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Abstract
Estimates of the choice numbers and the Ohba numbers of the com-
plete multipartite graphs K(m,n,1...,1) and K(m,n,2...,2) are
given for various values of m > n > 1. The Ohba number of a graph
G is the smallest integer n such that ch(G V K,.) = x(G V K,,).

1 The choice number

Throughout this paper, the graph G = (V, E) will be a finite simple graph

with vertex set V = V(G) and edge set E = E(G). We also use the notation

K(my,my, ..., mg) to denote a complete k—partite graph (k > 2) in which
Sty e’

k
the parts have sizes m, mo, ..., my.

A list assignment to the graph G is a function L which assigns a finite
set (list) L(v) to each vertex v € V(G). A proper L—coloring of G is a
function ¢ : V(G) — U L(v) satisfying, for every u, v € V(G),

vEV(G)

(i) ¥(v) € L(v),
(i) wv € E(G) — $(v) # ¥(u).

The choice number or list—chromatic number of G, denoted by ch(G),
is the smallest integer k such that there is always a proper L—coloring of G
if L satisfies |L(v)| > k for every v € V(G). We define G to be k—choosable
if it admits a proper L—coloring whenever |L(v)| > k for all v € V(G); then
ch(G) is the smallest integer k such that G is k—choosable.

Since the chromatic number x(G) is similarly defined with the restric-
tion that the list assignment is to be constant, it is clear that for all G,
X(G) < ch(G). There are many graphs whose choice number exceeds (some-
times greatly) their chromatic number. Figure 1 depicts the smallest graph
G whose choice number exceeds its chromatic number.
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Figure 1: K(3,3) minus two independent edges with a list assignment L.

It is easy to see that G is not properly L—colorable, so ch(G) > 2 =
x(G). Since G is connected, and neither a complete graph nor an odd cycle,
by Brooks’ theorem for the choice number [2], ch(G) < A(G) = 3. Thus,
ch(G) = 3.

Any graph G for which the extremal equality x(G) = ch(G) holds is
said to be chromatic—choosable. It is not hard to see that cycles, cliques
and trees are all chromatic—choosable. (The case of even cycles requires a
little work. See [2].)

The following are some known results on the choice numbers of some
complete multipartite graphs.

Theorem A.(Erdss, Rubin and Taylor [2]) The complete k—partite
graph K(2,2,...,2) is chromatic—choosable.

Theorem B.(Gravier and Maffray [4]) If k > 2, then the complete
k—partite graph K(3,3,2,...,2) is chromatic—choosable.

This result does not hold for k = 2 since K(3,3) contains the graph in
Figure 1, whose choice number is bigger than 2.

Corollary B. The complete k—partite graph K(3,2...,2) is chromatic—
choosable.

Proof. Since K(3,2...,2) is a complete k—partite graph,
k=x(K(3,2...,2)) < ch(K(3,2...,2)). Further, K(3,2...,2) is a sub-
graph of the complete k—partite graph K(3,3,2,...,2). Therefore
ch(K(3,2...,2)) < kif k > 2. Thus, ch(K(3,2...,2)) =k if £k > 2. When
k = 2, we have K(3,2), of which it is well known that the choice number
is 2. See [5], for instance. [}
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Theorem C.(Kierstead [6]) Let G denote the complete k—partite graph
K(3,3,3,...,3). Then ch(G) = [0

Observe that this result implies that ch(G)=k+1when2 <k <4and
k+1<ch(G) < 3 when k > 5.

Theorem D. ( Enomoto et al.[1]2002)
Let Gy denote the complete k—partite graph K(4,2,...,2). Then

_ |k if kis odd
Ch(Gk)-{k-l-l if k is even.

Theorem E.(Enomoto et al.[1]) Suppose k > 2 and let G denote the
complete k—partite graph K(5,2,...,2). Then ch(G) =k + 1.

Corollary E. Let G denote the complete k—partite graph K(6,2,...,2).
Then ch(G) =k +1ifk > 2.

Proof. Since k +1 = ch(K(5,2,...,2)) < ch(K(6,2,...,2)), it is clear
that ch(G) > k+1. Further, G is a subgraph of the complete (k+1)—partite
graph K(3,3,2,...,2) which has choice number k+1 by Theorem B. Thus,
ch(G) < k+1. So, ch(G) =k + 1. O

2 The Ohba number

In 2002, Ohba (7] proved that for any given graph G, there exists an integer
no such that for any n > no, the join G Vv K, satisfies ch(G V K,,) =
x(GV K,).

The Ohba number of G is the number ¢(G) defined to be the smallest
integer n for which ch(G V K,,) = x(G V K,,). In particular when G is
chromatic—choosable, ¢(G) = 0.

Observe that [V(GV Ky,)| < 2x(GV K,) +1 if and only if n > |V(G)| -
2x(G) — 1. Now, Ohba’s conjecture [7) states that if |V(G)| < 2x(G) + 1,
then G is chromatic—choosable. Thus, Ohba’s conjecture would imply that
#(G) < maz(0,|V(G)] — 2x(G) - 1) < maz(0,|V(G)| - 5) for every graph
G with an edge.

Conversely, if $(G) < maz(0,|V(G)| - 2x(G) —1) for all G then Ohba’s
conjecture is true. It is further clear that Ohba’s conjecture is true for every
graph of order at most 5, since the graph in Figure 1 is known to be the
smallest graph that is not chromatic—choosable, and it is of order 6.

Proposition 2.1. For eny graph G, ¢(G) = ch(G) — x(G).
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Proof. If G is chromatic—choosable, by the definition ¢(G) = ch(G) —
x(G) =0.

Suppose G is not chromatic—choosable. Then ch(G) > x(G). Let
s be the smallest positive integer such that ch(G V K;) = x(G V Kj).
Since x(G V K,) = x(G) + s, this implies that s = ch(G V K,) — x(G).
Further, ch(G) < ch(G V K,) for all s > 1. So, s > ch(G) —~ x(G). Thus,
$(G) > ch(C) = x(G). O

3 Results
3.1 Estimates of ch(K(m,n,1,...,1))

We present here the choice numbers of the complete k—partite graphs
K(m,n,1,...,1) for various values of m > n > 1 and their corresponding
Ohba numbers. Pretty clearly, if k¥ — 2 < ¢(K(m,n)) then
d(K(m,n,1,...,1)) = ¢(K(m,n)) — (k —2). So, ¢(K(m,n,1,...,1)) =
maz{0, p(K (m,n)) — (k — 2)}. Consequently, we just need ¢(K(m,n)).

Throughout this section, we denote the parts of the complete k— partite
graph K(m,n,1,...,1) by W, V,,...,V, where V; = {z1,...,Zm}, V2 =
{y1,¥2,---,Yn} and Vo = {v,} for s =3,... k.

Theorem 3.1. Let G denote the complete k—partite graph K (m,n,1,...,1).
Then ch(G) <n+k—1foralll <n<m.

Proof. When k = 2, it is shown in [5] that ch(G) < n+1forallm > n.
The proof for arbitrary k > 2 will be similar. Let G’ = G — V}, where
Vi is the part of G of size m, and let L be a list assignment to G with
|L(v)| = n+k—1 for each v € V(G). Since |V(G’)|=n+k—~2, G’ can be
L—colored using at most n+k—2 distinct colors, say ay,...,0m+k—2. Thus,
for each v € Wi, |L(v) — {a1,...,0n4k-2}| = 1, and so G is L—colorable.
Hence ch(G) <n+k-—1.

a

Lemma 3.1. Let H denote the complete (k—1)—partite graph K(2,1,...,1)
with parts Vi = {y1,y2}, Vo = {vs}, for each s = 2,...,k—1. Let L be
a list assignment to H satisfying that L(y,) = A and L(y2) = B for some
disjoint k—sets of colors A and B, and |L(w)| > k for each w € V(H).
Then the number of different color sets arising from proper L—colorings of

: k2 + 3k
H is at least 3

Proof. Let Ki_o = H —V; and C; ; = {color sets from proper L—
colorings of Kjy_o with i element(s) from A, j element(s) from B}, with 0 <
i,j<k—-2andi+j< k-2 Letc;= 'C,}j'.
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Claim 1. Z cij = ()

0<i,j<k-2
t4+j<k—2

Proof: The number of proper L—colo'rings of Ki—o is at least k(k —
)...(k=(k—3) =k(k-1)...3 = —I;- Further, since each color set
appears at most (k — 2)! times, the number of distinct color sets arising

k!
from the proper L—colorings is at least W , meaning Z Cij =

0<i,j<k—2
K [k
k-2 \2)

i+5<k—2
Define D, = {color sets from proper L—colorings of H with p
element(s) from A, g element(s) from B}, with 1 < p,¢g < k, p+q < k
and let dp 4 = |Dpq|. Then the total number of color sets from proper
L—colorings of H is Z dp,q. Since any coloring of H uses exactly one
1<p,q<k
p+qsk
color from A on y; and one color from B on y,, every color set in Dy 4
is of the foorm D = C' U {a,b} for some a € A\ C and b € B\ C and
C € Cp_1,4-1. For each pair p,q such that 1 < p,q < k, p+q < k,
consider the bipartite graph with bipartition Dy g, Cp—1,4-1 with D € D, g,
C € Cp_1,4-1 adjacent if and only if C C D. Now each C € Cp—1,4-1 has
degree (k—(p—1))(k—(g—1)) and each D € D, ; has degree at most pq in
this bipartite graph. Therefore pgd, , > Z deg(D) = Z deg(C) =
DeD,,, CECpmt g1
(k—p+1)(k—g+1)cp-1,g-1. Thus, the total number of proper L—coloring
sets satisfies

de'q > Z (k—p+ 1)k - q+1)vp_ Lamt. (1)

1<p,g<k 1<p.g<k Pq
p+q<k p+q<k

2 _ _
Claim 2. f(p,q) > L -,:22) where f(p,q) = (k—p +1;((Ik q+1),
1<pg<kandp+¢g<k.
Proof: Fix s € {2,...,k} and consider values of p and ¢ such that

p+qg=s Thenp=s—q,and1<qg<s-1.

Now, f(p,q) = f(s - 0,0) = g(g) = LEF 1= ?:_q;;: 179 Alko,
k(k+2—s) _hlg)

we note that g(1) = g(s—1) = (s—-1) ° and '(q) [(s ) ]2

h(q) = —(k + 1)(k + 1 — s)[s — 2q]. Therefore, g achieves a minimum on
(1,5~ 1] at ¢ = 5/2. We have for all g € [1,5 — 1], f(s —q,q) > g(s/2) =
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_ 2
£(s/2,8/2) = Q‘L;Z/:ﬂ

Clearly this minimum decreases as s increases. Therefore, for all p,q €

2 2
{1,....k=1}, p+q <k, f(p.q) 2 f(k/2,k/2) = (k/:gj;) =& :22) :

From Claim 2 and the inequality 1,

) (k+2)° > (k+2)2 K K243k 2

dp,q Z N Ci,j 2 * = —_——
1<pg<k k? 0<4,j<k—-2 k? 2(k - 2)! 2 k
p+gs<k i+j<k—2

Hence for all £ > 3, the number of different color sets arising from

2
proper L—colorings of H is at least k -;3k.

O

Theorem 3.2. Let G denote the complete k—partite graph K(m,2,1,...,1),
k > 3. Then
. k2 + 3k

k+1 if m>k%.

Proof. Let L be a list assignment to G with |L(v)| = k for each v €
V(G). Suppose G has no proper L—coloring.

Observe that L(y;) N L(y2) = 0. Otherwise there is a color c € L(y;) N
L(y2). Then we can color y; and y2 with c and the remaining subgraph
G-V, = K(m,1,...,1) can be colored from L — {c} because ch(G - V;) =
k-1

Let H = G — V1. Since L(y1) N L(y2) = @, by Lemma 3.1, the number
of distinct sets arising from the proper L—colorings of the subgraph H is

k? + 3k
at least .
Further, G is not L—colorable if and only if the set of colors, which will

be of size k, of each of the proper colorings of H occurs as a list in V;.

2 2
k +3k, G is L— colorable. Thus, if m < k ;3’6,

. k2 + 3k
ch(G) < k. Also k = x(G) < ch(G), so ch(G) =k if m < R

Therefore for m <

When m = k2, we provide the following list assignment L’ to V(G) such
that there is no proper L'—coloring of G.

Let A and B be disjoint sets of colors of size k, say A = {a,...,ax} and
B= {ﬁ]_, Ve ,ﬁk}. Let L’(yl) = L’(‘U3) =...= L’(vk) = A, Ll(yz) = B.

Any coloring of H = K(2,1,...,1) requires exactly k — 1 colors from
A and one color from B, and there are exactly k? color sets from such
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colorings. Let m = k2 lists on V; be the k2 different sets (4 \ {c:}) U {B:},
1<14,j < k. Since each of the proper colorings of H occurs as a list in V,
ch(K(m,2,1,...,1)) > k for m = k2.

Further, by Theorem 3.1, ch(K(m,2,1,...,1)) < k+ 1 for all m. This

concludes the proof.
O

Corollary 3.2.1. |/m] — 1 < ¢(K(m,2)) < [T for m > 5,

Proof. If k < |\/m|, then k% < m, so by Theorem 3.2,
k+1=ch(K(m,2,1...,1)) > x(K(m,2,1...,1)) = k. Thus, if k < [/m],
$(K(m,2)) 2 (k—2) +1 =k~ 1. Consequently, $(K(m,2)) > [ym| -1,

2
for all m > 1. Further, by Theorem 3.2, if m < k”+ 3k —1land k > 3,
then ¢(K(m,2)) < k — 2. The smallest positive value of k for which m <
k2 + 3k

2
integer value of k satisfying that inequality is ko = fiﬂ%@]; we have
d(K(m,2)) <kp—-2= ['—”A/Qm—i_*ri] The requirement m > 5 ensures that
ko > 3. a

—1 is the positive solution of k24 3k —2(m+1) = 0, so the smallest

Remark:
#(K(m,2)) =1 for 4 <m < 8, by Theorem 3.2 and the fact, proven in
(5], that ch(K(m,2)) = 3 for all m > 4.

Theorem 3.3. Let G denote the complete k—partite graph K (m,n,1,...,1),
and2<n <m.
Then ch(G) =n+k—1ifm> ("”“’2

k-1

Proof. Let Cy,C,...,C, be pairwise disjoint (n+ k —2)—sets of colors.

We provide the following list assignment L to G, with |L(v)| = n+k—2
for each v € V(G) as follows: L(y1) = L(v3) = ... = L(wx) = C; and
L(y;) = Cj for each 2 < j < n. L on V| will be described shortly.

Any proper L—coloring of G’ = G—V; = K(n,1,...,1) requires exactly
k—1 colors from C) and exactly one color from each C; for 2 < j < n, giving
(n +k—2

)(n+k-2)"‘1.

k-1
each set of size n + k — 2. Let (

n+k-2
k-1

L~colorings of G’, and if m > (

)(n +k —2)™"! distinct sets of colors from proper L—colorings,

n+k—-2
k-1

)(n + k —2)™~! different sets of colors from such proper

)(n + k —2)""! lists on V;

be the (

n+k—2

ko1 )(n+k—2)"‘1, let the remaining
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vertices in V; be supplied with any lists whatever of size n + k — 2. Since

each of the n :f _1- 2) (n+k —2)""! sets of proper colorings of G’ occurs

as a list in V;, G cannot be properly L—colored, so ch(K(m,n,1,...,1)) >
n+k—2form> (n tk- 2) (n+k- 2)*~1. Further, from Theorem 3.1,

k-1
ch(G) < n+k—1 for all m > 2. Thus, for m 2 (n-;;f;z)(n+k—2)"“l,

ch(G)=n+k-1. ]
Corollary 3.3.1. With G, m, n and k as in the hypothesis of Theorem 3.3,

if2<r<n—-landm2> (TIEI 2) (r+k—2)"1, then ch(G) 2 r+k—1.

Proof. When m > T:ﬁ; 2)(1' +k—=2)""L, ch(K(m,7,1,...,1)) =
r+k—1 by Theorem 3.3. Further, with2 <r <n-1<m, K(m,n1,..., 1)
is a subgraph of the graph G = K(m,n,1,...,1).

O

Corollary 3.3.2. With G, m, n and k as in the hypothesis of Theorem

33 if2<r<nandm> (r-’tﬁ;z)(r+ k—2)""1, then ¢(G) > 7 — 1.
Proof. By Proposition 2.1, ¢(G) > ch(G) — x(G). Therefore ¢(G) >

r+k-1—(k)=r—-1.

]

3.2 An estimate of ch(K(m,2,...,2))

Throughout this section, [r] = {1,...,n} and ([Ttl]) = {t—subsets of [n]}.

Proposition 3.1. Let G denote the complete k—partite graph
K(m,2,2,...,2). Then ch(G) <2k —1.

Proof. We may assume that k > 2. Let L be a list assignment to G
such that |L(v)| > 2k — 1 for each v € V(G). Since G -V} = K(2,...,2)
has choice number k < 2k — 1, there is a proper L—coloring of G — V4,
and it will use at most 2(k — 1) distinct colors, say a1, ..., azk—2. For each
v € Vi, |L(v) = {a1,...,02k—2}| > 1, and so G is L—colorable. Hence
ch(G) <2k - 1.

O

174



Forn > m >t > 0, the covering number C(n,m,t) is defined by
C(n,m,t) = min{|F|; F C (EZ]) andVB e ([;‘]),EIA € F such that B C
A}

Lemma 3.2. C(n,m,t) is also the smallest size of a collection F' of n—m
subsets of [n] (or any other fived n—set) such that for every (n — t)—set
B' e (n 7 t) , some A’ € F' is contained in B'.

Proof. Given F, as in the original definition of C(n,m,t), form F’ =
{[n]\ A | A € F}, the collection of complements of sets in F. Similarly,
given F/' C (n [n]m)’ form F = {[n]\ A’ | A’ € F'}, the collection of
complements of sets in F'. Because |F| = |F’|, in each case, and because
complementation reverses inclusion, verification of the lemma’s claim is

straightforward.
O

Theorem 3.4. Let G denote the complete k—partite graph K(m,?2,...,2)
andk <r <2k—2. If m > C(r,[r/2],r —k+1).C(r, |r/2),r =k +1) then
ch(K(m,2,...,2)) >r+1.

Proof. Let A, B be disjoint r—sets. Denote by V},V5,..., Vi the parts
of G, with Vi = {z),...,2m}, Vi = {ui,vi}, i = 2,...,k. Start defining
a list assignment to G by assigning A to each u; and B to each v;. By
Lemma 3.2, we can find a family Fi of r — |r/2] = [r/2]—subsets of
A and a family F3 of r — [r/2] = |r/2|—subsets of B such that every
7 —(r—k+1) = (k — 1)—subset of A contains some set in F;, and every
(k—1)—subset of B contains some set in F3, and |F;| = C(r, [r/2],7—k+1),
| F2| = C(r, |r/2],r — k +1). Make |F1|.|F2] lists of length r by forming
the unions F UF,, Iy € Fy, F, C F,. If m > |Fy|.|F,| then we can
endow V) with these lists. Then for every proper coloring of G \ V;, some
list on Vi is in the set of colors used. Hence ch(K(m,2,...,2)) > = for
m 2 C(r,[v/2],7r —k +1).C(r, [r/2],7 = k +1).

O

2k —2

2
Corollary 3.4.1. If m > (k -1 ) then ch(K(m,2,...,2)) =2k —1.

2
Proof. For r = 2(k—1),if m > C(2k—2,k—1,k—1)2 = (2:- 12) then

ch(K(m,2,...,2)) > 2k — 1 by Theorem 3.4. Further, using Proposition

3.1, we establish that ch(K(m,2,...,2)) =2k —1.
O
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2
Corollary 3.4.2. If m > (2::12) then (K (m,2,...,2)) > k—1.
Proof. By Proposition 2.1 and Corollary 3.4.1, ¢(G) 2 2k —-1—-k =
k-1. (]

Remark: Taking r = k in Theorem 3.4 and using the easily seen fact
that C(n,m,1) = [Z], for n > m > 1, we obtain that if £ > 2 is even
and m > 4 then ch(K(m,2,...,2)) = k + 1, which, by Corollary B and
Theorem D, is a tight result. When k is odd, & > 3, we obtain that
ch(K(m,?2,...,2)) = k+1 for m > 6, which is not quite tight, by Theorem
E.
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