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Abstract

In the first installment of this series, we proved that, for every
integer @ > 3 and every m > 2a% — a + 2, the 2-color Rado number
of

i+ 2o+ + Tm—1=aTm

is ["‘T‘l [2=177. Here we obtain the best possible improvement of the
bound on m. We prove that if 3|a then the 2-color Rado number is
[2=L[2=17] when m > 2a+1 but not when m = 2a, and that if 3t a
then the 2-color Rado number is [ =1 [2=11) when m > 22 + 2 but
not when m = 2a + 1. We also determine the 2-color Rado number
foralla>3and m > § +1.

1. Introduction

A special case of the work of Richard Rado [5] is that for every integer
m 2> 3 and all positive integers a1, ...,a, there exists a smallest positive
integer n with the following property: for every coloring of the elements
of the set [n] = {1,...,n} with two colors, there exists a solution of the
equation
a1T] +a2T2 + - + Cp—1Tm-1 = AmTm

using elements of [n] that are all colored the same. (Such a solution is called
monochromatic.) The integer n is called the 2-color Rado number of the
equation.

In 1982, Beutelspacher and Brestovansky {1] proved that for every m >
3, the 2-color Rado number of

Ty+ 22+ +Tmo1 =Tm

is m? —m — 1. In 2008 Guo and Sun (2] generalized this result by proving
that, for all positive integers a;,...,am—1, the 2-color Rado number of the

ARS COMBINATORIA 119(2015), pp. 193-210



equation
a171 + a2+ -+ @m—1Tm-1 = Tm

is aw? + w — @, where @ = min{a;,...,am—1} and w=a; + - +am-1. In
the same year, Schaal and Vestal [7] dealt with the equation

T+ T2+ +ZImo1 = 2Tm.

They proved, in particular, that for every m > 6, the 2-color Rado number
is [251[=517]. Building on the work of Schaal and Vestal, we proved in
[6] that for every @ > 3 and m > 2a2 — a + 2, the 2-color Rado number of
the equation zj + - - + Tm—1 = T, is [ZL[2=L]]. Our main purposes
here are to obtain the best possible improvement of the bound on m, and to
determine the Rado number in most cases where m falls below the improved
bound.

We begin by using a sharpening of the arguments in [6] to prove (in
Section 3) the following result.

Theorem 1. For every integer a > 3 and every m > a? —a+ 1, the 2-color
Rado number of the equation

Ty +To+ + Tl T 0T
is [t =),

Notation. We will denote [2=1[2=1]] by C(m,a), and we will denote
the equation indicated in the statement of Theorem 1 by L(m,a). We will
denote the 2-color Rado number of L(m,a) byRz(m,a).

In order to present the rest of our results efficiently, we next prove (in
Section 4) the following.

Theorem 2. Suppose a+1 < m < 2a+1. Then Ry(m,a) =1iff m = a+1.
Ifa+2 <m < 2a+1, then Ry(m,a) € {3,4,5}, and we have:

Ry(m,a)=3if m<3 +1anda=m—1 (mod 2).
Ry(m,a) = 4 iff either:

(i) m<3+1landa#m—1(mod?2),or
(ii) m>32 +1anda=m -1 (mod 3).
2

Rg(m,a)=5iﬁm>%9+landa¢m—1(mod3).
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Theorem 2 will be useful to us in Section 5, where we obtain our final
lowering of the bound on m, which is as follows.

Theorem 3. Suppose a > 3. If 3|a then Ry(m,a) = C(m,a) when m >
2a+1 but R(2a,a) =5 and C(2a,a) = 4. If 3t a then Ry(m,a) = C(m,a)
when m > 2a + 2 but R(2a + 1,a) = 5 and C(2a + 1,a) = 4.

By the results of [7], Theorem 3 also holds when a = 2.
Finally, in Section 6, we prove Theorems 4 and 5, which determine all

values of Ry(m,a) when 3+1<m<a

Theorem 4. If ZT“ +1 < m<a, then:
for a = 3 we have Ry(a,a) =9, and
for a > 4 we have

Ry(m,a) =3 if a =m —1 (mod 2) and
Ra(m,a)=4ifaZm—1 (mod 2).

Theorem 5. If § +1<m < 2 +1 (soa > 4) then:
for a = m — 1 (mod 3) we have Rz(m,a) = 4, and
for a # m — 1 (mod 3) we have Ry(m,a) = 5 except that

Ry(3,4) =10 and Ry(4,5) = 9, and
Ry(m,a) =6ifl0<ae<l4and m=a—4.

Conventions and definitions. In working with a fixed 2-coloring of
[n], we will use the colors red and blue, and we will denote by R and
B, respectively, the sets of elements colored red and blue. We will call a
2-coloring of [n] bad if it yields no monochromatic solution of L(m,a).

2. Preliminary lemmas

The results of [6] relied on the fact that if m > 2a% — a + 2 then 2m —
2 £ C(m,a), and therefore numbers in [2m — 2] can be used in producing
solutions of L(m, a) in [C(m, a)]. The improvement presented in Theorem 1
rests on showing that we can obtain the same results using [m — 1] instead
of 2m — 2], and that [m — 1] C [C(m,a)] if m > a? — a 4 2. (The case
m = a? — a + 1 will be handled separately, in Proposition 1 below.)
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Lemma 1. Suppose a > 3 and m > a2 — a + 2. Then m — 1 < C(m, a).

Proof. If m > a® + 1, then 31"—‘512 > m — 1 and the result follows. If
a2 ~a+2 < m < a? we can write m = a®> —a+b, where 2 < b < a. We have
m=l = a—1+%=1, and therefore [2=1] = o and C(m,a) = a’l-a+b-1=

m-1.0

It is shown in Proposition 1 of [6] that, for m > 3, C(m,a) is a lower
bound for Ry(m.a). So to prove Theorem 1 we must show that, for m >
a?2—a+1, C(m,a) is also an upper bound, i.e., every 2-coloring of [C(m, a))
yields a monochromatic solution of L(m, a).

To proceed, it will be convenient to recall the compact notation used in
[6] to indicate solutions of L(m,a).

Notation. If ni,...,nx are nonnegative integers whose sum is m, and
di,...,d, are elements of [C(m,a)] such that we obtain a true equation
from L(m,a) by substituting d; for the variables x1,...,Zn,, d2 for the
next n, variables, and so on, then we denote this true equation by

[nl —-)dl; ng—)dg; teey nk-—-)dk].

For example, the true instance
a+a+---+a=a(m-1)
of L(m, a) will be denoted by

[m-1-a; 15>m-1].

Proposition 1. If m = a? —a+ 1, then every 2-coloring of [C(m, a)] yields
a monochromatic solution of L(m,a).

Proof. Note that if m = a? — a + 1, then C(m,a) = (a — 1)%.

Suppose we have a bad 2-coloring of C(m, a), and suppose, without loss
of generality, that 1 € R. Then the solution [a2 —a — 1; 1 — a — 1] shows
that a —1 € B, and multiplying the assigned values in this solution by a —1
shows that (a — 1)2 € R. But the solution [(a — 1)2 = 1; a = (a — 1)?]
shows that (a — 1)2 € B, a contradiction. O

By Proposition 1, we can assume, in completing the proof of Theorem
1, that m > a? — a + 2, and therefore Lemma 1 applies.

Some of our arguments in Section 3 will require a > 4. When a = 3,
Theorem 1 asserts that Ry(m,3) = C(m,3) for m > 7, and this is proved in
Section 6 of [6]. Accordingly, we need only consider a > 4 in what follows.
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Conventions. In the remainder of Section 2, and in Section 3, we as-
sume that @ > 4 and m > a? — a + 2. We suppose that we have a bad
2-coloring of [C(m,a)], and we seek a contradiction. We assume without
loss of generality that a — 2 € R.

As in [6], we proceed by considering two cases, depending on the coloring
of the element a — 1. If a — 1 € B, then we can obtain our contradiction by

using the same argument as in [6], since that argument uses only elements
in [m —1]. (See [6], Section 3.) Accordingly, we adopt another convention.

Convention. We assume in the remainder of Section 2, and in Section 3,
that a —1 € R.

Lemma 2. The elements 1 and a are in R.

The proof is as in Lemmas 4 and 5 of [6], which use only numbers in
[m—1].

Lemma 3. The numbers m —a,...,m — 1 are all in B.
Proof. We want to show that m—a+j € Bfor0<j < a—1. Since 1, a—1,
and a are all in R and we are assuming that there are no monochromatic

solutions of L(m,a) in [C(m,a)], we need only consider the solution

m—2a+2j+1—2q,a-1-j—=a~1;a-1—j—1; l->m—-a+j] O

Lemma 4. The numbers 1,2,...,a are all in R.
Proof. For 0 < j < a — 1, consider the solution

m—a+j—oj+l,a—jom—a+j

and use the result of Lemma 3. [
The next result generalizes Lemma 9 from [6].

Lemma 5. If d is an integer such that a|d and m —1 < d < a(m —1), then
d

¢ e B.

a

Proof. Writed=(m —1)j+k,withl<j<a-land0<k<m-1
Then the solution

[m—l—k—)j; k—j+1; 1—>§]
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shows that % €B.0O
3. The proof of Theorem 1

In this section we will use the results of Section 2, together with al-
gebraic expressions for C(m,a), to produce a red solution of L(m,a) in
[C(m, a)]. This will contradict our standing assumption that our 2-coloring
of [C(m, a)] is bad, and conclude the proof of Theorem 1.

The following Lemma is Lemma 10 from (6].

Lemma 6. Let m = uwa? + va + ¢, with u as large as possible and 0 <
v,e<a—1.

(i) If c=1 then C(m,a) = LTI""I .
(ii) If ¢ =0 then C(m,a) = __:m

(iii) If 2 < ¢ < a — 1 then C(m, a) = Zotlemeslimbcrocvoctvatie”
_ [e=Dw+1
where t = IVS‘“‘—laL'i—l.' .

When ¢ = 1, the argument in [6] produces a red solution of L(m,a)
by using only elements of C(m,a) that can be shown to be in R by using
elements of [m — 1]. So the same argument yields a red solution here. We
turn to the remaining cases.

The Case ¢ =0

In this case we have Z € B by Lemma 5. We choose an s such that
s€R, s+1¢€ B, and s+1 < 2. Using the expression for C(m,a) in
Lemma 6, we obtain

Ofma) = (252) 24 = lpbon,

a a?

We let

a=™ (a—l)m+va$(m—a)_n_1+(a—1)m+va,
a

—-a
1
(s+1)+ a? a a?

so a@ < C(m,a). As in [6], we see that a € R.

We now obtain a red solution of L(m,a) by assigning the value o to
Tm—-2,Zm—1 and Z,, and the value s to (a — 2)(=2) other variables, and
showing that we can assign values in R to the remaining 2m 2 +a—5 variables
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to complete the solution. In fact we will show that we can accomplish this
by using only values in the set [a]. These values are all in R by Lemma 4.
The values assigned to the remaining variables must add up to

a—2(m_a)+a

a-; 2((a - 1)m + va).

If we can show that using only the value a yields a sum that is at least
this large, and using only the value 1 yields a sum that is at most this large,
then there is a unique solution that uses values in one of the sets {j, j+1},
where j € [a — 1].

Since v < a — 1, we can achieve our first objective by showing that

0(2Tm+a—5> 2 ?‘1;2(711—(1)-1'aa_zz((a—l)'rn-i-(a—l)a),

which simplifies to

a2—5a+1—22m(2_25a).
a a

Since the right-hand side is negative, this is clearly true when a > 5. When
a =4 it is true since m > 14 because m > a2 — a + 2.
Since v > 0, we can achieve our second objective by showing that

a

(gaﬂ+a—5) < 07—2-(m—-a)+ (;2((0—1)7”)-

But this simplifies to 2a% — 7a? < m(2a® — 7a + 2), which is true for all
a >4 and m 2> a. (It is not true when a = 3 and m > 9, and this is why
we dealt with the case a = 3 separately at the outset.)

The Case 2<c<a-1

In this case we have ™+2=¢ ¢ B by Lemma 5. We choose an s such that
S€R, s+1€ B, and s+ 1 < 242=< Using the expression for C(m,a) in
Lemma 6, we obtain

C(m,a) = (ma—c> <m+a—c) + (C~1)(m+a—c)+a'7’

a a®

where v = ta — (¢ — 1)(v + 1), with ¢ as in Lemma 6. Note that since

OSt—%—I)SI

by definition of ¢, we have 0 < v < a.
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‘We consider the element

8= (ma‘c) (s+1)+ (c“l)(m}“_c)“y < C(m,a).

To see that B € R, we consider the solution

[m_Hm; co2o BHETE,  mAATC, 1_,[3].

Note that 2+2=¢ 4 4 € B by Lemma 5, since

— _ 2 _ 2
m+a c+7Sm+a ct+a Sm+a 2+4+a
a a a

and it is easy to verify that m +a —2 + a2 < a(m — 1) when a > 4 and
m>a?—a+2.

To obtain our red solution of L{m, a), we assign the value 8 t0 Tpm, Tm-1
and Z,_2, and the value s to (a — 2)(™=2) other variables, and show that
we can assign values in R to the remaining &"a_—cl + ¢ — 3 variables to
complete the solution. We again use values in the set [a].

The values assigned to the remaining gﬂﬂ'—"l + ¢ — 3 variables must add

up to
a—2 a—2
(m—-c)+

= ((e=1)(m+a—c) +ay). 1)

If we can show that using only the value a (respectively, 1) yields a sum
that is at least (respectively, at most) this large, then, as before, there must
be a solution that uses values in one of the sets {j, j+1}, where j € [a—1].

Using the fact that v < a, we can achieve our first objective by showing
that

NI BT M

which simplifies to

aa_22((c— 1)(m+a—c)+a?),

c2(a—2)+c(a® —2a%—a+2)+(—4a®+3a%?-2a) > m(—a®—3a+2+c(a—2)).

If we regard a as a constant and denote the quantity on the left-hand side
of this inequality by f(c), then the derivative

f'(c) = 2c(a —2) + (a®* ~ 22> —a +2)

is easily seen to be positive for ¢ > 0 and a > 4, so the minimum value of
f(c) for 2 < ¢ < a—1 occurs at ¢ = 2. Since

m(—a®—3a+2+c(a—2)) < m(—a®-3a+2+(a—1)(a—2)) = m(4—6a),
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we only need to verify that f(2) > m(4 — 6a), i.e.,
2a® + a? + 4 < m(6a — 4),

and this is true for a > 4 and m > a? — a + 2.
To achieve our second objective, it will suffice, by using expression (1)
and the fact that 0 < v, to show that

(2(m_a—c2 +c— 3) < ﬁ—;—2(m—c) + aa_22((c— 1}(m+a —c)).
This inequality simplifies to
c?(a — 2) + c(a® — 3a + 2) — 2a® — 2a < m(a? — 5a + 2 + c(a — 2)).
Denoting the quantity on the left-hand side by g(c), we have
g'(c) =2¢c(a—2) + (a2 —3a + 2),

so g'(c) > 0 for ¢ > 0 and a > 4. Therefore the maximum value of g(e) for
2<c<a-1occurs at ¢c =a — 1. Since

m(a® - 5a + 2 + c(a — 2)) > m(a® — 5a + 2 + 2(a — 2)) = m(a? -3a-2),
we need only verify that g(a — 1) < m(a? — 3a — 2), i.e., that
2a% —10a® +8a -4 < m(a2 —3a-2).

This is easily verified for a > 4 and m > a? —a +2. (But it fails whena =3
and m > 8, again indicating why we dealt separately with the case a = 3)
O

4. The proof of Theorem 2

The following lemma will be useful in proving Theorems 2, 4, and 5.
Lemma 7. Suppose § + 1 < m < 2a + 1. Then:

(1) there exists a solution of L(m,a) using only values in {1,2},

(2) there exists a solution of L(m,a) using only values in {1, 3} iff
a=m—1 (mod 2),

(3) there exists a solution of L(m, a) using only values in {2, 3} iff
Z4+1<m<%+1,and
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(4) there exists a solution of L(m,a) using only values in {1,4} iff
a=m—1 (mod 3).

Proof. There exists a solution using values in {1,2} iff either m—1<a <
2m—1)orm—-1<2a<2(m—1).1f §+1<m < a+1 then the first
alternative holds, and if a + 1 < m < 2a + 1 then the second holds. This
proves statement (1). There exists a solution of L(m,a) using values in
{2,3} iff either 2(m — 1) < 2a < 3(m —1) or 2(m — 1) < 3a < 3(m - 1),
i.e., iff 2 <m—1< 3. This proves statement (3).

As we assign values in {1,3} to z1,...,Zm—_1, the total values achieved
by the left side of L(m,a) are exactly those integers that have the same
parity as m — 1 and are between m — 1 and 3(m — 1), inclusive. So there
exists a solution using values in {1,3} iff a = m — 1 (mod 3) and either
m—-1<a<3m-1)orm—1<3a<3(m-—1). As in the proof of (1),
one of these pairs of inequalities must hold, and this proves (2). The proof
of (4) is similar. O

The proof of Theorem 2. Assume that a+1<m <2a+1.

It is clear that Ry(m,a) = 1 iff we can obtain a solution of L(m,a) by
assigning all the variables the same value, and this is so iff m — 1 = a. Note
that Ry(m,a) can never be 2, for if we color 1 and 2 differently then we
can only obtain a monochromatic solution of L(m,a) in [2] by coloring all
the variables the same, but then R3(m,a) = 1.

For the remainder of the proof we assume a +2 < m < 2a + 1, so
that Ra(m,a) > 3, and there is no solution of L(m,a) that assigns all the
variables the same color.

We next establish the conditions under which Ry(m,a) = 3. Suppose
first that we have a bad 2-coloring of [3], with, say, 1 € R. By statement
(1) of Lemma 7, there is a solution of L(m,a) using values in {1,2}, and
both values must be used in the solution. So 2 € B. It then follows from
statements (2) and (3) of Lemma 7 that ifa = m—1 (mod 2) and m < §2°—+1
then we must color 3 both blue and red in order to avoid a monochromatic
solution of L(m,a) in [3], so Ra(m,a) = 3. If a # m — 1 (mod 2) (or,
respectively, if m > -3'2—“ + 1) then we can color 3 red (or, respectively, blue)
and obtain a bad 2-coloring of (3], so Ry(m,a) > 3.

By what we have just shown, either of conditions (i) or (ii) in the state-
ment of Theorem 2 implies that Ry(m,a) > 4. To prove that each implies
Ry(m, a) = 4, we suppose we have a bad 2-coloring of [4], with 1 € R, and
we seek a contradiction, assuming that (i) or (ii) holds. By using statement
(1) of Lemma 7, and then doubling all the values in its proof, we get 2 € B
and 4 € R.

If (i) holds then by statement (3) of Lemma 7 we have 3 € R. To get

202



a contradiction, we obtain a red solution of L(m, a). We start by assigning
the value 4 to z,, and the value 1 to each of the other variables. We must
show that we can increase the total value of the left side by 4a — (m — 1)
by increasing some of the values on the left side by 2 or 3. So we need to
write 4a — (m — 1) as a sum of 2's and 3’s, using at most m — 1 terms. Our
bounds on m imply that 2 < 4a — (m — 1) < 3(m — 1), so this is possible
(using at most two 2’s).

If (ii) holds then by statement (4) of Lemma 7 we can obtain a red
solution of L(m,a) using values in {1,4}.

We have shown that each of (i) and (ii) implies Ry(m, a) = 4. Conversely,
if Ra(m,a) = 4 then since Ry(m,a) # 3, either (i) holds or m > 37" + 1.
In the latter case we must have a = (m — 1) (mod 3), for otherwise by
statements (3) and (4) of Lemma 7, the coloring R = {1,4}, B = {2,3} is
bad, contradicting Ro(m,a) = 4.

Finally, suppose m > 32‘-‘-+1 and ¢ # m—1 (mod 3). Then Ry(m,a) > 5.
To prove equality, suppose for a contradiction that we have a bad 2-coloring
of [5], with 1 € R. As above, we see that 2 € B and 4 € R, and as in our
proof that condition (i) implies Ry(m,a) = 4 we get a contradiction if
3 € R. So suppose 3 € B.

We claim that 5 € R. To see this we construct a solution of L(m,a) in
which we assign the value 5 to =, and values in {2,3,5} to all the other
variables. If we start by assigning the value 2 to all the other variables, then
we must increase the value of the left side by 5a — 2(m — 1) by increasing
some of the 2’s by 1 or 3 each. Note that 5a —2(m—1) > 0 since m < 2a+1,
and, since a < m—2, we have 5a—2(m—1) < 5(m—2)-2(m—1) = 3m-8.
Any nonnegative integer less than or equal to 3m — 5 can be written in the
form3g+7, with0<g<m-2and0<r<2 withr<1lifg=m-—2.
So we can achieve the desired solution (using at most two 1’s), and 5 € R.

We now obtain a red solution of L(m, a) (and therefore a contradiction)
by assigning the value 4 to z,, and values in {1,4,5} to all the other vari-
ables. If we start by assigning the value 1 to each of z,...,2Zm_1, then to
finish we must write 4a — (m — 1) as a sum of 3's and 4’s, using at most
m — 1 terms. Our bounds on m yield 4a — (m — 1) > 4a — 2a > 6 and
da — (m — 1) < 4(m — 1). Therefore it is easy to show that the desired
expression for 4a — (m — 1) exists.

We have shown that if m > 32 + 1 and @ # m — 1 (mod 3) then
Rj(m, a) = 5. Conversely, if Ra(m,a) = 5 then Ry(m, a) is neither 3 nor 4,
so by what we have already shown, we must have m > 37“ +landea#m-1
(mod 3). O

5. The proof of Theorem 3
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We have C(2a +1,a) = 4, and, since a > 3, C(2a,a) = 4 as well. If 3|a,
then by Theorem 2 we have R2(2a + 1,a) = 4 and R2(2a,a) = 5, while if
31 a then Ry(2a + 1,a) = 5. Therefore, to prove Theorem 3 it will suffice
to prove the following.

Proposition 2. For a > 3 and m > 2a + 2, Rz(m,a) = C(m,a).

By Theorem 2 of [6], we know that Proposition 2 holds when a = 3. By
Theorem 1, we also know that it holds when m > a% — a. So we adopt the
following conventions for the remainder of this section.

Conventions. We have a > 4, and 22 + 2 < m < a? — a. We write
m=av+ec with2<v<a-1and 0<c<a-1,sothat when v =2 we
have ¢ > 2 and when v = a — 1 we have ¢ = 0. We suppose that we have a

bad 2-coloring of [C(m,a)], with 1 € R, and we seek a contradiction.
We consider three cases.

Case 1: 1,2€ R

Lemma 8. When 1,2 € R, we have C(m,a) € R.

Proof. Since m > 2a + 2, we have ﬂ;’—l >24+ ;zl- and [E'T‘l] > 3. So if we
let n = [2=1] then n + 1 < C(m,a) and, for k € {n, n+1},

m—1<ak <2(m—1).

So we may assign either of the values n, n+1 to =, and obtain a solution
of L(m,a) by assigning a value of 1 or 2 to each of z,,...,Tm—1. Since
1,2€ R, we haven, n+1 € B.

To show that C(m,a) € R, it therefore suffices to show that

n(m —1) < aC(m,a) < (n+1)(m —1).

The first inequality holds because n = [22=1]. The second inequality asserts
that C(m,a) < n(Z=2) + 221, and this is true because C(m,a) exceeds
n(Z=1) by less than 1. O

We now obtain a contradiction by showing that, for some positive integer
4 < a, we obtain a red solution of L(m,a) by assigning the value C(m, a)
to Zm and to a — j of the variables zy,...,Zm-1, and assigning the value 1
or 2 to each of the remaining a(v — 1) + j + ¢ — 1 variables. To show this,
we must show that for some positive j < a,

aw—1)+j+c—1<jC(m,a) < 2(a(v-1)+j+c—1). (2)
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Subcase 1: ¢ =0

In this case, Lemma 6 yields C(m,a) = v2, so we must show that
a(v-1)+j-1<?<2aw—-1)+5-1)

for some positive 5 < a. The first inequality clearly holds when j = a. We
now choose j to be the smallest positive integer such that the first inequality
holds. We claim that, for this j, the second inequality holds.

If j = 1 the second inequality says that v2 < 2a(v—1), and since a > v+1
it suffices to show that v? < 2(v? — 1). But this is clearly true, since v > 2.
If5 > 1 then by the minimality of j we have a(v — 1) +j — 2 > (j — 1)v?,
so jv? < v? +a(v —1)+ j — 2 and it suffices to show that

v +aw-1)+j5-2<2alv—1)+j—1).

This inequality reduces to v2 < a(v — 1) + j, and since @ > v + 1 it suffices
to show that v? < v% — 1 + 7, which is clearly true.

Subcase 2: c=1

The argument for this case is nearly identical to that for ¢ = 0. We omit
the details.

Subcase 8: 2<c<a-1

In this case, Lemma 6 yields C(m, a) = v?+v+t, where t = [Mi]
So when j = a the first inequality in statement (2) says that av +c¢—1 <
a(v? + v + t), which is clear. We choose the smallest positive j such that
the first inequality of statement (2) holds.

If j = 1, the second inequality in (2) says that v> +v+t < 2(a(v—1)+c).
Since ¢ # 0, our conditions on m imply that e > v+ 2,sosincet <v+1
it W1ll suffice to show that v2 4+ 2v +1 < 2(v? + v — 2 + ¢). This reduces to
5 < v? 4 2¢, which is clearly true.

If 5 > 1 then by the minimality of j we have

a(v-1)+j+c=2> G -2 +v+1t),

s0 j(vV+v+t)<a(v—1)+j+c—2+v%+v+t, and to verify the second
inequality in (2) we want to show that

av—1)+j+c—24+v° +v+t<2a(w—-1)+j+c—1),

ie,v2+v+t <a(w—1)+j+ec. Since ¢ # 0 implies a > v + 2, it suffices to
show that v2 + v+t <v?4+v—-2+4j+cie,t<j+c—2. Butt<c-1,
so this is clear.
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Case 2: 1€ R,2€¢B,3¢B

Subcase 1: c-1< 3

In this subcase we will produce a red solution of L(m, a) by using values
that are at most 3v. Note that if ¢ = 0 or 1 then C(m,a) = v? and v > 3,
so it is clear that 3v < C(m,a). If ¢ > 2 then C(m,a) =v? + v+t and it
is again clear that 3v < C(m,a).

By assigning a value of 2 or 3 to each of the variables zi,...,Zm-1, we
can achieve for the left side of L(m, a) any total value between 2(av+c—1)
and 3(av+c—1), inclusive. By the assumption of the current subcase, this
implies that when ¢ > 0 we can achieve a solution of L(m, a) using 2’s and
3's on the left side and any of 2v + 1,...,3v on the right. When ¢ =0 we
can use any of {2v,...,3v — 1} on the right. So 2v+1,...,3v € R when
c>0and 2v,...,3v—1€ R when c=0.

When ¢ =0,

[m—a-121a-1-2y;152v+1;1-3v-1]

is a red solution of L(m,a).

To obtain a red solution when ¢ > 0, start by assigning the value 3v to
Zm and the value 1 to each of the other variables. We must then increase
the total value of the left side by 2av — (¢ — 1), which is easily seen to be
at least 3(2v) for any a > 4, since v > 2 and ¢ < a — 1. Write

2av—(c—1) = q(2v) + 1,

with 3 < g < a and 0 < r < 2v — 1. If we increase the values of each of
Z1,...,Zq to 2v + 1, then we must still increase the total value of the left
side by r. Since 7 < 2v — 1 and ¢ > 3, we can accomplish this by again
increasing the values of some of zj,...,z, without increasing any value
2v + 1 by more than v — 1 (even if v — 1 =1).

Subcase 2: c—12 %

In this subcase we will use values no larger than 3v + 1. Note that
3v+1 < C(m,a) since ¢ > 2,s0 C(m,a) =v?+v+tand ¢t > 1.

By the assumption of the current subcase, we see as in the preceding
subcase that we now have 2v+2,...,3v+1 € R.

To obtain a red solution of L(m, a) we start by assigning the value 3u+-1
to z,, and the value 1 to each of the other variables. We must then increase
the total value of the left side by a(2v + 1) — (¢ — 1), which is easily shown
to be least 4(2v + 1) for any a > 5. Assuming for the moment that a > §,
write

a2v+1)—(c—1)=q(2v+ 1)+,
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with 4 < ¢ < a and 0 < r < 2v. Increase the values of T1,...,%q to 20+ 2.
Since 7 < 2v and ¢ > 4, we can then increase the total value of the left side
by r by increasing some of the values 2v + 2 by no more than v — 1 each.

If a = 4, then by our bounds on m we have 10 < m < 12. In the current
subcase we also have c—1 > %,s0 ¢ > 3. Thus m = 11, and [10 — 2; 1 — 5]
and [6 — 2; 4 = 3; 1 — 6] are solutions of L(m,a). Since 2,3 € B, we
have 5,6 € R,s0 [8 & 1; 2 6; 1 — 5] is a red solution of L(m,a).

Case 3: 1€ R, 2¢€B,3¢cR

In this case we will use numbers no larger than 3v. As in Case 2, all
these numbers are in [C(m, a)].

Subcase 1: m is odd

First suppose v is even. Then ¢ must be odd, so ¢ > 0. It follows
that for any k € {v+2,v +4,...,3v}, ak is an even number such that
m —1 < ak < 3(m — 1), and therefore we can achieve the value ak by
assigning each variable on the left side of L(m,a) a value of 1 or 3. So
v+2,v+4,...,3v are all in B. To obtain a blue solution of L(m,a),
we start by assigning the value 3v to z,,, and the value 2 to each of the
remaining variables. To achieve a solution, we must then increase the total
value on the left side of L(m,a) by av + 2 — 2¢, which is easily seen to be
at least v. So we write

av+2-2c=qu+r,

where 1 < ¢ <a, 0 £ r <, and r is even. If we increase the values of
Z1,...,%q to v + 2, we can then increase the value of z; to v + 2 + r and
obtain a blue solution of L{(m,a). Note that v 4+ 2 + = is even and at most
3v.

Now suppose v is odd. Then v+ 1,v+3,...,3v — 1 are all even, and
as in the preceding paragraph we see that they are all in B. To obtain a
blue solution of L(m,a), we start by assigning the value 3v — 1 to z,, and
the value 2 to each of the other variables. We must then increase the total
value of the left side by av + 2 — 2¢ — a. Since v is odd, v > 3, and using
this it is easy to show that av +2 — 2c — a > v + 1. So we write

av+2-2c—a=gqg(v+1)+r,

with1 < g <a,reven,and 0 < r < v—1 since v is odd. If we increase the
value of z; to v + 3 + 7 and the values of z3,...,z4 to v + 3, we obtain a
blue solution of L(m,a), since v+ 3 +7 < 2v + 2 < 3v — 1 because v > 3.
(We could have done this argument by increasing values to v + 1 instead
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of v + 3, but doing it as we have will be useful in dealing with the next
subcase.)

Subcase 2: m is even and a is even

If m and a are even and z is an even integer such that m—2 < (a—1)z <
3(m — 2), then we can obtain a solution of L(m,a) by assigning the value
2 t0 Zm and z,,_; and assigning a value of 1 or 3 to each of the remaining
variables. It is straightforward to verify that m — 2 < (a — 1)z < 3(m — 2)
whenever v+ 2 < z< 3v. Soifviseven thenv+2,u+4,...,3v are all in
B, and if v is odd then v+ 3,v +5,...,3v — 1 are all in B.

We can now obtain a blue solution of L(m,a) by repeating the argu-
ments given for Subcase 1, because we didn’t use the value v + 1 in the
argument given there when v was odd.

Subcase 3: m is even and a is odd.

In this subcase, a —1 is even, so we can now do the argument of the first
paragraph of Subcase 2 without the restriction that z be even, and conclude
that {v+2,v+3,...,3v} C B. We can then obtain a blue solution of L(m, a)
by using the argument given for even v in Subcase 1, regardless of the parity
of v. In the present situation we will not know that the remainder r is even,
but that doesn’t matter now. (1

6. The proofs of Theorems 4 and 5

The proof of Theorem 4. Suppose that 233 + 1 < m < a. As in the proof of
Theorem 2, we have Rp(m,a) > 3, sincem #a+ 1.

It is shown in Theorem 2 of [6] that R(3,3) = 9, so we can assume
that a > 4. If we take a bad 2-coloring of [3] with 1 € R, then by statement
(1) of Lemma 7 and the fact that Ry(m,a) # 1, we have 2 € B. So by
statement (3) of Lemma 7 we must have 3 € R. If a = m — 1 (mod 2),
then by statement (2) of Lemma 7 we have a red solution of L(m,a), so
Ry(m,a) = 3.

If a # m — 1 (mod 2) then the coloring R = {1,3},B = {2} is bad,
so Ry(m,a) > 4. To prove equality, suppose for a contradiction that we
have a bad 2-coloring of [4], with 1 € R. Then, as above, we have 2 € B
and 4 € R. We again have 3 € R by statement (3) of Lemma 7. To obtain
a red solution of L(m,a) we assign the value 1 to all the variables, and
show that we can increase the total value of the left side by a — (m — 1) by
increasing some of the 1’s on the left side by 2 or 3 each. This is possible if
2 < a—(m—1) < 3(m—1). The second inequality holds since m > § + 1.
The first inequality holds if m < a — 1. So we have a red solution unless
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m = a. But if m = a then, sincea >4,(a—~4—3; 35 4; 1 - 3]isared
solution. [J

Lemma 9. Ry(4,5) =09.

Proof. We first determine the unique bad 2-coloring of [8] that has 1 € R.
As in the proof of Theorem 4 we must have 2 € B and 4 € R, and it
then follows from statement (2) of Lemma 7 that 3 € B. The solutions
[3—5; 1 — 3] and [2 — 6; 2 — 3] then yield 5,6 € R, and the solutions
2= 7 1—6; 1> 4] and [2 > 8; 2 — 4] show that 7,8 € B. With the
coloring R = {1,4,5,6}, B = {2,3,7,8}, the left side of L(m, a) would have
total value at most 18 in any red solution, so =4 would have to be assigned
the value 1. But the left side couldn’t have total value 5, so there is no red
solution. In a blue solution, the left side of L(m, a) would have total value
at most 24, so x4 would have to be 2 or 3. But the left side couldn’t have
total value 10 or 15, so there is no blue solution.

Suppose now that we have a bad 2-coloring of [9] with 1 € R. By what
we have just shown, we must have 3 € B and 4, 5,6 € R. Then the solution
[1—9; 3 3]showsthat 9€ R,so [l —5; 1 —6; 15 9; 1 —4]isared
solution. We conclude that Ry(4,5) =9. O

The proof of Theorem 5. Suppose that 3 +1 < m < 2 +1 (so a > 4).
Then the coloring R = {1}, B = {2,3} of (3] is bad by statement (3) of
Lemma 7, so Ry(m,a) > 4. For any bad 2-coloring of 4] with 1 € R, we
have 2 € B and 4 € R as above, so if a = m —1 (mod 3) then by statement
(4) of Lemma 7 we have a red solution of L{m,a). So ifa = m — 1 (mod 3)
then Ra(m,a) = 4.

Now suppose that a # m—1 (mod 3). Then, by statements (3) and (4) of
Lemma 7, the coloring R = {1,4}, B = {2, 3} of [4] is bad, so R3(m,a) > 5.
Suppose we have a bad 2-coloring of [5], with 1 € R. Then as above we have
2€ B and 4 € R. If 3 € R then, as in the second half of the last paragraph
of the proof of Theorem 4, we have a red solution of L(m, a) using values in
{1,3,4}. (The requirement m < a—1 at the end of the argument is satisfied
since m < 2 +1 and m is an integer.) So 3 € B.

We claim that 5 € R. To see this we obtain a solution of L(m, a) using
values in {2, 3,5}, and note that any such solution must involve the value 5
by statement (3) of Lemma 7. To obtain our solution, we start by assigning
the value 2 to all the variables. We must then increase the total value of the
left side by 2a — 2(m — 1) by increasing the values of some of the variables
on the left side by 1 or 3 each. As in the third-to-last paragraph of the
proof of Theorem 2, to show that this is possible we need only verify that
0 € 2a —2(m — 1) < 3m — 5. The first inequality holds since m < a +1,
and the second states that 2a¢ < 5m — 7, which is true since m > 3+ 1and
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a>4.

We now try to obtain a red solution of L(m,a) by using values in
{1,4,5}. If we start by assigning the value 1 to all the variables, then
to achieve a solution we must write @ — (m — 1) as a sum of 3’s and 4’s,
using at most m — 1 terms. This is possible if a — (m — 1) < 4(m — 1)
(which clearly holds) and a — (m — 1) is either 3 or 4 or at least 6. Since
m—-1< 2 wehavea—(m—1)> %,s0a—(m~—1) > 2. So we have a red
solution, and thus Rg(m,a) =5, unlessa — (m —1) =2 or 5.

Ifa—(m—-1)=2thenm=a—-1s0%+1<a-1<%+1and
therefore a = 4 or 5. For a = 5 we have R2(4 5) =9 by Lemma 9 and for
a =4 it is shown in (3] that R,(3,4) = 10.

Ifa-(m—1) =5then m =a —4, soz+1<a—4< 2 +1 and
therefore 10 < a < 14. It is easy to verify that in this case the coloring
R = {1,4,5},B = {2,3} of [5] is bad, so Ry(m,a) > 6. For any bad 2-
coloring of [6] with 1 € R we have 3 € B, as above, and the solution
[5— 6; a —9 — 3] shows that 6 € R. But then [1 —» 6; a — 5 — 1] is a red
solution of L(m,a). So Ra(m,a) =6.0
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