k-Domination stable graphs upon edge removal

Mustapha Chellali
LAMDA-RO Laboratory, Department of Mathematics
University of Blida
B.P. 270, Blida, Algeria
E-mail: m_chellali@yahoo.com

Abstract

Let k be a positive integer and G=(V(G),E(G)) a graph. A subset S of V(G) is a k-dominating set if every vertex of V(G)-S is adjacent to at least k vertices of S. The k-domination number $\gamma_k(G)$ is the minimum cardinality of a k-dominating set of G. A graph G is called γ_k^- -stable if $\gamma_k(G-e)=\gamma_k(G)$ for every edge e of E(G). We first give a necessary and sufficient condition for γ_k^- -stable graphs. Then for $k\geq 2$ we provide a constructive characterization of γ_k^- -stable trees.

Keywords: k-domination stable graphs, k-domination.

AMS Subject Classification: 05C69

1 Introduction

We consider finite, undirected, and simple graphs G with vertex set V(G) and edge set E(G). The open neighborhood of a vertex $v \in V(G)$ is $N(v) = N_G(v) = \{u \in V(G) \mid uv \in E(G)\}$ and the degree of v, denoted by $d_G(v)$, is the size of its open neighborhood. We denote by $K_{1,t}$ a star of order t+1 and by $K_{1,0}$ the graph of order one. Specifically, for a vertex v in a rooted tree T, we denote by C(v)

and D(v) the set of children and descendants, respectively, of v. The maximal subtree at v is the subtree of T induced by $D(v) \cup \{v\}$, and is denoted by T_v .

In [1] Fink and Jacobson generalized the concept of dominating sets. Let k be a positive integer. A subset S of V(G) is k-dominating if every vertex of V(G) - S is adjacent to at least k vertices of S. The k-domination number $\gamma_k(G)$ is the minimum cardinality of a k-dominating set of G. Thus the 1-dominating set is a dominating set and so $\gamma_1(G) = \gamma(G)$. If S is a k-dominating set of G of size $\gamma_k(G)$, then we call S a $\gamma_k(G)$ -set. A graph G is called γ_k^- -stable if $\gamma_k(G-e) = \gamma_k(G)$ for every edge e of E(G). An edge e whose deletion from G does not affect the k-domination number is called a stable edge.

In [2] Hartnell and Rall characterized the trees T whose domination numbers are unaffected by deletion of any edge, that is $\gamma(T-e) = \gamma(T)$ for every edge e of E(T).

In this paper, we first give a necessary and sufficient condition for γ_k^- -stable graphs. Then we provide for $k \geq 2$ a constructive characterization of γ_k^- -stable trees.

2 γ_k^- -stable graphs

The following observation is straightforward.

Observation 1 Every k-dominating set of a graph G contains any vertex of degree at most k-1.

Since every k-dominating set of a spanning graph of G is also a k-dominating set of G we have the following observation.

Observation 2 For any graph G and edge $e \in E(G)$, $\gamma_k(G - e) \ge \gamma_k(G)$.

Next we give a necessary and sufficient condition for γ_k^- -stable graphs.

Theorem 3 Let k be a positive integer. A graph G is γ_k^- -stable if and only if for each pair of adjacent vertices $u, v \in V(G)$, there exists a $\gamma_k(G)$ -set D such that one of the following conditions holds:

- i) u, v are both in D or both in V(G) D,
- ii) if $u \in D$ and $v \notin D$, then v is (k+1)-dominated by D.

Proof. Let u, v be any pair of adjacent vertices for which there is a $\gamma_k(G)$ -set D such that one of Conditions (i) or (ii) is verified. Then by removing uv, the set D remains a k-dominating set of G - uv and so $\gamma_k(G - uv) \leq |D|$. Equality is obtained from Observation 2.

Now assume that G is a γ_k^- -stable graph. Let uv be any stable edge and D a $\gamma_k(G-uv)$ -set. Then $|D|=\gamma_k(G)$ and D is a $\gamma_k(G)$ -set. Clearly if $u,v\in D$ or $u,v\notin D$, then Condition (i) holds. Without loss of generality, assume that $u\in D$ and $v\notin D$. Then v is k-dominated by D in G-uv and so it is (k+1)-dominated by D in G. Hence Condition (ii) follows. \square

We note that for k = 1 Theorem 3 has been obtained by Walikar and Acharya [3].

For the purpose of characterizing γ_k^- -stable trees for every integer $k \geq 2$, we define the family \mathcal{H}_k of all trees T that can be obtained from a sequence T_1, T_2, \ldots, T_p $(p \geq 1)$ of trees, where $T_1 = K_{1,m}$ $(m \neq k \text{ and } m \geq 1), T = T_p$, and, if $p \geq 2$, T_{i+1} can be obtained recursively from T_i by one of the following operations.

• Operation \mathcal{O}_1 : Add a star $K_{1,t}$ $(0 \le t \le k-2)$ of center vertex x by adding an edge from x to a vertex y in T_i with degree at most k-2 in T_i .

- Operation \mathcal{O}_2 : Add a star $K_{1,t}$ where $t \geq k+1$ for a given integer $k \geq 2$ by adding an edge from the center vertex x of the star to any vertex y of T_i .
- Operation \mathcal{O}_3 : Add a star $K_{1,k}$ of center vertex x by adding an edge from x to a vertex y of T_i that belongs to a $\gamma_k(T_i)$ -set.
- Operation \mathcal{O}_4 : Add a star $K_{1,k-1}$ of center vertex x_1 and $p \ge k-1$ new stars of center vertices $x_2, ..., x_{p+1}$ each one of order at most k-1, by adding edges from each x_i to a leaf y of T_i such that $\gamma_k(T_i-y) < \gamma_k(T_i)$, with a further condition if p=k-1, then the support vertex z of y belongs to some $\gamma_k(T_i)$ -set.

The following observation will be useful for the next.

Observation 4 Let $k \geq 2$ be an integer and T_w a tree rooted on a vertex w of degree at least k-1 and such that all descendants of w are of degree less than k. If T is a tree obtained from T_w by adding an edge between w and a vertex v of a tree T', then $\gamma_k(T') \leq \gamma_k(T) - |V(T_w)| + 1$, with equality if either $d_{T_w}(w) \geq k$ or v belongs to a $\gamma_k(T')$ -set.

Proof. Let S be a $\gamma_k(T)$ -set. Then by Observation 1, S contains $V(T_w) - \{w\}$ and without loss of generality $w \notin S$ else replace w in S by v. Thus $S \cap V(T')$ is a k-dominating set of T', so $\gamma_k(T') \le \gamma_k(T) - |V(T_w)| + 1$. Now let S' be a $\gamma_k(T')$ -set. If $d_{T_w}(w) \ge k$ or $v \in S'$, then $S' \cup (V(T_w) - \{w\})$ is a k-dominating set of T. Hence $\gamma_k(T) \le \gamma_k(T') + |V(T_w)| - 1$ and the equality follows. \square

Lemma 5 For every integer $k \geq 2$, if $T \in \mathcal{H}_k$, then T is γ_k^- -stable.

Proof. Let T be a tree of \mathcal{H}_k for some integer $k \geq 2$. Then T is obtained from a sequence T_1, T_2, \ldots, T_p $(p \geq 1)$ of trees, where $T_1 = K_{1,m}$ $(m \neq k)$, $T = T_p$, and, if $p \geq 2$, T_{i+1} can be obtained recursively from T_i by one of the four operations defined above. We use an induction on the number of operations performed to construct

T. Clearly the property is true if p = 1. This establishes the basis case.

Assume now that $p \geq 2$ and that the result holds for all trees $T \in \mathcal{H}_k$ that can be constructed from a sequence of length at most p-1, and let $T'=T_{p-1}$. By the induction hypothesis, T' is a γ_k^- -stable tree and hence every edge of E(T') is stable. For any edge $uv \in E(T')$, let D_{uv} denote a $\gamma_k(T')$ -set for which u, v satisfy Condition (i) or (ii) of Theorem 3. Let T be a tree obtained from T' and consider the following four cases.

- T is obtained from T' by using Operation \mathcal{O}_1 . Clearly by Observation 1 and since $d_{T'}(y) \leq k-2$, $\gamma_k(T) = \gamma_k(T') + |V(K_{1,t})|$. Let uv be any edge of E(T'). Since $d_{T'}(y) \leq k-2$, $y \in D_{uv}$ and $D_{uv} \cup V(K_{1,t})$ is a $\gamma_k(T)$ -set for which u, v and every two adjacent vertices of $V(K_{1,t}) \cup \{y\}$ satisfy Condition (i) of Theorem 3, T is a γ_k^- -stable tree.
- T is obtained from T' by using Operation \mathcal{O}_2 . Then by Observation $4 \gamma_k(T) = \gamma_k(T') + |V(K_{1,t})| 1$. Let uv be any edge of E(T'). Clearly $D'' = D_{uv} \cup (V(K_{1,t}) \{x\})$ is a $\gamma_k(T)$ -set, where x is (k+1)-dominated by D''. Thus the pair u, v and every two adjacent vertices in $V(K_{1,t}) \cup \{y\}$ satisfy Condition (i) or (ii) of Theorem 3. It follows that T is a γ_k^- -stable tree.
- T is obtained from T' by using Operation \mathcal{O}_3 . Then by Observation $4 \gamma_k(T) = \gamma_k(T') + |V(K_{1,k})| 1$. Let uv be any edge of E(T'). It follows that $D_{uv} \cup (V(K_{1,k}) \{x\})$ is a $\gamma_k(T)$ -set for which u, v satisfy one of the two conditions of Theorem 3. For the remaining edges incident with x, let S' be a $\gamma_k(T')$ -set containing y. Then $S' \cup (V(K_{1,k}) \{x\})$ is a $\gamma_k(T)$ -set that (k+1)-dominates x. Hence Condition (ii) is satisfied for every pair x, b, where $b \in N_T(x)$. Therefore T is a γ_k^- -stable tree.
- T is obtained from T' by using Operation \mathcal{O}_4 . Let H_i be the added star of center x_i with $1 \leq i \leq p+1$. Then $\gamma_k(T) = \gamma_k(T') + \sum_{i=1}^{p+1} |V(H_i)| 1$. Let uv be any edge of E(T'). Since

 $d_{T'}(y)=1, y\in D_{uv}$ and $D_{uv}\cup \left(\bigcup_{i=1}^{p+1}V(H_i)-\{x_1\}\right)$ is a $\gamma_k(T)$ -set for which u,v and every two adjacent vertices of $\{y\}\cup \left(\bigcup_{i=2}^{p+1}V(H_i)\right)$ satisfy one of the two conditions of Theorem 3, it remains to see all edges incident with x_1 in T. If p=k-1, then by the construction there is a $\gamma_k(T')$ -set containing z. Let D_z be such a set. Then $y\in D_z$ and $(D_z-\{y\})\cup \left(\bigcup_{i=1}^{p+1}V(H_i)\right)$ is a $\gamma_k(T)$ -set that contains x_1 and all leaves neighbored to x_1 and that (k+1)-dominates y. If $p\geq k$, let D_y be a $\gamma_k(T'-y)$ -set. Since by construction y satisfies $\gamma_k(T'-y)<\gamma_k(T')$ and $D_y\cup \left(\bigcup_{i=1}^{p+1}V(H_i)\right)$ is a $\gamma_k(T)$ -set that contains x_1 and all leaves neighbored to x_1 and that (k+1)-dominates y. In both cases Condition (ii) is satisfied for the pair x_1, y and Condition (i) is satisfied for every pair x_1, b where b is any leaf-neighbor of x_1 . Therefore T is a γ_k^- -stable tree. \Box

Lemma 6 Let $k \geq 2$ be an integer. If T is a nontrivial γ_k^- -stable tree, then $T \in \mathcal{H}_k$.

Proof. Let $k \geq 2$ be an integer and assume that T is a γ_k^- -stable tree of order at least two. We use an induction on the order n of T. Clearly if T is a star $K_{1,m}$, then $m \neq k$, and hence T belongs to \mathcal{H}_k . Assume that every γ_k^- -stable tree T' of order $1 \leq n' < n$ is in \mathcal{H}_k . Let $1 \leq n \leq n'$ be a $1 \leq n' \leq n'$ be a $1 \leq n'$ by applying Operation $1 \leq n'$ by applying Operation $1 \leq n'$ be a $1 \leq n'$ by applying Operation $1 \leq n'$ be a $1 \leq n'$ by applying Operation $1 \leq n'$ be an induction of $1 \leq n'$ by applying Operation $1 \leq n'$ by applying Operation $1 \leq n'$ by applying Operation $1 \leq n'$ be an induction of $1 \leq n'$ by applying Operation $1 \leq n'$ by applying Operation 1

is a k-dominating set of T smaller than S_{wu} , a contradiction. It follows that every vertex of maximum degree has to be neighbored to two other vertices of maximum degree. Then, since the graph is finite, there has to be a cycle, which is a contradiction. Thus from now on we can assume that $\Delta(T) \geq k + 1$. Since stars $K_{1,m}$ with $m \neq k$ belong to \mathcal{H}_k we assume that T has diameter at least three.

We now root T at a leaf r. Let w be a vertex of degree at least k at maximum distance from r. Let u be the parent of w in the rooted tree. Thus every descendant of w has degree at most k-1 and hence D contains all vertices of D(w). If r=u, then u is a leaf, $d_T(w) = \Delta(T)$ and $T \in \mathcal{H}_k$ since it is obtained from a star $K_{1,t}$ $(t \geq k+1)$ of center w by applying Operation \mathcal{O}_1 at least once. Thus suppose that $r \neq u$ and let v be the parent of v. We distinguish between three cases.

Case 1. $d_T(w) \ge k+2$. If $w \in D$, then $u \notin D$ and so we can replace w by u in D. Thus we may assume that $w \notin D$. Let $T' = T - T_w$. Then by Observation $4 \gamma_k(T') = \gamma_k(T) - |V(T_w)| + 1 = \gamma_k(T) - \gamma_k(T_w)$. Suppose now that T' is not γ_k^- -stable. Thus there is an edge $xy \in E(T')$ such that $\gamma_k(T'-xy) > \gamma_k(T')$. Note that the removing of xy from T' provides two subtrees T'(x) and T'(y) containing x and y, respectively. Also the removing of xy from T provides two subtrees T(x) and T(y). Without loss of generality, we can assume that T'(y) = T(y), and so T'(x) is a subtree of T(x). Clearly $\gamma_k(T'-xy) = \gamma_k(T'(x)) + \gamma_k(T'(y))$ and $\gamma_k(T-xy) = \gamma_k(T(x)) + \gamma_k(T(y))$. It follows by Observation 4 that

$$\begin{split} \gamma_k(T-xy) &= \gamma_k(T(x)) + \gamma_k(T(y)) \\ &= \gamma_k(T_w) + \gamma_k(T'(x)) + \gamma_k(T'(y)) \\ &= \gamma_k(T_w) + \gamma_k(T'-xy) \\ &> \gamma_k(T_w) + \gamma_k(T') = \gamma_k(T), \end{split}$$

contradicting the fact that T is γ_k^- -stable. Therefore T' is γ_k^- -stable and so by induction on T', we have $T' \in \mathcal{H}_k$. Consequently $T \in \mathcal{H}_k$ and is obtained from T' by using Operation \mathcal{O}_2 followed repetitively by Operation \mathcal{O}_1 if T_w is not a star.

Case 2. $d_T(w) = k + 1$. Then since $D(w) \subset D$ no $\gamma_k(T)$ -set contains both w, u. Let $T' = T - T_w$. Then by Observation $4 \gamma_k(T') = \gamma_k(T) - \gamma_k(T_w) = \gamma_k(T) - |V(T_w)| + 1$. Now let w' be any vertex of C(w). Then w' is in every $\gamma_k(T)$ -set. Since T is γ_k^- -stable, the edge ww' is stable. By Theorem 3 there is a $\gamma_k(T)$ -set S that contains w, too, and so $u \notin S$, or that (k+1)-dominates w, that is $w \notin S$ and $u \in S$. In the first case we can replace w by w in w. In any case we may assume that $w \in S$, implying that w belongs to at least the w-set w-set w-set w-set w-stable tree. By induction on w-set w-stable tree. By induction on w-set w-stable tree. By induction on w-stable operation w-stable tree. By induction on w-stable operation w-stable operati

 $d_T(w) = k$. Clearly to k-dominate w every $\gamma_k(T)$ -set Case 3. contains either u or w but not both since such a set minus w is a kdominating set of T. Also since T is γ_k^- -stable, wu is a stable edge and hence w, u have to satisfy Condition (ii) Theorem 3. It follows that there is a $\gamma_k(T)$ -set, say S, such that $w \in S$, $u \notin S$ and u is (k+1)dominated by S. Therefore $d_T(u) \geq k + 1$, that is $|C(u)| \geq k \geq 2$. Seeing the previous cases we can assume that every vertex in C(u)has degree at most k. If there is a vertex $w' \in C(u)$ such that $w' \neq w$ and $d_T(w') = k$, then $w' \in S$ and hence $\{u\} \cup S - \{w, w'\}$ is a kdominating set of T smaller than S, a contradiction. Thus every vertex in $C(u) - \{w\}$ has degree at most k-1, that is for every $b \in C(u) - \{w\}$ the subtree induced by b and its children is a star of order at most k-1. Note that $C(u) - \{w\}$ is in every $\gamma_k(T)$ -set. Now let T' be the tree obtained from T by removing all vertices in D(u). Then u is a leaf in T' and belongs to every $\gamma_k(T')$ -set. It is easy to see that $\gamma_k(T) = \gamma_k(T') + |D(u)| - 1$. We observe that for the previous $\gamma_k(T)$ -set S containing w and (k+1)-dominating u, $S' = S \cap V(T')$ is a $\gamma_k(T' - u)$ -set, where v may belong or not to S'and $S' \cup \{u\}$ is a $\gamma_k(T')$ -set. It follows that $\gamma_k(T'-u) < \gamma_k(T')$. Also if $d_T(u) = k+1$, then $N_T(u) \subset S$, implying that $v \in S'$ and so v belongs to the $\gamma_k(T')$ -set $S' \cup \{u\}$. Assume now that T' is not a γ_k^- -stable tree. Then there is an edge e = xy such that $\gamma_k(T' - xy) > \gamma_k(T')$. Such an edge xy is different from uv since u, v are either both in the $\gamma_k(T')$ -set $S' \cup \{u\}$, that is u, v satisfy (i) of Theorem 3 or $v \notin S'$ and

so v is (k+1)-dominated by $S' \cup \{u\}$, that is u, v satisfy Condition (ii). Now let T'(x), T'(y), T(x) and T(y) as defined in Case 1. Then $\gamma_k(T'-xy) = \gamma_k(T'(x)) + \gamma_k(T'(y))$ and

$$\gamma_k(T - xy) = \gamma_k(T(x)) + \gamma_k(T(y))
= (\gamma_k(T'(x)) + |D(u)| - 1) + \gamma_k(T'(y))
= \gamma_k(T' - xy) + |D(u)| - 1
> \gamma_k(T') + |D(u)| - 1 = \gamma_k(T),$$

a contradiction to the fact that T is γ_k^- -stable. Therefore T' is a γ_k^- -stable tree and hence by induction on T', $T' \in \mathcal{H}_k$. Consequently $T \in \mathcal{H}_k$ and is obtained from T' by using Operation \mathcal{O}_4 followed repetitively by Operation \mathcal{O}_1 if T_a is not a star for some $a \in C(u)$. \square

According to Lemmas 5 and 6 we have the following result.

Theorem 7 Let $k \geq 2$ be an integer. A nontrivial tree T is γ_k^- -stable if and only if $T \in \mathcal{H}_k$.

Acknowledgment: I would like to thank the referee for his/her remarks and suggestions that helped improve the manuscript.

References

- [1] J.F. Fink and M.S. Jacobson, n-domination in graphs. Graph Theory with Applications to Algorithms and Computer. John Wiley and sons, New York (1985) 283-300.
- [2] B. Hartnell, and D.F. Rall, A characterization of trees in which no edge is essential to the domination number. *Ars Combinatoria* 33 (1992) 65–76.
- [3] H.B. Walikar and B.D. Acharya, Domination critical graphs. *Nat. Acad. Sci. Lett.*, 2 (1979) 70–72.