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ABSTRACT. Kuratowski proved that a finite graph embeds in the
plane if it does not contain a subdivision of either K5 or K3 3, called
Kuratowski subgraphs. Glover asked if a finite minimal forbidden
subgraph for the Klein bottle can be written as the union of 3 Ku-
ratowski subgraphs such that the union of each pair of these fails to
embed in the projective plane. We show that this is true for all finite
minimal forbidden graphs for the Klein bottle with connectivity < 3.

1. INTRODUCTION

We say that a graph G without vertices of degree two is a minimal
forbidden subgraph or an irreducible graph for a surface S if G does not
embed in S, but any proper subgraph of G embeds in S.

Kuratowski (7] showed that minimal forbidden subgraphs for the plane
are K5 and K3 3. Given a graph G, any subgraph of G that is a subdivision
of K5 or K33 is called a Kuratowski subgraph of G.

Then one might ask if Kuratowski’s result can be extended to higher
genus surfaces in terms of Kuratowski subgraphs. Glover has asked if a
finite graph G is a minimal forbidden subgraph for the nonorientable surface
Ny, then G can be written as the union of g+ 1 Kuratowski subgraphs such
that the union of each pair of these fails to embed in the projective plane,
the union of each triple of these fails to embed in the Klein bottle if g > 2,
and the union of each triple of these fails to embed in the torus if g > 3.
We call this conjecture the Kuratowski covering conjecture and prove the
following partial result.

Theorem 1.1. A finite minimal forbidden subgraph for the Klein bottle
with connectivity < 3 can be written as the union of 8 Kuratowski subgraphs
such that the union of each pair of these fails to embed in the projective
plane.

In the following, we mean finite graphs by graphs. A list of minimal
forbidden subgraphs for the projective plane has been found by Glover,
Huneke, and Wang [4] and Archdeacon [1] proved that this list is complete.
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Brunet, Richter, and Siraii [2] showed that every minimal forbidden sub-
graph for a nonorientable surface is a union of Kuratowski subgraphs but
this is not true for orientable surfaces. Decker (3] showed the latter result
as well. For the projective plane, the following fact is known and we keep
this result for future use.

Lemma 1.2. (6] Every minimal forbidden subgraph for the projective plane
is a union of two Kuratowski subgraphs.

Moreover, it has been shown that the Kuratowski covering conjecture
about arbitrary nonorientable surfaces is true for all minimal forbidden
subgraphs of order < 10 (5], [6].

The remainder of this paper is organized as follows. We present prelim-
inaries in Section 2 and prove Theorem 1.1 in Section 3.

Remark. A strengthened form of the Kuratowski covering conjecture
analogous to the complete Kuratowski theorem for the plane says that a
finite graph G fails to embed in N, if and only if there are g + 1 Kura-
towski subgraphs in G satisfying the conditions of the Kuratowski covering
conjecture.

2. PRELIMINARIES

A cycle in a surface is said to be null if it can be contracted to a point
in the surface, and essential otherwise. It is known [4] that the projective
plane contains no disjoint essential cycles.

We define S,G to be a graph obtained by splitting v into two vertices
v’ and v” with connecting edge so that some edges incident to v in G are
adjacent to v’ and the other edges incident to v in G are adjacent to v".
A subgraph A of G is called a k4 in G if there exists a graph B such that
A C B C G, and A is a subdivision of K,, B is a subdivision of K5, or
S,Ks, with a degree four vertex or the cubic vertices of B not in A. A
subgraph A of G is called a k3 in G if there exists a graph B such that
A C B C G, and A is a subdivision of K33, B is a subdivision of K33,
with one of the cubic vertices of B not in A. For other basic definitions, we
refer the reader to (8.

ks and ko 3 are called k-graphs and the existence of two disjoint k-graphs
in a graph G implies that G does not embed in the projective plane.

Lemma 2.1. [4] If a graph G contains two disjoint k-graphs, then G is
nonprojective planar.

Lemma 2.2. [9] If there is an embedding T' of a graph G in Ngy,, but G
does not embed in Ny, then T is an open 2-cell embedding.
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We define G + uv as follows.

GUuw if uv ¢ E(G)
G otherwise

G+uv={

Lemma 2.3. Let G = Hy U Hy and V(H, N H) = {u,v}. If H +wv
embeds in Ny, and Hy 4+ uv embeds in Ni, then G + uv embeds in N,y for
h,k>0.

Proof. Consider an embedding I'; of H; + uv in Nj, and an embedding T’y
of Hy 4+ uv in N. If we remove an open disc from each of the two surfaces
Ny and Ny and identify the two boundary components of the resulting
manifolds so that I'; (uv) and 'y (uv) are identified, we obtain an embedding
of G+ uv in Npq4. a

Lemma 2.4. Let G = H, U H; and V(H, N Hy) = {u,v} where each H;
contains a path connecting u and v for i = 1,2. Suppose H; + uv embeds
in Ngy1, but does not embed in Ng. Then G embeds in Ngy; if and only if
Hj + uv is planar.

Proof. Sufficiency follows from Lemma 2.3 since a graph embeds in the
plane if and only if it embeds in the sphere, that is, Ny. For necessity,
suppose that there is an embedding I of G in Ng;. Since H, contains a
path P connecting v and v, G contains a subdivision H’ of H; + uv. The
embedding I of G is an extension of an embedding of H’, which is an open
2-cell embedding by Lemma 2.2. Then I'(P) is adjacent to precisely two
open 2-cells in this embedding. Thus there is an embedding of a subdivision
of Hz + uv in the union of these two open 2-cells and I'(P), hence in the
plane. a

Lemma 2.4 implies the following two corollaries.

Corollary 2.5. Let G = HyUHy and V(H; N Hy) = {u, v} where each H;
contains a path connecting u and v and |V(H;)| > 3 fori =1,2. If G is
a minimal forbidden subgraph for the Klein bottle, then both Hy + uv and
Hj + uv are nonplanar.

Proof. Suppose that Hj + uv is planar. Since |V (H3)| > 3 and G does not
have a vertex of degree two by definition of minimal forbidden subgraphs,
the union of H; and a path connecting u and v in H, is a proper subgraph
of G, hence H; + uv embeds in the Klein bottle. If H; + uv is planar, then
G would embed in the plane by Lemma 2.3, a contradiction. So H; + uv
cannot be planar and there is a nonorientable surface N, such that H; +uv
embeds in Ny, but does not embed in N, where g is either 0 or 1. But,
then, Hz + uv has to be nonplanar by Lemma 2.4 since G does not embed
in Np. Similarly, it can be shown that H; + uv is nonplanar. O
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Corollary 2.6. Let G = H; U Hy and V(Hy N Hy) = {u,v} where each
H; contains a path connecting v and v for i = 1,2, If Hy + uv embeds in
the Klein bottle, but does not embed in the projective plane, and Ha + uv is
nonplanar, then G does not embed in the Klein bottle.

3. THE PROOF OF THEOREM 1.1

3.1. Connectivity < 1. Suppose that G is a minimal forbidden subgraph
for the Klein bottle and let G = H, U Hj, where either H, and H are vertex
disjoint or V(H; N Hz) = {u}. The following argument applies to both of
these cases. By the minimality of G, each H;, i = 1,2 is nonplanar. On the
other hand, if both H, and H, are projective planar, then H; U H; would
embed in the Klein bottle. Suppose that H; is nonprojective planar and
consider a subdivision H’ of a minimal forbidden subgraph for the projective
plane in H;. Since H' is a proper subgraph of G, H' embeds in the Klein
bottle, but does not embed in the projective plane, hence every embedding
of H' in the Klein bottle is an open 2-cell embedding by Lemma 2.2. So
the union G’ of H' and any Kuratowski subgraph contained in Hs does
not embed in the Klein bottle. But the minimality of G implies G’ = G,
so H; is a subdivision of a minimal forbidden subgraph for the projective
plane and H; is a Kuratowski subgraph. Moreover, any subgraph of H;
share at most one vertex with Hp. Thus G satisfies the Kuratowski covering
conjecture by Lemma 1.2 and Lemma 2.1.

3.2. Connectivity 2. Suppose that G is a 2-connected minimal forbidden
subgraph for the Klein bottle and let G = H; U Hy where V(H; N H;) =
{u,v} and |V (H;)| = 3 for i = 1,2. We note that both H, and H> are con-
nected since G is 2-connected. Thus each H; contains a path P; connecting
u and v for i = 1,2. We also note that both Hy + uv and Hs + uv are
nonplanar by Corollary 2.5.

If both H; + vv and Hy + uv are projective planar, G would embed in
the Klein bottle by Lemma 2.3, so at least one of Hy + uv and Ha + uv
must be nonprojective planar. Suppose that H; + uv, say, is nonprojective
planar. Then H; U P, contains a subdivision H' of a minimal forbidden
subgraph for the projective plane. As noted above, Hs + uv is nonplanar,
which means that H, U P; contains a Kuratowski subgraph H”. We may
assume that H' and H” do not contain uv because of P, and P,. Therefore
both H’ and H" are subgraphs of G.

Let G’ = H'U H" and let P?, i = 1,2 be the union of all the edges and
all the vertices in P; except for © and v. P, and P, may or may not be
contained in H' and H”, respectively, so let us consider the following four
cases.

(i) ,CH and P, C H"
(i) R CH and P, ¢ H"
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(ili) P, € H and P, C H"
(ivy , € H and P, ¢ H"

In case (i), G' = ((H'\P§)U P) U ((H"\P?) U P,) and G’ satisfies all
the conditions of Corollary 2.6, so it does not embed in the Klein bottle.
But G’ = G by the minimality of G. By Lemma 1.2, H' is a union of two
Kuratowski subgraphs H{ and Hj. H"NH! C PLUP, for i = 1,2, so
there are two disjoint k-graphs in H” U H since H”\u contains a k-graph
disjoint from P and Hj\v contains a k-graph disjoint from P§. So H"UH!
is nonprojective planar for i = 1,2 by Lemma 2.1. That is, the Kuratowski
covering conjecture is true for this case.

It is easy to show that G’ does not embed in the Klein bottle for the
other three cases using the fact that every embedding of H’ in the Klein
bottle is an open 2-cell embedding. This implies that &' = G and it can be
shown that the Kuratowski covering conjecture is true in these cases using
three Kuratowski subgraphs Hj, Hj, and H” of G’ where H' = H] U H} in
a similar way as in case (i). This completes the proof of Theorem 1.1.
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