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Abstract

In this paper, we introduce a special kind of graph homomorphisms
namely semi-locally-surjective graph homomorphisms. We show some
relations between semi-locally-surjective graph homomorphisms and
colorful colorings of graphs. Then, we prove that for each natural
number k, the Kneser graph KG(2k + 1, k) is b-continuous. Finally,
we present some special conditions for graphs to be b-continuous.
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1 Introduction

All graphs considered in this paper are finite and simple (undirected, loop-
less and without multiple edges). Let G = (V,E) be a graph and k € N
and let [k] := {il i € N, 1 < i < k}. A k-coloring (proper k-coloring) of
G is a function f : V — [k] such that for each 1 < i < k, f~1(i) is an
independent set. We say that G is k-colorable whenever G has a k-coloring
f, in this case, we denote f~!(i) by V; and call each 1 < i < &, a color
(of f) and each V;, a color class (of f). The minimum integer k for which
G has a k-coloring, is called the chromatic number of G and is denoted by
x(G).

Let G be a graph and f be a k-coloring of G and v be a vertex of G.
The vertex v is called b-dominating ( or colorful or color-dominating) ( with
respect to f) if each color 1 < i < k appears on the closed neighborhood
of v ( f(N[v]) = [k] ). The coloring f is said to be a colorful k-coloring
of G if each color class V; (1 < i < k) contains a b-dominating vertex z;.
Obviously, every x(G)-coloring of G is a colorful x(G)-coloring of G. We
denote B(G) the set of all positive integers k for which G has a colorful
k-coloring. The maximum of B(G), is called the b-chromatic number of G
and is denoted by b(G) (or ¢(G) or x5(G)). The graph G is said to be b-
continuous if each integer k between x(G) and b(G) is an element of B(G).
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There are graphs that are not b-continuous, for example, the 3-dimensional
cube Q3 is not b-continuous, because 2 € B(G) and 4 € B(G) but 3 ¢ B(G)
( {5] ). We have to note that the problem of deciding whether graph G is
b-continuous is NP-complete ( (1] ). The colorful coloring of graphs was
introduced in 1999 in [5] with the terminology b-coloring.

Let m,n € Nand m < n. KG(n,m) is the graph whose vertex set is the
set of all subsets of size m of [n] in which two vertices X and Y are adjacent
iff XY = 0. Note that KG(5,2) is the famous Petersen graph. It was
conjectured by Kneser in 1955 ( [7] ), and proved by Lovész in 1978 ( [8] ),
that if n > 2m, then x(KG(n,m)) = n — 2m + 2. Lovész’s proof was the
beginning of using algebraic topology in combinatorics. Colorful colorings
of Kneser graphs have been investigated in [4] and [6]. Javadi and Omoomi
in [6) showed that for n > 17, KG(n, 2) is b-continuous. Only a few classes
of graphs are known to be b-continuous (see (1], 3] and [6]). We want to
prove that for each natural number k, KG(2k+1, k) is b-continuous. In this
regard, first we introduce a special kind of graph homomorphisms which is
related to colorful colorings of graphs.

Definition 1. Let G and H be graphs. A function f: V(G) — V(H) is
called a semi-locally-surjective graph homomorphism from G to H if f is
a surjective graph homomorphism from G to H and satisfies the following
condition :

VueV(H): Jac€ f~'(u) s.t Vv € Ny(u): 3be f~1(v) st {a,b} € E(G).
[ )

We know that a graph G is k-colorable iff there exists a graph homo-
morphism from G to the complete graph K and the chromatic number
of G is the least natural number k for which there exists a graph homo-
morphism from G to K. Indeed, we can think of graph homomorphisms
from graphs to complete graphs instead of graph colorings. The following
obvious theorem shows such a similar relation between colorful colorings
of graphs and semi-locally-surjective graph homomorphisms. Indeed, we
can think of semi-locally-surjective graph homomorphisms from graphs to
complete graphs instead of colorful colorings of graphs.

Theorem 1. Let G be a graph and k € N. Then k € B(G) iff there exists
a semi-locally-surjective graph homomorphism from G to Ki. Also, the
chromatic number of G ( x(G) ) and the b-chromatic number of G ( b(G) )
are respectively the least and the greatest natural numbers k for which there
ezists a semi-locally-surjective graph homomorphism from G to Ky, .

We know that the composition of two graph homomorphisms is again
a graph homomorphism. A similar theorem holds for composition of semi-
locally-surjective graph homomorphisms.
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Theorem 2. Let G, G, and Gg be graphs. If g is a semi-locally-surjective
graph homomorphism from G, to Gy and f is a semi-locally-surjective graph
homomorphism from G3 to Gz, then gof is a semi-locally-surjective graph
homomorphism from G5 to G,.

The following theorem shows another relation between semi-locally-
surjective graph homomorphisms and colorful colorings of graphs.

Theorem 3. Let G, and G, be graphs. If there exists a semi-locally-
surjective graph homomorphism from G, to G,, then B(G;) C B(G)).

Proof. Let f be a semi-locally-surjective graph homomorphism from G,
to Gz, k € B(Gz), and V), ..., Vi be color classes of a colorful k-coloring

of G and x,. ..,z be some b-dominating vertices of G, with respect to
this k-coloring and z; € V; (1 < ¢ < k). Obviously, f~}(V1),..., f~1(Vk)
are nonempty color classes of a k-coloring of Gy and f~1(z,),..., f~!(zx)

are some b-dominating vertices of Gy with respect to this k-coloring and
f~Nx:) € f~1(Vi) (1 < i < k). Therefore, G, has a colorful k-coloring and
k € B(G1). Hence, B(G;) € B(G,). | |

Now we prove that for each natural number k, KG(2k + 1,k) is b-
continuous.

Theorem 4. For each k € N, KG(2k + 1, k) is b-continuous.

Proof. Foreach k € N, x(KG(2k+1,k)) = 3. Note that B(KG(3,1)) =
B(K3) = {3} and therefore, for k = 1 the assertion follows. Blidia, et al.
in [2] proved that the b-chromatic number of the Petersen graph is 3 and
therefore, B(KG(5, 2)) = B(Petersen graph) = {3}. Hence, KG(2k+1, k)
is b-continuous for k = 2. For k > 3, the function f : V(K G(2k+3, k+1)) —
V(KG(2k + 1,k)) which assigns to each A C [2k + 3] with JAN{2k +
2,2k + 3}l < 1, f(A) = A\ {max A} and to each A C [2k + 3] with
{2k+2,2k+3} C 4, f(A) = (A\ {2k+2, 2k +3}) U{mex([2k + 1]\ 4)}, is
a surjective graph homomorphism from KG(2k+3,k+1) to KG(2k+1, k).
Now for each X € V(KG(2k+1,k)), (X U{2k+2}) € f~1(X) and for each
Y € Nkgaes1,5)(X), (Y U{2k+3}) € f~1(Y) and {X U{2k+2}, Y U{2k+
3}} € E(KG(2k + 3,k + 1)). Hence, f is a semi-locally-surjective graph
homomorphism from KG(2k + 3,k + 1) to KG(2k + 1,k). Consequently,
Theorem 3 implies that B(KG(2k +1, k)) C B(KG(2k +3, k+1)), besides,
B(KG(7,3)) € B(KG(9,4)) € ... C B(KG(2n+ 1,n)) C ... . (])

On the other hand, Javadi and Omoomi in {6] showed that for & > 3,
b((KG(2k +1,k)) = k+ 2 and k + 2 € B(KG(2k + 1,k)). Therefore, for
each k >3, {i+2[7 €N, 3<i<k}CB(KG2k+1,k). Also, since
x(KG(2k +1,k)) = 3, 3 € B(KG(2k + 1,k)). So, constructing a colorful
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4-coloring of KG(2k + 1,k) (k > 3) completes the proof. (I) implies that
it is enough to construct a colorful 4-coloring of KG(7,3). Set

Vi:={ {1,2,3},{1,4,5},{2,5,6}, {1, 2,6}, {1,2,7},{1,3,6}, {1,6,7},
V2 :={ {5,:1:,y} ‘ T,y € {1’2)3’4)6)7}7 z # Yy }\{ {1,4,5},{2,5,6},
{4,5,7} },

Vs = { {1,2,4},{1,3,7),{4,5,7}, {L.4,7}, {2.6,7} },

V4 = ({ {4,:1:,9} l T,y € {1’2’316r7}1 T #y}\{ {1?2’4}’{1’4'6}’
{1,4,7} }) U {{2,3,6},{2,3,7},{3,6,7} }.

Now, one can check that V}, Va2, V3, V; are color classes of a colorful
4-coloring of KG(7,3) that {1,2,3} € V4, {5,6,7} € V2, {2,6,7} € V3 and
{1,3,4} € V, are some b-dominating vertices with respect to this 4-coloring.

The semi-locally-surjective graph homomorphism f in above Theorem
can be generalized as follows.

Theorem 5. Letn,m € N withn > 2m. Then B(KG(n,m)) C B(KG(n+
2,m+1)).

Proof. The function f : V(KG(n + 2,m + 1)) —» V(KG(n,m)) which
assigns to each A C [n+2] with |AN{n+1,n+2}| < 1, f(A) = A\{max A}
and to each A C [n + 2] with {n+1,n+2} C A, f(4) = (A\{n+1,n+
2}) U{max([n] \ A)}, is a surjective graph homomorphism from KG(n +
2,m + 1) to KG(n,m). Now for each X € V(KG(n,m)), (XU{n+1}) €
F~YX) and for each Y € Nkg(nm)(X), (YU{n +2}) € f}(Y) and
{(XU{n+1},YU{n +2}} € E(KG(n + 2,m + 1)). Hence, f is a semi-
locally-surjective graph homomorphism from KG(n+2,m+1) to KG(n,m)
and therefore, Theorem 3 implies that B(KG(n, m})) C B(KG(n+2,m+1)).
[ |

Corollary 1. Leta,be€ N{J{0} and a > 2b. Also, for eachi € N\{1}, let
B; := B(KG(2i+a,i+b)) and b; := b(KG(2i+a,i+b)). Then B, C B3 C
B4_C_ ...anan.,.l C .. ’ andb2§b3$b4s ...SbnSbn.H S .

Now we introduce some special conditions for graphs to be b-continuous.
But first we note that in a graph G with at least one cycle, the girth of
G (9(G)), is the minimum of all cycle lengths of G and if G has not any
cycles, the girth of G is defined g(G) = +o0 .

Blidia, et al. proved the following theorem.

Theorem 6. ( [2] ) If d < 6, then for every d-regular graph G with girth
9(G) > 5 which is different from the Petersen graph, b(G) =d + 1.
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By using this theorem, we prove the following theorem.

Theorem 7. Let 3 < d < 6 and for each 2 < i < d, G; be an i-regular
graph with girth g(G;) > 5 which is different from the Petersen graph.
Also, suppose that for each 3 < i < d, there ezists a semi-locally-surjective
graph homomorphism f; from G; to G;_,. Then for each 2 < i < d, G; is
b-continuous.

Proof. Theorem 6 implies that for each 2 < i < d, b(G;) = i + 1 and
therefore, i + 1 € B(G;). Also, since for each 3 < i < d, there exists a
semi-locally-surjective graph homomorphism f; from G; to G;_1, theorem
3 implies that B(G;-;) € B(G;) and consequently, B(G;) C B(G3) € ... C
B(Ga). Hence, for each 2 < i < d, {j+1|2 < j <4} € B(G;) and therefore,
{3,4,...,i + 1} € B(G;). Now, there are 2 cases:

Case 1) The case that G; is bipartite. In this case, x(G;) = 2 and
therefore, 2 € B(G;) and {2,3,...,i+1} C B(G;), so B(G;) = {2,3, ...,i+1}
and G; is b-continuous.

Case 2) The case that G; is not bipartite. In this case, x(G;) > 3 and
since {3, ...,i+1} C B(G;), so B(G;) = {3,...,i+1} and G; is b-continuous.

Therefore, for each 2 < ¢ < d, G; is b-continuous. ]
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