2;
(i) If 8(G[X]) > 3, then dx(v) > dx(v) holds for any v € X;

(iii) If 6(G) > 4, and X is a non-trivial atom of G, then 6(G[X]) = 3.
Furthermore, dx (v) > dx(v) holds for any v € X.

Lemma 2.4. [11]. LetG be a k-regular graph with k > 3 and girth g, and
X,Y be two distinct atoms with X NY # 0. If G is not cyclically optimal,
then | XNY|<g-1and|X|=|Y|<2(g-1).

Lemma 2.5. Let G be a k(> 4)-reqular graph with girth ¢ > 4. If G
is not cyclically optimal, then for any two distinct atoms X and Y of G,
XnY =9.

Proof. By contradiction. Let X,Y be two non-trivial atoms and suppose
XNY # 0. By Lemma 2.4, we have | X| = |[Y| < 2(¢g—1) and | XNY| < g—1.
By Lemma 2.3 (iii), we have §(G[X]) > 3 and §(G[Y]) > 3. We prove the
lemina by considering two cases.

Casel. g(G) =4.Then |[X|=|Y|<2(g—-1)=6and |XNY| <3 It
is easy to see that |X| = |Y| # 4 or 5. In fact, if |X| = 4, then G[X] =
K4 by §(G[X]) > 3. But the girth g=4, a contradiction. If | X| = |Y| =5,
8(G[X]) > 3, then |E(G[X])| > Xl = 1&. Note that g(G[X]) > 4, thus,
G[X] contains bo K3. By Turén Theorem, we have that |E(G([X])| <
|[E(T35)] =6 < 1—25-, a contradiction. If |X| = |Y| = 6, by Turdn Theorem,
G[X) = K33 is the graph with the maximum number of edges since G{X]
contains no triangle. By |X NY| < 3, we can see that G[X NY] contains a
vertex u with dgxny)(uv) < 1. Hence k 2 dx (u) +dy (v) —dgixny)(u) = 5.
We thus have:

w(X) > k| X| - 2|E(G[X])| > 6k — 18 > 4(k — 2) = g(k — 2) = {(G) > cA.
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a contradiction.

Case2. g¢(G) > 5. By Observation 2.1, G[X] and G[Y] contain two dis-
joint cycle, which implies |X| = |Y| > 2¢g > 2(g — 1), a contradiction.
a

3 Cyclically optimal regular double-orbit graph-
s

An imprimitive block of G is a proper nonempty subset A of V(G) such
that for any automorphism ¢ € Aut(G), either ¢(A4) = A or p(A)NA = 0.
In [12], Tindell reported the following theorem.

Theorem 3.1. [12]. Let G be a graph and let Y be the subgraph of G
induced by an imprimitive block A of G. If G is vertez-transitive, then so
isY.
Lemma 3.2. Let G be a k(> 4)-regular graph with two orbits V; and Vs,
and g(G) > 4. Suppose that X is an atom of G and G is not cyclically
optimal.

(i) If X C V) (or V,), then V} (or V,) is a disjoint union of distinct
atoms and G[X] is a t-reqular vertex transitive graph, where 3 < t.

(@) If XNV, #0and X NVy # 0, then V(G) is a disjoint union of
distinct atoms and G[X) is a double orbits graph.

Proof. Clearly, X is an imprimitive block of G by Lemma 2.5.

(i). If X C Vi (or V), then V; is a disjoint union of distinct atoms by
Theorem 3.1. By Lemma 2.3, G[X] is a t-regular vertex transitive graph,
where 3 < t.

(ii). Assume X; = XNVj, Xy = XNV, By Lemma 2.5, X1, X, are the
imprimitive block of V; and V5, respectively. So X; and X, are two orbits
of X by Theorem 3.1. 0

Theorem 3.3.  Let G be a k(> 4)-regular double-orbit graph with g(G) >
5 and G[V1] and G[V3) are connected, where Vi and Vs, are two orbits of G.
Then G is cyclically optimal.

Proof. By contradiction. By Observation 2.1, G is cyclically separable.
Assume that G is not cyclically optimal, then cA < ¢((G). Let X be an
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atom of G. Then G[X] contains two disjoint cycle and a shortest cycle C
of G[X] induce a cyclic edge-cut [C, G[X] — C], then |X - V(C)| > [V(C)|
by Observation 2.1. Clearly, wg(x)(C) < |X — V(C)| since no two vertices
of C have common neighbor in X — V(C). Assume that two orbits of G
are V; and Vz,and X3 = X NV, Xo =X NVa.

If X C V; (or V2) and assume that t is the regular degree of G[z], we
have wg(C) = wg(x)(C) + (k = )|V(C)| < |X = V(C)| + (k- §)|V(C)| <
(k= t)|X = V(O)} + (k= t)|[V(C)| = (k — t)|X| = w(X). That is, wg(C) is
cyclic edge cut of G and wg(C) < w(X), this contradict that X is an atom.

Assume X; = XNV; # 0, Xo = XnVz # 0, V41(C) = VinV(C) and V2(C)
= V,NV(C). By Lemma 3.2, all vertices in X,(resp. X>) have the same
degree in G[X], say ti(resp. t2). Since G[Vi] and G[V2] are connected,
it is easy to see that t; < k,i = 1,2. Hence, we(C) = wgix)(C) + (k -
£)IVi (C)|+ (k—12)|V2(C)| £ 1X =V (C)|+(k—t1)|IV1(C)|+(k—12)|V2(C)| =
1X1 = VI(O)] + | X2 — Va(O)| + (k — t1)[VA(C)| + (k — £2)[V2(C)| < (k =
£1)| X1 — Vi(C)] + (k — t2)| X2 — V2(C)| + (k= £1)[VA(C)| + (k — 2)|V2(C) | =
(k —t1)|X1] + (k — t2)| X2| = w(X). We have that wg(C) is cyclic edge-cut
of G and wg(C) < w(X), this contradict that X is an atom. O

Remark 3.4. By the proof of Theorem 3.3, under the same conditions of
Theorem 3.8 we have that if G is not cyclically optimal, at least one of
G|V1] and G[V,) is disconnected. Furthermore, for the atom X, either the
vertez of X, or the vertez of Xo has degree k.

In [2], Chen and Meng defined the mixed Cayley graph as follows. Let
G be a finite group, So, S, S2 be the subset of G and 1¢ ¢ S;,i =0, 1.
The mixed Cayley graph X = MC(G, So,S1,S2) has vertex set V(X) =
G x {0,1} and edge set E(X) = EqU E1UE; where E; = {{(g,1),(si9,9)} :
g€ G,s; € S;} fori=0,1and E; = {{(g,0),(s29,1)} : g € G,s2 € S2}.
Clearly, MC(G, So, S1,S2) has at most two orbits. Combining the result
of Wang and Zhang|[9], we have the following corollary.

Corollary 3.5. MC(G, So, S1, S2) is cyclically optimal if g(MC(G, So, S1,
S3)) > 5 and Cay(G, S;),i = 0,1 are connected.
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