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Abstract. Given a distribution D of pebbles on the vertices of a graph
G, a pebbling move on G consists of taking two pebbles off from a given
vertex and placing one of them onto an adjacent vertex (the other one
is discarded). The pebbling number of a graph, denoted by f(G), is the
minimal integer & such that any distribution of k¥ pebbles on G allows one
pebble to be moved to any specified vertex by a sequence of pebbling moves.
In this paper, we calculate the t—pebbling number of the graph D, ¢,,..
Moreover, we verify the g-t-pebbling number in order to show that the
graph D, ¢, has 2t—pebbling property.
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1. INTRODUCTION

Graph pebbling is a mathematical game and area of interest played on
a graph with pebbles on the vertices. The game of pebbling was first
suggested by Lagarias and Saks, as a tool for solving a particular problem
in number theory. The pebbling number of a graph was first introduced
into the literature by Chung [1]. A pebbling move consists of removing two
pebbles from one vertex, throwing one away, and putting the other pebble
on an adjacent vertex. The pebbling number of a specified vertex v in a
graph G is the smallest number f(G,v) with the property that from any
distribution of f(G,v) pebbles on G, it is possible to move a pebble to v by
a sequence of pebbling moves. The pebbling number of a graph G, denoted
by f(G), is the maximum of f(G,v) over all the vertices of graph G. If
one pebble is placed at each vertex other than the root vertex r, then no
pebble can be moved to r. Also, if w is at distance d from r, and 2¢ — 1
pebbles are placed at w, then no pebble can be moved to r. We record
this as f(G) > maz{| V(G) |,24}, where d(G) is the diameter of G .
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Furthermore, f(K,) = n and f(P,) = 2"~} (see [1]), where K, denotes
a complete graph with n vertices and P, denotes a path with n vertices.
Similarly, the t—pebbling number of v in G is the smallest number f,(G,v)
such that from every placement of f;(G,v) pebbles, it is possible to move
t pebbles to v. The t—pebbling number of G is the smallest number f,(G)
such that no matter how f;(G) pebbles are placed on the vertices of G,
t pebbles can be moved to any vertex by a sequence of pebbling moves.
Obviously, f(G) = f1(G), fi(G) = maz{f(G,v)|lv € V(G)}.

Theorem 1.1. [2] Let C, denote a simple cycle with n vertices, where
n > 3, then

()f(Cam) = ™. (i)f (Camsr) = 2| Z57) +1 = Tog=0,

Theorem 1.2. [3] Let C, denote a simple cycle with n vertices, where
n > 3, then

(1)fi(Cam) =1t -27™.

(i) fe(Cama1) = 2| Ty | + 1+ 27(¢ — 1) = E5EUT fom(e 1),

Theorem 1.3. [7] Let P, be a path on n vertices, then fy(Pn) = t(2"71).

Theorem 1.4. [9] The pebbling number of D c,,, is [f(Cam)—1](n—2)+
f(P2m+l)'

Furthermore, a graph G has the 2—pebbling property if for any distribution
with more than 2f(G) — ¢ pebbles, where g is the number of vertices with
at least one pebble, it is possible, using pebbling moves, to get two pebbles
to any vertex. Lourdusamy[4] extended the definitions of the 2—pebbling
property to the 2¢—pebbling property. Given a distribution on G, let ¢ be
the number of vertices with at least one pebble. We say that a graph G has
the 2t—pebbling property if, for any distribution with more than 2f,(G) —¢
pebbles, where g is the number of vertices with at least one pebble, it is
possible, using pebbling moves, to get 2t pebbles to any vertex.

Theorem 1.5. [5] Let K,, be the complete graph on n vertices. Then
(i)Kn has the 2t—pebbling property for all positive integer t;
(ii)if G satisfies the 2t—pebbling property, then for all positive integer t

fi(Kn x G) < f(Kn) f1(G)

In this paper, G denotes a simple connected graph with vertex set V(G)
and edge set E(G). For u, v € V(G) the distance between u and v in G
denoted by d(u,v). Moreover, denote by D(G) and D(v) the number of
pebbles on G and the number of pebbles on v after a specified sequence of
pebbling moves. Let D be a distribution of pebbles on the vertices of G.
For any vertex v of G, D(v) denotes the number of pebbles on v in D and
denotes the size of D as |D|, i.e. |D| =3 cy D(v). If D is a distribution

226



e
7

»
=y

LTS

‘* -

"Ln-l
Ly \.\,,
n, - ”/ u, 2
thy Pl -t
",
e ,.p.z
\ v

FIGURE 1. The graph D, ¢,..

of pebbles on the vertices of G and there is some choice of a root r such
that it is impossible to move a pebble to r, then we say that D is a bad
distribution.

There are many existing results regarding f(G). In [2], Pachter et al. gave
the pebbling number and t—pebbling number of C,, i.e. (see Theorem 1.1
and 1.2). In particular, Lourdusamy et al.[4-7] showed that the star graph,
the n—cube, the complete graph, the fan graph, the wheel graph, and the
even cycle have the 2¢—pebbling property. Moreover, Zetu Gao et al.[8] gave
the t-pebbling number and 2t-pebbling property of generalized friendship
graphs, and Han et al.[9] gave the pebbling number of the graph D,, ¢, (see
Theorem 1.4. In exploring these results, we are naturally led to consider
the relevant parameter of the graph D, ¢,,.. As shown in Fig.1, the graph
D, c,, consists of n cycles with one common vertex, which denoted by wu,
and each cycle has m vertices besides the center point u.

This paper is organized as follows. In Section 2, we start with showing
some preliminary lemmas and theorems based on the pigeonhole principle,
and then, we calculate the t—pebbling number of the graph D, ¢,, by
considering the number of occupied vertices of the graph. Finally, we prove
that the graphD,, ¢, has the 2t—pebbling property in Section 3.

2. t—PEBBLING NUMBER

This section studies the t—pebbling number of D, ¢,,, . First, we introduce
the following lemmas, which is necessary for the proof of the main theorems.
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Lemma 2.1. [9] Let f be the pebbling number of Cr and place (f —1)n+k
pebbles on n cycles of D, ¢, arbitrarily, then at least l%”‘—k J pebbles can
be moved to the center point u, where k and n are positive integers.

Based on Lemma 2.1, we have

Lemma 2.2. Let (2™ — 1)n + k objects be in n bozxes and let x; be the
number of objects in the ith boz, then

n k3 . m ——
am] ~ 2m
i=1
where k, n, t and m are positive integers.

Proof. For t =1, the Lemma 2.2 is true by Lemma 2.1. We use induction
on t to show the cases when ¢ > 1. Note y; and z; be the number of objects
in the ith box when t =land t =1+ 1.

First, suppose Lemma 2.2 is true when t = [, certainly, 1, |&] 2

[ | = 1+ |43,

Next, we show that 35, |&] - 20, [] > 1. Let £ — |_ | = df,
| = ab, and $& — | &) = ¥, ] = bh, then F& = o’ + af and
-2”,;.4 = b +b). We have

n n

T; ;
12—,:,— ——n=z —bo)+2(a*b),

i= i=1 i=1 i=1
since 0 < o’ — b < 1 (X0 ,(a* — b') < n), certainly, >, (af — b)) = 0.
As o} and b} are positive integers, Y ;. 1(% —bf) > 1. Thus, 30, &) -
Sr i [#] > 1, which means 37, | & >+ |%3] + 1. Therefore, by
the induction hypothesis, it sufﬁces to show that the result holds for all ¢.
(]

Motivated by prior work, we consider the t—pebbling number of the graph
‘Dnyc2m *

Theorem 2.3. The t—pebbling number of the graph D,, c,.. is (n—2)(f(Cam)—
1) + fi(Pem+1)-

Proof. Note u as the center vertex of all the cycles in D, c,,.. Let C(?
be the cycle with the vertex u;,» and let C® /u be the cycle without the
center point u. without losing generality, we may assume that u; , is the
target vertex.

First, suppose that there are f;(Dnc,..) — 1 pebbles on the vertices of
Dnc,,.. Let D be the pebbling distribution D(upm) = t-22™ — 1,
D(uim) = 2™ —1 for i € {2,3,---n—1}, D(u) = D(ui;) = 0 (i =
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2,3,---n,j # m) and D(u1,») = 0. Then D is a bad distribution for
Dy, c,,. when size |D| = fi(Dnc,,. )~ 1.

Next, we consider the distribution with f;(D, c,..) pebbles on the vertices
of Dy c,,,. The graph D, c,,. has three kinds of target vertices, i.e.,(1) the
center vertex u. (2) u;;, where j # m. (3) u;m, where d(u;m,u) = m.
The proof of (1) and (2) are easy to be checked, so we consider the third
situation in two cases.

Case 1: To prove the target vertex u; is occupied by pebbles, namely
= D(uy,m) = I, where 1 <1 <t — 1. Since there are [ pebbles on u; ., we
have D(Dy, c,,, /t1,m) = ft(Dn,c;..) — |, which we can rewritten as

D(Dn,sz/‘ul,m) = (n —_ 2)(2m _ 1) +t. 22m —1
Z (n - 2)(2"1 - 1) + (t - l) : 22m = ft—-l(Dn,sz)

This implies that we could use the remaining f;(Dn ¢,,.) —! pebbles to put
(t — 1) additional pebbles on u;,,. Thus, the total number of pebbles on

Uymisl+t—1=t.

Case2: To prove the case D(uy,m) = 0. For convenience, the cycle C(V) is di-
vided into two parts £, = (u1,1,%1,2, ** U1,m) and Pp = (U1 2m~1, ¥1,2m—2,
N 1ul,m)~

Subcase 2.1: To prove the case when &, and 4, are not occupied by
pebbles. This implies that there are f;(Dy c,,. ) pebbles on the other (n—1)
cycles. |D| = (n—1)(2™ — 1) +¢-22™ — (2™ —1). According to Lemma

2.2, D(’U.) — |-2"'—l+t-222:—(2'"—_12J =t.0m

Subcase 2.2: For the cycle C{1), to prove the cases when &, and P, are
occupied by pebbles.

Subcase 2.2.1: D(£,) or D(%,) is more than ¢ - 2™~1. Obviously, at least
t pebbles can be moved to u; ;.

Subcase 2.2.2: Both D(4,) and D(2) are less than ¢ - 2™~ 1,

First, Let H be the subgraph of D, ¢,, , denoted by H = D, ¢,, —
{u1,1,-- yu1,2m-1}. Let D’ be a distribution H, it implies that | D’| pebbles
are artificially redistributed on the other (n — 1) cycles, then we have

|D'| = > D(v) = f(Dn,csn) = (D(Pa) + D(Py))
veV(H)

which, we can rewrite as

D' = (n = 1)(2™ = 1) +1-2°™ — (2™ = 1) ~ (D(L%) + D(P)),
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by Lemma 2.2, we have

D(2,) + D(%)
2m

D(Z.) + D()
2m

D(u):[t~2"‘— J;t-z"‘— -1
Second, for the cycle C), f(u) +D(P,)+D(Ps) 2 t-2™ — %2&,,,9& -
14+ D(P)+D(Py) 2t- 2™+ 2 M 12 t-2™ = fi(Cam).

Thus, ¢ pebbles can be moved to u;,m.

Therefore, fi(Dn.c,..) = (n — 2)(f(Cam) — 1) + fe(Pom+1)- o

3. 2t—PEBBLING PROPERTY

The g-t-pebbling number f{(G) features prominently in the following proof,
so we define it at first.

Definition 3.1. The g-t-pebbling number f(G) is the minimal positive
integer such that, for every distribution of f}(G) pebbles, t pebble can be
moved to any specified vertex by a sequence of pebbling moves, where q is
the number of occupied vertices.

Before we proceed with the next lemma we need to introduce the notation
used in its proof. Let Com = [u,@1,"** ,@8m—1,V,b3m—1,++ , b1]. For Com,
define 9_4 = [al,ag s ,am_l,'u] and 93 = {bm+1,bm+2 v ,bzm_l,’l)].
Without loss of generality, assume that D(%4) < D(Zp). Let s be the
number of vertices of 24 with at least one pebble.

First, we introduce Lemma 3.2, which is necessary for the proof of the main
Theorem.

Lemma 3.2. fl(Com) <t-2m—q+1. (t22)

Proof. The argument depends on the number of occupied vertices on Cop,.

Case 1: g =25+1 (0 < s <m—1). Lemma 3.2 turns to fZ**(Com) <
t 2™ — 2s, we let D be a distribution of (t - 2™ — 2s) pebbles on Cs,, for
all t > 2. Suppose that D(a;) = D(bam—j) =1 (4,5 € {1,2,::-,5}), then
D(u) =t - 2™ — 4s. The pebbles on the vertex u can be partitioned into
2 groups, D4(u) and Dp(u). We attempt to transfer Ds(u) pebbles to
v through the path &, while moving D,(u) pebbles to the target vertex
through the path @pg. Let Da(u) = 25(2™"°—1)—2° +2 =2™ —2°%1 42
and let Dg(u) = D(u) — Da(u) = (¢t — 1) - 2™ + 2°*! — 45 — 2. For the
path P4, D(a;) = —'—":-1—1'-2;1 with 1 < ¢ < s, in particular, D(a;) =
D(a,) = 2™"° when i = s then one pebble can be moved to v. For the
path Pg, D(bgm_,) = (t-1) 2"‘"-&-—’1’;-1'12—;- in particular, D(bsm—;) =
D(bam—s) = 2™ 7 when j = s, then at least (¢ — 1) pebbles can be moved
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to v. As the target vertex can obtain pebbles from both £, and Pg, we
can move at least ¢ pebbles to v.

Case 2: ¢ = 2s + 2. To prove Lemma 3.2, we let D be a distribution
of (t-2™ — 2s — 1) pebbles on Cy,, for all t > 2. Suppose that D(a;) =
D(bom_(j+1y) =1(%,75 € {1,2,--,s}), then D(u) = t-2™—45—2. Similarly,
Dp(u) =2™—2°*112 and Dp(u) = D(u) —Da(u) = (t—1).2m +29+1
4s — 4. As in Case 1, we can move at least one pebble to v along the
path £,4. For the path Pp, D(bgm—;) = (t —1)-2™7 + -—""i't?’—‘- in
particular, when j = s + 1, D(bap—;) = (t — 1) . 2m—(s+1) 4 —;2“—'*5-&-

Thus, at least t pebbles can be moved to v along the path 24 and Fp.0

Based on Theorem 2.3 and Lemma 3.2, we will prove the graph D, ¢,,. has
the 2t-pebbling property in the following theorem.

Theorem 3.3. Graph D, ¢, has the 2t-pebbling property.

Proof. Let z; be the number of pebbles on the cycle C{) and let y; be the
number of pebbles on u, which are moved from the cycle C(?). Since the
distances between v and u; ; (i € {1,---,n},j # m), which are less than m,
that is to say, more pebbles are required during the pebbling move, when
the target vertex is u; . Without loss of generality, assume that the target
vertex is u1,m and denote that C(!) is the target cycle. As the conditions
D(C™) # 0 are easy to verify, we consider the cases for D(C1)) = 0,
based on the number of occupied vertices on C®) for i £ 1. Let D be a
distribution on the graph D, ¢, with 2f;(D, c,..) — Y i, ¢ + 1 pebbles,
where g; is the occupied vertices on C for 1 < i € n, and denote p = |D|.
Obviously,

2ft(Dn,cym) — Z g +1

i=1

n n
2n-2)2" -1+t 22" =S g41=3 2

p

(3.1)

In (3], Herscovici gave the t-pebbling number of Csy, i.e., fi{Com) =t 2™,
then yt - I_2n|J > 21" 1~ Naturally'

(3.2) f:y,- = ilfﬁj>i(2m-1) Z3*=2“”'—(n--1)

=2 =2
Since (n—1) < Y1, ¢ < (2m —1)(n — 1), we consider the following cases
based on the occupied vertices on C®) for i € {2,3,--- ,n}.

Case 1: Only u;m (i # 1) are occupied, that is, D(uim) # 0 (i =
2,3,---,n), D(u) = D(uy,m) = D(ui;) =0 (i # 1,5 # m). Obviously,
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(22::;23 ;1(i =1) n - 11,3 then we can rewrite (3.2) as Y ..,y = t- 2™ +
m_3)(n—1)=-2m+1 4
PIE .

2m-3 2™ -3

If n—1 [2 “‘3] then "7, i > t-2™*!. Notice that lim,, o I-L“——s-l
3 when m = 3. We consider two subcases: n —1 <2 and m = 2.

subcase 1.1: n—1 < 2. If n—1 = 1, there is only one vertex occupied, then
we have p > 2fi(Da.c,..) —q+1 = t-22™+1, that is D(un,m) 2 t-22™+1. As
Lourdusamy et.al. mentioned in [7] that fi(P,) =t-2"~1, then 2t pebbles
are able to be moved to u; m from Uy m, for the reason that d(uy m, un,m) =
2m. If n — 1 = 2, it implies that }_;._, ¢; = 2, we have

2 2fi(Dac,.) —q+1=202m 1) +1¢.22m+ —1,

If z, is a multiple of 2™, denoted by 3 = k- 2™, then z3 = p— 2z, =
t- 22"““l 4+2m+l _ 3 _k.2m By Theorem 1.2, y» = |3%] = k and
y32> &) 2t-2m1+2-k-1,wehaveya +ys > ¢ t-2m*1, Otherwise, if
Tois not a multiple of 2™, denoted by z; = k-2™ +w, where 1 L w £ 2™ -1
and 23 = p — zo. Similarly, y = k and y3 > ¢- 2™+ + 2 — k — | 32|, we
have yp + y3 > t - 2™*!, which means 2t pebbles can be moved to uy,, for
n—-121.

subcase 1.2: m = 2. For the graph D, ¢,, Y.ip @i =n—1<3n-5(n > 2).
It implies that, p = 2f(Dnc,) —(n—1)+122f(Dnc,) —(3n—5)+1 =
3(n—1)+32t—3. According to Lemma 2.1, at least |2+3%=3 | = 8¢ pebbles
can be moved to u, in other words, we can move 2t pebbles to uj .

Case 2: 2 € ¢q; € 2m — 2. It implies that, (3.2) can be rewritten as
—_— m_ _om+l
21—2 yi2tl- gm+1 (r=1)(2 52’_7;") 2 +3.

gm+1_9g

Ifn-12 [%—,,':2'—3-' then 2?—2 y;i > t-2™*1. Notice that lim,, I-z—,,—m-l
3 when m > 3. We consider subcases when m € 4andn—1<2.

Subcase 2.1: m < 4. It is easy to verify the graph Dj, ¢, has the 2¢-
pebbling property. We use the similar algorithm to show the cases m = 3
and m = 4. If m = 3, for the graph Dpcy, D iep@i =n—1 < 7Tn — 13
(n —1 > 3). It implies that, p > 7(n — 1) + 27t — 7. By Lemma 2.1,
at least [ﬁ'l;‘—‘—J = t - 24 pebbles can be moved to u. Similarly, for the
graph Ducey oig@i =n—1<15n-29 (n—123). It implies that,

> 15(n—1)+2%t—15. According to Lemma 2.1, at least |_—5i—21‘—1j t-25
pebbles can be moved to u, in other words, we can move 2t pebbles to uy,m.

Subcase 2.2: n—1< 2 Ifn—1=1, we havep > t-22m+! — g 4+ 1.
According to Lemma 3.2, 2™+1 pebbles can be moved to u, and then at
least 2 pebbles are able to be moved to the target vertex. If n —1 =2, it
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implies that 4 < 37, ¢; < 2(2m — 2), we have

n
2 2fi(Ds.c,n) — Zq;' +1>t.22m¥ pom+l _ gy 4 3,

=2
If 2 is a multiple of 2™, denoted by z2 = k- 2™, then z3 = p— z, =
t.22mHl 4 om+l _ym 43— k. 2™, similarly, we have y; = k and y3 =
[#2] > t- 2™+ — k. Otherwise, if z2 is not divisible by 2™, denoted by
T2 = k-2™ +w, where 1] < w < 2™ -1 and z3 = p — 3. We have
y3 2 t-2™+! — k then y2 +y3 > t - 2™+, which means 2t pebbles can be
moved to ¥y, forn —1 2> 1.

Case 3: ¢; = 2m — 1. It implies that, we can rewrite (3.2) as

gm+1

Z?=2 Y 2 t- 2m+l + Lﬂ-l)(zm—z?m—l)—2m+l+3. If n—1 2 [W] then

Yoy =2 t-2™*! Notice that lim, oo [2—,2..%:";_?{1 =3 whenm > 5. We
consider two subcases: m <4andn—-1<2.

Subcase 3.1: m < 4. Without loss of generality, let every z; = 2m — 1 with
i={3,---,n}, thenzy =p— Y7 s7: =p—(2m —1)(n—1). According to
Lemma 3.2 f2™~1(Cym) € y-2™ —2m+2, then yp = |Z2t2m=2| > ¢.9m+1,

Subcase 3.2: n—1 < 2, as the case n — 1 = 1 is easy to verify, we show the
casesn—1 = 2 as follows: we have ro+z3 =p = ¢.22m+1 1 2m+l _ 4y 41,
If 5 = 2m — 1, then z3 = p — z2. Obviously, there is no pebble can be
moved to u through the cycle C(?). We use the Lemma3.2 to obtain that

ys = l%J tom+ly 200 odm 5 4 gmtl [fom 1 < 2, < 2m 41,
then z3 > p — (2m +1). By Lemma32 Ys = l%n“'g‘l Zt-amtl -1

Since y = 1 Y2 +yz 2t-2m+1 If 2, > 2m 4+ 1, according to Lemma 3.2,
we have 30 oy = [Easz%z""_:ﬁj > ¢.9ml,

Finally, each distribution with more than 2f,(D, c,..) — 3.1 4i pebbles
is able to move at least t - 2™+! pebbles to the center vertexu, and then 2t
pebbles can be moved to the target vertex u; .

Therefore, over the course of the algorithm, the graph D, ¢, satisfied the
2t—pebbling property. (]

4. FURTHER PROBLEMS
There are many types of graphs such as trees, product graphs and hy-
percubes. It would be interesting to study whether a clique block graphs

combine together through a common vertex or vertex set have similar con-
clusions.
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