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Abstract Let G = (V, E) be a graph without isolated vertices.
A set D C V is a paired-dominating set if D is a dominating set
of G and the induced subgraph G[D] has a perfect matching.
In this paper, a characterization is given for block graphs with
a unique minimum paired-dominating set. Furthermore, a con-
structive characterization is also given for trees with a unique
minimum paired-dominating set.
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1 Introduction

Let G = (V,E) be a simple graph without isolated vertices. For a vertex
v € V, the open neighborhood of v is defined as N(v) = {u € V | wv € E}
and the closed neighborhood of v is defined as N[v] = N(v) U {v}. For
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ACV,N(A)=Ugea N(z) and N[A] = N(A)U A. The distance between
u and v, denoted by d(u, v), is the minimum length of a path between v and
v. For a subset S C V, the subgraph of G induced by the vertices in S is
denoted by G[S]. A matching in a graph G is a set of pairwise nonadjacent
edges in G. A perfect matching M in G is a matching such that every
vertex of G is incident to an edge of M. For a subset D C V and a vertex
z € D, the set P(z, D) = N[z]— N[D —{z}] is the private neighborhood of
= with regard to D and a vertex y € P(z, D) is called a private neighbor of
z with regard to D. Some other notation and terminology not introduced
here can be found in [18].

Domination and its variations in graphs are now well studied. The
literature on this subject has been surveyed and detailed in the two books
by Haynes, Hedetniemi and Slater [10, 11]. A dominating set of G = (V, E)
is a subset D C V such that every vertex not in D is adjacent to at least one
vertex in D. The domination number v(G) of a graph G is the minimum
size of a dominating set of G. A dominating set D of G with size v(G)
is called a y-set. A set D C V is a paired-dominating set of G if D is
a dominating set of G and G[D)] has a perfect matching. The paired-
domination number ~,(G) is the minimum size of a paired-dominating set
of G. A paired-dominating set D of G with size v,(G) is called a ~,-set of
G. Let D be a paired-dominating set of G and M be a perfect matching
in G[D), we say u,v are paired in D if u,v € D and uv € M. We also say
u(v, respectively) is the paired vertex of v(u, respectively) in D. Paired-
domination was introduced by Haynes and Slater [12, 13] and there are lots
of results on this problem [3, 4, 5, 6, 7, 8, 14, 15, 16, 17].

Chordal graphs are raised in the theory of perfect graphs and the sub-
classes of chordal graphs are of most interesting in the study of many graphs
optimization problem. Block graphs, which contains trees, is an important
subclass of chordal graphs and there are many results on variations of dom-
ination in block graphs. (see [1, 2, 9, 19]). In this paper, we will give a
characterization for block graphs with a unique 7,-set and a constructive
characterization for trees with a unique ~yp-set.
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2 Characterization of block graphs with unique
Yp-set

In a graph G = (V, E), a vertex z is a cut-vertex if there are more connected
components in G —z than that in G. A block of G is a maximal connected
subgraph of G without cut-vertices. A block graph is a connected graph
whose blocks are complete graphs. If every block is K3, then it is a tree.
Every block graph not isomorphic to complete graph has at least two end
blocks, which are blocks with only one cut-vertex.

Proposition 1 Any paired-dominating set of a block graph G contains at
least one vertex in each block. Any ~y,-set of G contains at most two vertices
in each end block.

Proposition 2 If D is a paired-dominating set of a block graph G such
that P(z,D) # @ for each verter z € D, then each vertez in D is a cut-
vertez of G. Furthermore, for each end block B, DNV (B) = {z}, where z
is the cut-vertez in B.

Proof Suppose to the contrary that there is a vertex z € D which is not a
cut-vertex and z is contained in block B. Let M be a perfect matching of
G[D] and y be the paired vertex of z in D, then y € V(B). Since z is not a
cut-vertex, we have N(z] = V(B). On the other hand, N[y] = V(B) ify is
not a cut-vertex, and V(B) C N[y| if y is a cut-vertex. In any case, N[z] =
V(B) C N[y] € N[D - {z}]. Hence P(z,D) = Nlzg| - N[D - {z}] = 9,
a contradiction. By Proposition 1, D only contains the cut-vertex in each
end block. O

Theorem 3 Let G = (V,E) be a block graph of order n > 3. D is a
unique Yp-set of G if and only if D is a paired-dominating set of G such
that P(z,D) # 0 for every vertez x € D.

Proof =: Suppose D is a ,-set of G and there is a vertex u; € D
with P(u;, D) = @. Let M be a perfect matching in G[D] and v; € D
be the paired vertex of u;. If N(vy) — D # 0, let w € N(v;) — D, then
(D = {w1}) U {w} is also a vy,-set of G as P(u;,D) = §. It is a contrac-
tion to the uniqueness of D. Hence, we assume that N(v;) C D. Let
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Uy, V1, U2,V2, -, Uk, Uk (kK > 2) be a maximal vertex sequence such that:
(1) u;,v; are paired in D for 1 K¢ < k; (2) viugp1 € Efor1<i<k—1;
(8) N(v;) € Dforl <i < k—1. So, either N(v) is a subset of
{uy,v1,ug, v, -, ux} or there is a vertex w € N(vg) with w & D. For
the former case, D — {u;,vx} is a smaller paired-dominating set of G, a
contradiction. For the later case, (D — {u;}) U {w} is also a y,-set of G, a
contraction.

«: Let b be the number of blocks and ¢ be the number of cut-vertices
in G. By Proposition 2, we know that b > 3 and ¢ > 2. We use induction
on b. If b =3, then there are two cut-vertices, say v1, vz, in G. It is easy to
check that D = {v1,v2} is a unique ~,-set of G and P(z, D) # @ for every
vertex ¢ € D.

Suppose G is a block graph with b > 4 blocks and D is a paired-
dominating set of G such that P(z, D) # 0 for every vertex z € D. As-
sume now that the assertion holds for smaller value of b. We first give the

following claim.

Claim 1 We may assume that any cut-vertez in G is contained in at most
one end block.

Proof Suppose there are two end blocks B and B’ containing a cut-vertex
u. Let G’ = G — (V(B') — {u}) be a block graph with b — 1 blocks. By
Proposition 2, D only contains the vertex u in blocks B and B’. Hence, D
is also a paired-dominating set of G’ such that P(x, D) # 0 for every vertex
z € D. By inductive hypothesis, D is a unique yp-set of G'. Let D' be a
vp-set of G. If D'N(V(B')—{u}) = 0, then D' is also a y,-set of G’. Hence,
D' = D. Assume that D' N (V(B’) — {u}) # 0. Let v (# u) be a vertex in
Bandwe D'N(V(B')—{u}). Ifu g D', then |D'n(V(B)UV(B'))| = 4,
hence D" = (D' — (V(B)UV(B’))) U {u, v} is a smaller paired-dominating
set of G, a contradiction. If v € D’, then u is paired with w. Moreover,
D'n(V(B) - {u}) = 0. Thus D" = (D' — {w}) U {v} is also a ~y,-set of
G'. Hence, D" = D. However, v is not a cut-vertex in G, a contradiction
to Proposition 2. O

Let k be the diameter of G and d(u,v) = k. Suppose P : u =
Vo,V1,--*,Vk = v is a path in G with length k. Then vo,v; are in end
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blocks and v; (2 < ¢ < k — 1) are cut-vertices. Furthermore, any block
contains at most two consecutive vertices in P. Let B; (0 < i< k—1)
be the block containing v; and v;4;. Then By and Bj_; are end blocks
with cut-vertices v; and wvi_;, respectively. It is obvious that k& > 3 as
¢ 22 If k=3, then D = {v;,v2} is a unique paired-dominating set of
G and P(z, D) # 0 for every vertex € D. Thus in the following proof,
we assume that k > 4. By Claim 1, we may assume there are exactly two
blocks By and B; containing v;.

Case 1: There is exactly one cut-vertex u; in B; except v; and vs.

Let B be the end block containing u; except B;. In this case, D contains
exactly uj,v; in blocks B and By. Hence, we can assume that u; and v,
are paired in D.

If v is only contained in B, and Bj, then vy is not in D since otherwise
either v, or its paired vertex of has no private neighbor with regard to D.
Let G' = G - (V(Bo) UV (B,)UV(B)) and D' = D — {u;,n}. Then G’
is a block graph with less than b blocks and D’ is a paired-dominating set
of G’ such that P(z, D’) # @ for every vertex z € D’. Applying inductive
hypothesis to G’, D’ is a unique 7,-set of G’. Next we prove that D
is a unique 7,-set of G. Suppose Dy is a y,-set of G. If Dy does not
contain vz, then Do N (V/(By) U V(B;) U V(B)) = {v1,u;} since Dy is a
Yp-set. Dy = Do — {v1,u;} is also a ~y,-set of G, and hence Dj = D'.
It implies that Dy = D. Assume now that v, € Dy. By Proposition
1, [Do = V(G')] = 3 or 4 since Do is a v,-set of G. |Dy — V(G')| = 3
implies that Dy — V(G’) = {u4,v1,v2}. Hence, the paired vertex of v,
in Do, say w, is in block B,. Obviously, w has a neighbor y € Dg. For
otherwise, both v; and w have no private neighbor with regard to Dy
hence Do — {2, w} is a smaller paired-dominating set of G, a contradiction.
Now let Dy = (Do — {v1,u1,v2}) U {y}. Then, D} is a ~y,-set of G’ and
P(y,Dy) = 0. Since D' is a unique ~y,-set of G, we know that D} = D',
and hence each vertex in Dj has a private neighbor with regard to D). It is
a contradiction. If [Dy — V(G')| = 4, without loss of generality, we assume
that Do — V(G') = {v1,u1, u,v2}, where u € V(B,) (V(By), V(B)) and its
paired vertex is v (v1,u1). Hence, vy has a neighbor w € V(B3) — Dy.
For otherwise, both vs and u have no private neighbor with regard to Dj.
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Hence Do — {v2,u} is a smaller paired-dominating set of G, a contradiction.
Let D; = (Do — {u})U{w}. Now D is a yp-set of G with |D; —V(G')| = 3.
With the same arguments, we will get a contradiction. Therefore, D is a
unique vp-set of G.

Suppose that there is a block B’ containing v, except By and Bz. If
B’ is an end block, then v € D by Proposition 2. If B’ is not an end
block, let B” be an end block such that V(B') N V(B") = {w}, then
weD by Proposition 2. In any case, v is dominated by D — {uy,v1}. Let
G' =G - (V(Bo) UV(B;) UV(B) — {v2}) and D’ = D — {uy,v1}. Then
Disa palred-domlnatmg set of G’ such that P(z, D’) # 0 for each vertex
z € D' and G’ is a block graph with less than b blocks. Applying inductive
hypothesis to G', D’ is a unique y,-set of G’. Let Doy be a v,-set of G.
By Proposition 1, [Dg — V(G')| = 2 or 3. |Dg — V(G')| = 2 implies that
Do — V(G') = {v1,u1}. So, D = Do — {v1,u1} is also a yp-set of G’, and
hence D} = D'. It implies that Do = D. If |[Do — V(G')| = 3, then v € Dy
and let Do — V(G') = {v1,u1,u}, where u € V(B;) (V(By), V(B)) and its
paired vertex is vy (v1,u;). With the same arguments as above, we know
that v, has a neighbor w € V(G') — Dy. Let D = (Do — {u,v1,u1}) U {w}.
Similarly, we have Dj is also a yp-set of G’ and hence Dy = D'. However,
w has no private neighbor with regard to Dg, a contradiction. Therefore,
D is a unique 7p-set of G.

Case 2: There are more than one cut-vertices in B; except v; and vs.

Take two cut-vertices u;, uo and let B(B’, respectively) be the end
block containing u; (u2, respectively). Let G' = G - (V(Bop) U V(B)) and
D' = D - {u;,n1}. Then G’ is a block graph with less than b blocks and
D' is a paired-dominating set of G’ such that P(z, D’) # 0 for every vertex
z € D’. Applying inductive hypothesis to G’, D’ is a unique ~,-set of G'.
Let Do be a v,-set of G. We know that Do—V (G’) has two or three vertices.
If |Dy — V(G')| = 2, then Do — V(G') = {u1,v1}. Let Dy = Do — {u1,v1}.
Then D}, is a vy,-set of G’, and hence Dy = D'. This implies that Do = D.

If |Do — V(G')| = 3, without loss of generality, we assume that [Do N
V(Bo)| = 2 and hence Dy N V(B) = {u1}. We claim that Do N V(B’) =
{uz}. Suppose to the contrary that |[Do N V(B')| = 2, it is easy to check
(Do — (V(Bo) UV (B"))) U {v1,uz} is a smaller paired-dominating set of G,
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a contradiction. Now let D; = (Do — V(By)) U {v1, w}, where w(# us) is a
vertex in B'. So, D, is also a vy,-set of G and D] = D; — {uj,v,} isa Yp-set
of G’. Hence, D] = D' and each vertex in D) is a cut-vertex by Proposition
2. This contradicts that w € D] is not a cut-vertex. Therefore, Dy = D.

Case 3: There is no cut-vertex in B; except v; and vs.
In this case, v1,v2 € D and they are paired in D by Proposition 2.

Case 3.1: There is another block B containing v, except B, and Bs.

If there is exactly one cut-vertex in B except vq, then it is impossible
to find D such that P(z, D) # @ for every vertex z € D. If there are more
than one cut-vertices in B except v, then we can look B as B; and discuss
it same as Case 1 or Case 2. So we can assume that every block containing
v except By and B is an end block. By Claim 1, we may assume there is
exactly one end block B containing vs.

If there exists cut-vertex in B, except vz and v3. Let w = wy, wa, -+ -, w,
be cut-vertices in By except v and v3. By Proposition 2, it is easy to see
that w; (1 < i < a) is dominated by D — {v1,v2}. Let G’ = G — (V(B,) U
V(B1)UV(B)U(V(B;)—{wi, -+, wa,v3})) and D' = D—{v;,v;}. Then G’
is a block graph with less than b blocks and D’ is a paired-dominating set
of G’ such that P(z,D’) # 0 for every vertex z € D'. Applying inductive
hypothesis to G’, D' is a unique y,-set of G’. Let Dy be a y,-set of G. Then
|Do — V(G')| = 2 or 3. If [ Do — V(G')| = 2, then Dy — V(G") = {vy,v2}.
Let Dy = Do — {v1,v2}. Then Dj is a y,-set of G, and hence D} = D’.
This implies Dy = D. If |Dg — V(G’)| = 3, then there is a vertex z €
DoN(V(B2) —V(G’)) such that its paired vertex y € V(G')NV(B,). Since
Do is a yp-set of G, there exists a neighbor 3’ of y such that y' € V(G’)— Dy,
as otherwise, (Do — (V(G) — V(G")) — {y}) U {v1,v2} is a smaller paired-
dominating set of G. Let Dy = (Do — (V(G) — V(G"))) U {'}. Then D},
is a yp-set of G'. Hence we have D = D'. However, P(y/,D') =0. It is a
contradiction. Therefore, Dy = D.

Suppose that there is no cut-vertex in B; except vz and vs. If there
is no block containing v3 except Bz and Bs, then let G’ = G — (V(Bg) U
V(B1) UV(B3) UV(B)) and let D' = D - {v;,v2}. Then G’ is a block
graph with less than b blocks and D’ is a paired-dominating set of G’ such
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that P(z, D’') # 0 for every vertex z € D'. Applying inductive hypothesis
to G, D' is a unique 7yp-set of G'. Let Dy be a vyp-set of G. If v3 € Do, then
Do - V(G') = {v1,v2}. D}y = Do — {v1,v2} is also a y,-set of G'. Hence,
D}y = D', this implies Dy = D. If v3 € Dy, then |Dg — V(G')| =3 or 4.
|Do — V(G')| = 3 implies that Do — V(G’) = {v1,v2,v3}. Let w be the
paired vertex of v3 in Do, then w € V(Bs). Since Dy is a v,-set of G, there
is a neighbor w’ of w such that w’ & Dy. Then Dy = (Do — {v1,v2,v3}) U
{w'} is a yp-set of G'. Thus Dy = D’. However, P(w',Dp) = 0. It is a
contradiction. If |[Dy — V(G’)| = 4, without loss of generality, we assume
Dy — V(G') = {v1,v2,u,v3}. Also, there is a neighbor w’ of v3 such that
w' € V(G') — Dp. Let Dy = (Do — {u}) U {w'} is a yp-set of G. In this
case, |D; — V(G')| = 3. With the same argument, we can also obtain a
contradiction. Therefore, D is a unique ~,-set of G. Next, we assume that
there is a block containing v except B2 and Bs. Let A be any of them. If
A is an end block, then v3 € D by proposition 2. If there is an end block
A’ such that V(4) N V(A') = {w} (w # v3), then w € D by Proposition
2. Assume that A’ is a block such that V(A) N V(A') = {w} (w # v3)
and A’ is not an end block. If there are more than one cut-vertex in A’
except w, we can discuss it same as Case 1 or Case 2. Thus we may
assume there is exactly one cut-vertex w’ in A’ except w. Then w,w’ € D
by Proposition 2. In any case, vs is dominated by D — {v;,v2}. Let G' =
G- (V(Bo)UV(B1)UV(B)U(V(Bz)—{vs})) and D' = D~ {v;,v2}. Then
G’ is a block graph with less than b blocks and D’ is a paired-dominating set
of G’ such that P(z, D’) # 0 for every vertex z € D'. Applying inductive
hypothesis to G, D' is a unique y,-set of G'. Let Dg be a y,-set of G. Then
[Do=V(G")| =2 or 3. |Do—V(G')| = 2 implies that Do~V (G') = {v1,v2}.
D}y = Dy — {v1,v2} and it is a yp-set of G’. Thus Dy = D', which implies
Do = D. If |Dg — V(G')] = 3, without loss of generality, we assume
Do — V(G") = {v1,v2,u} and v3 € Dy. Also, there is a neighbor w’ of
vs such that w' € V(G’) — Do. Let Dy = (Do — {v1,v2,u}) U {w'} and
it is a yp-set of G'. Hence, Dy = D’. However, P(w',Df) = 0. Itis a
contradiction. Therefore, Do = D.

Case 3.2: There is no block containing v, except B; and Bs.
If there is a cut-vertex w in By except v and vs, let B be a block containing
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w except Bs. Since {v;,v2} C D and P(vq, D) # @, we know that w ¢ D.
Thus there are at least two cut-vertices in B except w. We look B as B,
and discuss it same as Case 1 or Case 2. So we may assume there is no
cut-vertex in By except v and vs. As P(vq, D) 5 0, it follows that v3 & D.

If there is no block containing vs except B; and Bs, then let &' =
G = (V(Bo)UV(B,)UV(By)) and D’ = D — {v;,v3}. Then G’ is a block
graph with less than b — 1 blocks and D’ is a paired-dominating set of
G’ such that P(x,D’) # 0 for every vertex in D'. Applying inductive
hypothesis to G’, D' is a unique y,-set of G’. Let Dy be a y,-set of G. If
vs € Do, then Dy — V(G’) = {v1,v2}. Dy = Dy ~ {v1,v2} and it is also
a Yp-set of G’. Hence, Dy = Dy, this implies Dy = D. If v3 € Dy, then
|Do = V(G')| = 3 or 4. With the similar argument to Case 3.1, it is easy
to prove Dy = D.

If there is a block B containing v3 except B; and Bs, then B is not
an end block by vs € D. Similar to Case 3.1, we can prove that v; is
dominated by D — {v,v2}. Let G’ = G~ (V(By) UV (B;) UV (Bz) — {v3})
and D' = D — {v;,v3}. Then G’ is a block graph with less than b blocks
and D' is a paired-dominating set of G’ such that P(z,D’) # § for every
vertex in D'. Applying inductive hypothesis to G’, D’ is a unique Yp-set of
G'. Let Dy be a y,-set of G. Then |Dp— V(G")| = 2 or 3. With the similar
argument to Case 3.1, it is easy to prove Dy = D. O

3 Constructive characterization of trees with
unique 7,-set

Let T = (V,E) be a tree with vertex set V and edge set E. A vertex of
T is said to be a support vertex if it is adjacent to at least one leaf (i.e., a
vertex with degree one).

To provide a constructive characterization of trees with unique Yp-set,
we describe a procedure to build a family & of labeled trees as follows. The
label of a vertex v is also called its status denoted by sta(v). There are
two kinds of status , say A and B, used to label the tree. We call a vertex
u is strong if and only if sta(u) = A and it is the only private neighbor of
a vertex labeled B with regard to the sets consisting of all vertices labeled
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B. Let & be the family of labeled trees such that:

(i) it contains P; in which two leaves have status A, the two support
vertices have status B.

(ii) it is closed under the three operations &1, %2, and 3, which extend
the tree T by attaching a tree to the vertex y € V(T), called the
attacher.

Operation J;: Assume sta(y) = B. Then add a vertex z and edge zy.
Let sta(z) = A.

Operation J3: Assume sta(y) = A. Then add a path z,w,v,z and edge
zy. Let sta(z) = sta(z) = A and sta(w) = sta(v) = B.

Operation J3: Assume y is not strong. Then add a path z,w,v,2 and
edge yw. Let sta(z) = sta(z) = A, sta(w) = sta(v) = B.

9 T
A B B A
z T w v z
T
y is not strong
A B B A
T w v z

The three operations are illustrated in the above figure. Let 7 = {T | T
is a tree with a unique v,-set of T'}. Suppose that T € &. Let B(T) =
{v € V(T) | sta(v) = B} and A(T) = {v € V(T) | sta(v) = A}.

Observation 4 Let T € & and v € V(T).

(a) If sta(v) = A, then v is adjacent to at least one vertez in B(T).

(b) If sta(v) = B, then v has at least one private neighbor in A(T) with
regard to B(T). Moreover, v has at least one neighbor in B(T).
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(¢) If v is a leaf, then sta(v) = A.
(d) If v is a support vertez, then sta(v) = B.
(e) G[B(T)] has exactly one perfect matching.

Proof We only give the proof of (e), others are obvious. Let s(T') be the
number of operations required to construct 7. We use induction on s(T).
If s(T') = 0, it is obviously true. For all trees 7" € & with s(T") < k (k > 1
is an integer), we assume G[B(T")] has exactly one perfect matching. Let
T € & with s(T') = k. Then T is obtained from T’ by one of Operation
T, Z, and 5. By inductive hypothesis, G[B(T")] has exactly one perfect
matchiﬂg, say M'. If T is obtained from T'.# by Operation J;, then
B(T) = B(T"). So G[B(T)] has exactly one perfect matching, i.e., M'.
If T is obtained from a tree T" € by Operation %% or 9, then B(T) =
B(T") U {w,v}. Let M be a perfect matching in G[B(T)]. Since v have to
paired with w. So wv € M. M — {vw} is a perfect matching in G[B(T")].
Hence, M' = M — {vw}, this implies M = M’ U {vw}. So M is the only
perfect matching in G[B(T’)]. D

Lemma 5 & C 7.

Proof Let T € &, we want to show T € 7. By Observation 4 (a) and (e),
B(T) is a paired-dominating set of T. By Observation 4 (b) and Theorem
3, B(T) is a unique y,-set of T. So T € . O

Lemma 6 Let T be a tree with order at least 3, if T € 7, then T € &.

Proof We use induction on n, the order of T. If n < 4, then T 2 P, as
TeJ. Let T € 7 be a tree with order n and D be a unique y,-set of
T. Assume now that T € & for all tree T' € & with order 4 < n’ < n.
By Theorem 3, D is a paired-dominating set such that P(z,D) 3 0 for
every vertex * € D. Let P : wo,vy,---,Vr be a longest path in . Thus
vo, Uk are leaves. T can be looked as a rooted tree at vx. By Proposition
2, vo, v ¢ Dandv; € D. Since T € Z, then k > 3. If k = 3, then T is
a double star (a tree obtained by adding an edge between centers of two
stars) and T can be obtained from P, by a series Operations ;. So in the
following proof, we assume k > 4.
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If there is a support vertex w such that there are at least two leaves,
say v and v, in its neighborhood. Let T/ = T — u, then D is a paired-
dominating set of T” such that P(z, D) # @ for every vertex x € D. By
Theorem 3, D is a unique v,-set of 7", that is T' € J. Applying inductive
hypothesis to T/, T" € &. Since w is a support vertex in T', by Observation
4 (d), sta(w) = B. Then T can be obtained from T’ by one Operation
;. Therefore T € &. In the following proof, we may assume that every
support vertex is adjacent to exactly one leaf. In particular, we may assume
d(vl) = 2

Case 1: d(v) > 3

Let w be any neighbor of v except v; and v3. If w is a support vertex, then
w € D by Proposition 2. In this case, at least one vertex in {v;,w,v],w'},
where v} (w’, respectively) is the paired vertices of vy (w, respectively),
have no private neighbors with regard to D. So any neighbor of v except
v; and vz is leaf. Since v; is a support vertex, we may assume that it is
adjacent to exactly one leaf, say w. In this case, v;,v2 € D and they are
paired in D.

Case 1.1: d(v3) > 3 and v3 is a support vertex.
Let T' = T — {v,v1,v2,w} and D’ = D — {v1,v2}. Then D' is a paired-
dominating set of T’ and P(z, D') # 0 for every vertex z € D’. By Theorem
3, T € . Applying inductive hypothesis to TV, T' € &#. Since v3 is a
support vertex in 7", so sta(vs) = B by Observation 4 (d). Thus v is not
strong. T can be obtained from 7" by one Operation J3. Therefore T € &.

Case 1.2: d(v3) > 3 and v3 is not a support vertex.
Let 11, u0, - -,us be neighbors of vs except vo and v4. If there are two
< a) such that its neighbors except v3 are

vertices u;,uj; (1 < @ # j
all leaves. Then u;,u; € D and at least one vertex in {u;, uj,u},uj},
where u] (u}, respectively) is the paired vertex of u; (uj, respectively),
have no private neighbors with regard to D, a contradiction. If there is
exactly one vertex, say u;, such that its neighbors except vz are leaves.
Let 7" = T — {vp,v;,v2, w} and D' = D — {v,v2}. Then, Similarly, D’ is
a paired-dominating set of 7' and P(z,D’) # @ for every vertex z € D'".
So by Theorem 3, T' € . Applying inductive hypothesis to T', T' € £.
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Since u, is a support vertex in T”, sta(u;) = B. And sta(v) = A for all
v € N(u1) — {vs} as v is a leaf in T’ and Observation 4 (c). By Observation
4 (b), sta(vs) = B. Thus vs is not strong. T can be obtained from 7” by one
Operation J3. Therefore T € &. If there is no vertex in {uj,uz2---,u,}
such that its neighbors except vs are all leaves. Let z; (1 < ¢ < a) be
a neighbor of u; except vz which is not a leaf. Since P is a longest path
in T, z; is a support vertex. For any u;, if there exists another neighbor
z; (# v3) which is also a support vertex. Then at least one vertex in
{zi, 2}, 2,2}, where z} (z!, respectively) is the paired vertex of z; (z,
respectively), have no private neighbors with regard to D. So for any
u; (1 <7 < a), there exists exactly one neighbor z; (# v3) such that z; is a
support vertex. In this case, {u;, 1, 42,22+ ,uq, 74} € D and there must
exist one leaf adjacent to u; for i = 1,2,---,a. Let T" =T — {vg, vy, v, w}
and D' = D — {v),vp}. Similarly, D' is a paired-dominating set of T"
and P(z,D’) # 0 for every vertex £ € D'. So by Theorem 3, T/ € Z.
Applying inductive hypothesis to 7, T' € &£. Since z; is a support vertex,
sta(z;) = B. Also, for any v € N(z;) — {u;}, sta(v) = A. So sta(u;) = B.
Since u; (1 < 4 < a) is adjacent to at least one leaf, so v3 is not strong
in T'. Thus T can be obtained from T” by one Operation 3. Therefore

Te#.

Case 1.3: d(v3) = 2.
Let T' = T — {vo,v1,v2,v3, w} and D' = D —{v;,v;}. Then D’ is a paired-
dominating set of T/ such that P(z,D’) # @ for every vertex z € D’. By
Theorem 3, T € 7. Applying inductive hypothesis to T/, T’ ¢ &. If
sta(vy) = A, then T can be obtained from 7" by one Operation % and one
Operation J;. Therefore T € &. If sta(vs) = B, we use one Operation 9;
to T”, the attacher is vy, we get 7", Though sta(vs) = A, v is not strong.
Then T can be obtained from T” by one Operation Z;. Therefore T' € &.

Case 2: d(vg) = 2.
In this case, v;,v2 € D and they are paired in D. v3 is the only private
neighbor of v. If d(v3) > 3, then v3 must be dominated by one of its
neighbors other than v,. It is a contradiction. So d(v3) = 2. Since T € 7,
d('U4) =2
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Case 2.1: d(vg) = 2.
Let TV = T — {vo,v1,v2,v3} and D' = D — {v1,v2}. Then D’ is a paired-
dominating set of T” such that P(z,D’) # 0 for every vertex x € D’. By
Theorem 3, T' € . Applying inductive hypothesis to T', T' € &. As v,
is a leaf in T, by Observation 4 (c), sta(v4) = A . Then T can be obtained
from T’ by one Operation ;. Therefore T € &.

Case 2.2: d(vq) 2 3.

If vy is a support vertex or one of its neighbors is a support vertex, then
vg € D. This contradicts that vs is the only private neighbor of va. Let
U1, Uz, -+ ,Ug be neighbors of vy other than vz and vs and P; (1 <i < a)
be the longest path start at v4 through edge vsu;. Then the length of P; is
three or four. Let Py, Py, -, P, be the path of length 3 and Poyy,---, Pe
be the path of length 4. Let Ty, be a rooted subtree at u;. If there is a
rooted subtree T, (b + 1 < i < a) which is not a path, then we discuss
it same as Case 1. So Ty, @ Py for b+1 < i < a. If b =0, then let
T =T — (V(Ty,) — {va}) and D' = DN V(T'). Then D’ is a paired-
dominating set of 7' such that P(z,D’) # @ for every vertex z € D’'. By
Theorem 3, T’ € 7. Applying inductive hypothesis to 7/, T’ € &£. Since v4
isaleafin T’, so sta(v4) = A. T can be obtained from T” by a+1 Operations
5. Therefore T € &. If b> 0, Let T = T — (V(Ty,) U Uimppy V(T))
and D’ = DNV(T’). Then D’ is a paired-dominating set of T” such that
P(z,D’) # 0 for every vertex z € D’. By Theorem 3, T’ € J. Applying
inductive hypothesis to T/, T € &. For any vertex u; (1 < i < b), there
is exactly one support vertex in N(u;) — {vs}, as T' € . Let z; be such
a neighbor. Then sta(z;) = B. By Observation 4 (b) and (c), sta(u;) = B
for 1 € i < b. If sta(v4) = B, then By Observation 4 (e), sta(vs) = B.
In this case, v4 has no private neighbor in A(7”), and hence sta(vq) = A.
Then T can be obtained from 7" by a — b + 1 Operations 9. Therefore
Te#.0O

By Lemmas 5, 6, we get the following Theorem.

Theorem 7 7 = £ U {P,}.
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