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Abstract
We determine the Ramsey numbers R(S2,m, K2,4) for m € {3,4,5}
and ¢ > 2. In addition, we obtain R(tS2,3, K2.2) and R(S2,3,5K2,2)
for s > 2, t > 1. We also obtain R(sK2,H), where H is the union
graphs which each component is isomorphic to the connected span-
ning subgraph of K; + C,, forn > 3 and s > 1.
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1 Introduction

We consider finite undirected graphs without loops and multiple edges.
Let G(V, E) be a graph, the notation V(G) and E(G) (in short V and E)
stand for the vertex set and the edge set of the graph G, respectively. A
graph H(V',E’) is a subgraph of Gif V' CV and E' CE. For ACV,
G|[A] represents the subgraph induced by A in G. Let H be a subgraph of
G. A graph G — H is a subgraph of G obtained by deleting the vertices of
H and all the edges incident to them. A subgraph H is called a spanning
subgraph of G if V(H) = V(G). A graph G on n vertices is pancyclic if it
contains cycles of every length I, 3 <! < n. Moreover, order of graph G is
denoted by |G|.
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For given graphs G and H, a graph F is called a (G, H)-good graph if F
contains no G and F contains no H. Any (G, H)-good graph on n vertices is
denoted by (G, H,n)-good graph. The Ramsey number R(G, H) is defined
as the smallest natural number n such that no (G, H,n)-good graph exists.
A nice survey for an attractive applications of various branches of Ramsey
theory in harmonic analysis, metric spaces, ergodic theory, computational
geometry, probabilistic, and information theory on dual source codes can
be seen in Rosta [13].

2 Some Preliminary Results and Lemmas

The Ramsey numbers R(G, H) for connected graphs G and H have
been intensively studied since Chvatal and Harary {7] established a general
lower bound of R(G, H), i. e. R(G,H) > (¢(G) — 1)(x(H) — 1) + 1, where
x(H) is the chromatic number of H and ¢(G) is the number of vertices
of the largest component of G. Chvital [8] showed that R(T,, K,) =
(n —1)(m — 1) + 1, with n,m > 1. In [2), Baskoro et al. have proved that
R(T,,Wy)=2n—1forn>4and T, # Sp; R(Th,Ws) =3n—2forn >3
and T}, # Sn; R(Sn,W3) =2n—1 for odd n > 5; R(S,,Wy4) = 2n +1 for
even n > 4. Furthermore, Hasmawati et al. {9] showed that R(S,, Wp,) =
3n -2 for odd m < 2n—1and n > 3. In [15], Surahmat et al. gave
R(Cp,W,,) =3n—2forodd m > 5 and n > 5&{—9. In [16], they have
obtained R(Cn,Wy,) =2n—1foreven mand n > 3 — 1.

The Ramsey numbers of the graphs as stated above attain the Chvétal-
Harary bound. However, for some combination of graphs G and H the
Ramsey numbers R(G,H) do not satisfy the Chvatal-Harary bound.
Namely, R(Sn,Wg) = 2n + 1 for n > 3 is proved by Chen et al. [6].
R(Sn,Ws) = 2n + 2 for even n > 6 is established by Zhang et al. (17].
R(S,,W;) = 2n + 1 for even n > 4 is given by Baskoro et al. [2].
R(Sn(1,1),Ws) = 2n for n > 4 and R(Sn(1,2),Ws) = 2n for n =
0(mod 3) > 6 is showed by Chen et al. in [5]. R(K2g3,K23) = 10 is proved
by Burr [4]. R(K2,n,K2n) < 4n-2forn > 2 and R(K3q,,K2n) =
{6, 10, 14, 18, 21,26, 30, 33, 38, 42, 46, 50, 54,57,62} for 2 < n < 16 are
showed by Exoo et al. [10]. This makes the problems on the Ramsey
number of graphs become quite interesting, especially for combination of
disconnected graphs G and H.

Let k > 1 be an integer. Let G; be a connected graph with the vertex
set V; and the edge set E; for ¢ = 1,2,...,k. The union G = Uf=] G; has
the vertex set V = |J%_, Vi and the edge set E = Ut ,Ei. Let Fbea
connected graph. If G| = G, = ... = G = F then we denote the union
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by kF. Some recent results on the Ramsey number for a combination
of disconnected (union) and connected graphs are presented as follows.
Baskoro et al. [1] showed that R(kS,,W;) = (k + 1)n, for even n > 4,
k > 2; and R(kS,,W4) = (k+1)n—1forodd n > 5, k > 1. In more
general, Hasmawati et al. [11] have proved that if G; and H are connected
graphs satisfying |G;| > |Git1|, |Gi] > (|Gi| — |Gi1|)(x(H) — 1) for every
i=1,2,..,k—1and R(G;,H) = (|G;| - 1) ( ) — 1) + 1 for any i, then
R(UL, Gi, H) = (IGk] - 1)(x(H) - 1) + 21 |Gy + 1, where x(H) is the
chromatic number of H. Furthermore, Sudarsana et al. [14] have improved
the Hasmawati’s result by showing that if the condition R(G;, H) attaining
the Chavital-Harary bound is only satisfied by i = k then the conclusion
is still true.

In this note, we discuss the Ramsey numbers R(S,m, Kpq). We also
obtain the Ramsey numbers R(sK>, H) if H is the union graphs which each
component is isomorphic to the connected spanning subgraphs of K+ C,,.

Before end this section, we shall have the following lemmas which will
be useful in proving our results.

Lemma 1 (Bondy [3]). Let G be a graphs of order n. If §(G) > 3 then
either G is pancyclic or n is even and G ~ K 3,3

Lemma 2 (Hasmawati et al. [11]). If G and H are connected graphs and
k > 1 then R(kG,H) < R(G,H) + (k - 1)|G|.

3 On the (Son, K24)-Ramsey Numbers

The notation S, and K, denote a star with n vertices and a com-
plete bipartite graph on p + q vertices, respectively. A double stars Sn,m
is a graph constructed from two stars S, and S,, by joining the two
centers by an edge. In this section, we determine the Ramsey numbers
R(S2,m,Ka,4) for m € {3,4,5} and ¢ > 2. We also obtain R(tS2 3, K>3 2)
and R(Sg 3,8K5 2) fors>2,t>1.

First of all, let us give some notations used in proving the theorems.
Let G be a graph. For z € V(G) and BC V(G), Ng(z) = {y€ B:zy €
E(G)} is the vertex set consisting of all the neighbors of = in B. Moreover,
Nglr] = {z} U Ng(z). Np(z) = N(z) if B = V(G). The degree of a
vertex z in G is denoted by d(z), obviously d(z) = |N(z)|. The minimum
(maximum) degree of G is denoted by §(G) (A(G)).
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Ls(@)

Figure 1: The illustration of the construction of the graphs Ls(2) and Ls(3).

! ! A / ! A "o I 0 I (= i
Let C! = (cjch..Ch_1chc)), Cn = (cfch..cp_chcy) and Cpf =

(c'cf...clt_c'c!’) be the three cycles of order n. Construct the graphs
La(2) = CLUC!U{cc! : ¢, € V(Ch),cf € V(C}),1 £ i < n} and
La(8) =CLuCuC! u{dd!, el 1 < i< neich 1,chel c'chigl <
i<n-2:c € V(C),d € V(CL),d" e V(C}")}. Clearly, the graph
L. (2) is 3-regular connected of order 2n and Ln(3) is 4-regular connected
of order 3n, see Figure 1.

Lemma 3 R(Sg,;;, K2,2) = 6.

Proof. The cycle Cs is a (S2,3, K2,2,5)-good graph because Cs and its
complement contains no S 3 and Kj 2, respectively. So, R(Sz 3, K22) > 6.
The inequality R(S23, K2,2) < 6 is showed by the following reasons. Let
F be a graph on six vertices that contains no Sa3. We will show that
F D Ka2. Take a vertex € V(F) with |[N(z)| = A(F). Write B =
V(F)\N|z]. If A(F) > 3 then 2y ¢ E(F) for every y € N(z) and z € B.
Therefore, we obtain that the vertex set N(z) U B induces a Koz in F.
Next, consider that A(F) < 2. If A(F) £ 1 then obviously the vertex set
N[z] U B induces a Ky in F. Now, we let A(F) = 2. Take a vertex y in
N(z). Clearly, [N(y)| < 2 and hence F[{z,y} U B] 2 Ko . This concludes
the proof. O

Theorem 1 If q > 2 is an integer then R(S23,K24) = q+ 4.

Proof. Since C,43 does not contain S»3 and Cgi3 does not contain
Ko, then Cyya is a (82,3, K24)-good graph on g + 3 vertices. There-
fore, R(S23,K2,4) = q + 4. Furthermore, we will show the inequality
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R(S2,3,K24) < g+ 4 by induction on g. For ¢ = 2, Lemma 3 gives
R(S2,3,K22) = 6. Let F be a graph on g + 4 vertices and contains no
S2,3. By induction hypothesis, F contains K, q-1. Let B and Y be the
independent sets of Kz 4—1 in F with |[B| = 2 and |Y| = ¢ — 1. Write
D = V(F)\ V(K2,4-1) and clearly |D| = 3. Next, we observe the relation
of the vertex set D and B in F. Define E(D,B) = {db: d € D,b € B}.
Since F' does not contain Sz 3 then |E(D, B)| < 4. Let D = {d;,d2,ds}
and B = {a,b}. If |[E(D,B)| = 4 then the vertex set D U B forms a
Ps or a C4 in F. Without loss of generality, let Ps = (djadsbds) and
C4 = (diadzbd;). Since F contains no Sz 3 then it is easy to verify
that the set {b,d2} UY U {d,} and {a,b} UY U {d3} form a Ka, in F
when P5 = (djadabds) and C; = (djadabd,), respectively. Meanwhile, if
|E(D, B)| < 2 then there exists a vertex d € D with ad, bd ¢ E(F), which
implies that the set {a,b,d} UY forms a Ko, in F. Now, we observe
|E(D, B)| = 3. Without loss of generality, we distinguish the following two
cases:

Case 1. ady,ad; € E(F) and bd3 € E(F).

Since F' 2D S33 then ads,ab ¢ E(F) and one of the following conditions
holds:

(i). diz € E(F) for exactly one z € Y,

(ii). d1z¢ E(F) forevery z€ Y.

If we obtain (i) then dyb,dyd3 ¢ E(F). This implies that the vertex set
{a,d1}UH forms a Ko 4 in F with H = {b,d3} UY\2. If the condition (ii)
holds then d,b ¢ E(F) or d\d3 ¢ E(F). So the set {a,d1}UC or {a,d,}UL
forms K34 in F, where C = {b}UY and L = {d3} UY.

Case 2. adl,adg,adg € E(F)

Since F' contains no Sy 3 then d1b,d2b ¢ E(F) and d, 2,dy2 ¢ E(F) for all 2
in Y. This implies that the set {d;,d2} UM shape a K, , in F, where M =
{b}UY. This completes the proof. a

Lemma 4 Let g > 2, m > 3 be integers. Then, R(Sz.m,K2,4) < 2m+q-2.

Proof. We prove this by induction on m. For m = 3, the lemma holds
by Theorem 1. Let F be an arbitrary graph on 2m + g — 2 vertices and
suppose that F does not contains K. 2,¢- We will show that F contains S .
By induction hypothesis, F' contains S3;n—1. Let D = V(S;,,_;) and
H =V(F)\D. Clearly, |H| = m+q—3. Let z, y be two vertices in D with
d(z) = m—1and d(y) = 2. By a contrary, suppose that F' contains no S ,.
Then, zh ¢ E(F) for all h in H since otherwise the vertex set {h}UD forms
a S, in F. Now, consider the vertex y. Since F does not contain Sa,m then
INu(y)| £ m — 3. This implies |B| > ¢ and hence the set {z,y} U B forms
a Ky, in F, where B = H\Ny(y), a contradiction. So F D S2,m. This
concludes that R(Sa m, K2 4) < 2m-+q-2. O
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Theorem 2 Let q > 2 be an integer. Then,

g+6, forq odd,

R(S2,4,K24) =
q+5, forq even.

Proof. If q is odd then g + 5 is even. Consider a graph L 248 (2). Clearly,
Lg45(2) contains no Sp4 and -L-g%g(2) contains no Kz 4. This implies that
L’-I-s(2) is a (S2,4, K2,q,q + 5)-good graph and hence R(S24,K2,4) = g+
6. The inequality R(S24,K2,4) < ¢+ 6 is derived from Lemma 4. So,
R(S2,4,K24) = q+6.

Next, if ¢ is even then g + 4 is even. It is not difficult to verify that
the graph L ape (2) is a (S2,4, K2,4)-good graph on g+ 4 vertices. Therefore,
R(S24,K2,4) > ¢+ 5. Now, we will show that R(S34,K24) < g+5. Let
F be a graph on g + 5 vertices that contains no Sz 4. We shall show that
F contains Kz 4. Let z be a vertex in V(F) with |[N(z)| = A(F) and write
B = V(F)\N([z]. Then, A(F) > 3 since otherwise we obtain |B| > g + 2
and hence F[N(z] U B] 2 Ka4. Now, consider A(F) > 4. Since F' does
not contain S 4 then zy ¢ E(F) for all z € N(z), y € B. Then, the
vertex set N(z)U B induces a K, 4 in F. This implies that d(z) = 3 for all
z € V(F), which is impossible since g + 5 is odd. Therefore, there exists at
least one vertex, say y, in V(F) such that d(y) < 2. Ford(y) = 2,let w bea
- vertex in N(y). Since F' 2 Sz 4 then |No(w)] < 2, where C = V(F)\N(y).
Consequently, F[{y,w} U P] D Kag4, where P = V(F)\N[y] U Nc(w).
Now, if d(y) = 1 then it can be verified that the vertex sets {y,w}U P and
{y} U PU N¢(w) induce a K, 4 in F when |[Nc(w)| < 3 and [Nc(w)| > 4,
respectively. This completes the proof. a

Theorem 3 If ¢ = 2(mod3) > 5 then R(S2,5,K2,4) =g+ 8.

Proof. Since ¢ = 2(mod 3) then g + 7 can be divided by 3. Consider the
graph L 237 (3). Since the graph L agr (3) is 4-regular connected of order g+7
then L a7 (3) does not contain Sz 5. Now, let = and y be any two vertices in
L,_;z(3). Write A = V(L,%z)\N[x] U N{y]. Since |[N[z]| = |N[y]| = 5 and
IN[z)n N[y]| < 2 then |A| = ¢+ 7~ |N[z]| - IN[y]| + |N[z] O N[y)| < ¢ - 1.
This implies that the complement of graph L 1;_7(3) does not contain Ky 4.
Therefore, L,_;_-r(3) is a (82,5, K32,4)-good graph on g + 7 vertices for ¢ =
2(mod 3). So R(S25, K2,4) > q+8. The inequality R(S25,K24) < g+8is
obtained by applying Lemma 4. ]
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Figure 2: Nonisomorphic spanning subgraphs of F[D] with |E(F[D])| < 6 and
contains no Sz, 3.
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Note that it is still not known whether or not the exact Ramsey numbers
R(Sy5, K2,q) attain the upper bound in Lemma 4 if ¢ # 2(mod 3) > 5.

To concludes this section, we give the Ramsey numbers R(tS2 3, K2 2)
and R(Sa,3,8K> ) for s > 2,t > 1.

Lemma 5 R(Sz’g,ng’g) =0.

Proof. Consider the graphs ¢ ~ K, 7 and C ~ K;UK,. Clearly, C is
a (S2,3,2K2 2,8)-good graph and hence R(S23,2K22) > 9. Now, let F'
be a graph on nine vertices that contains no Sy 3. We will show that F
contains 2K 5. Since |F| = 9 > 6 then By Lemma 1 we have F 2 Kj.
Let D = V(F)\V(K22). Then, |D| = 5 and call D = {a,b,c,d,e}. Since
F 2 S35 then |E(F[D])| < 6. Without loss of generality, we obtain all
nonisomorphic spanning subgraphs of F[D] which do not contain Sz 3 as
presented in Figure 2. It can be verified that each graph in Figure 2 ensures
F D 2K, . O

Theorem 4 Let s,t > 1 be integers. Then,

5t+1, fort>1lands=1,

R(th'g,sKg,g) =
4s+1, fors>2andt =1.

Proof. We separate the proof of the theorem into two cases.

Case 1.t >1and s=1.

By Lemma 2, we get R(tS; 3, K2,2) < 5t + 1. Now, consider the graphs
B~Kg UK, and B >~ -1?5,_1,1. Immediately, we obtain that B is a
(tS2,3, K2,2)-good graph on 5t vertices. Thus R(£S2 3, K22) > 5¢ + 1. This
concludes that R(tS; 3, Ka2) = 5t + 1.

Case 2. s> 2andt=1.

We will show the inequality R(S23,5K22) < 5s+ 1 by induction on s.
For s = 2, the theorem holds by Lemma 5. Let F' be a graph on 4s + 1
vertices and contains no Sz 3. We shall show that F contains sK22. By
induction hypothesis, F contains (s — 1)Kz 2. Write C = V(F)\V((s —
1)K>2) and clearly |C| = 5. Since F 2 Sz 3 then |E(F[C])| < 6. Let Q be
the vertex set of one K52 in (s — 1)K3 2. By Lemma 5, we obtain that the
set CUQ induces a 2K in F, which together with the vertex set V((s ~
1)K 2)\Q forms a sK3 5 in F. The desired lower bound R(Sz3,5K22) >
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55+ 1 follows from the fact that the graphs K3 4,1 and K; U K4, do not
contain S 3 and sKj o, respectively. O

4 The Ramsey Numbers of sK, Versus K,+C,

Before presenting of the results let us give some notations used in this
part. Let G and H be two graphs. The graph G+ H is formed by appending
to GU H edges that have one end vertex in G and the other in H. The
notation C, is a cycle on n > 3 vertices and W,, ~ K + C,, is a wheel on
n + 1 vertices. The graphs f, ~ K; + P, and F, ~ K; + nK, are called
a friendship on n + 1 vertices and a fan on 2n + 1 vertices, respectively. A
Jahangir graph, J,, for even n > 4, is a graph consisting of a cycle C,, with
one additional vertex adjacent alternatingly to % vertices of C,,.

In 2009, Lin and Li [12] have proved that R(sKj, F,,) = max{s,n}+n+s
for s,n > 1. Furthermore, we determine the Ramsey numbers R(sK>,H),
where H is the union graphs which each component is isomorphic to the
connected spanning subgraph of K; + Cp, forn >3 and s > 1.

Lemma 6 Lets > 1 andn > 2 be integers. Then, R(sKs, K,) = n+2s-2.

Proof. By Lemma 2, we have R(sK3, K,) < 2s+n—2. Now, consider the
graphs J ~ Kos_1UK,_5 and J =~ Ka,_1 + Kn_o. It can be verified that
J isa (sK2, Kp)-good graph on n+2s—3 vertices, and hence R(nK>, K,,) >
n+2s—2. O

Theorem 5 Let C,, and K be a cycle of order n > 3 and a complete graph
of order s > 1, respectively. If | 3] > s then R(sK2, K, +C,) =n+2s-1.

Proof. We prove the inequality R(sK3, K, +C,) < n+2s—1 by induction
on s. For s = 1, the assertion is trivial. Take an arbitrary graph F on
n+2s — 1 vertices and suppose that F contains no K + C,. We will show
that F' contains sK,. By induction on s, F' contains (s — 1)K,. Write
B = {ai1,b1,...,a5-1,bs-1} the vertex set of (s —1)K> in F, where a;b;
are the independent edges in E(F), i = 1,2,...,s — 1. By a contrary, we
suppose that F' contains no sK,. Let A = V( )\B Clearly, [A| =n + 1.
We assume that F[A] forms a K,41 in F since otherwise F[A] contains
independent vertices in F, which together with B gives an sK» in F.

Next, if a; (b;) is adjacent to one vertex in A then b; (a;) must not
be adjacent to all other vertices in A since otherwise we will get two in-
dependent edges between {a;, b;} and A, which together with B forms an
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sKo in F. Without loss of generality, we may assume that each b; is
not adjacent to all but at most one vertex in A, call ¢;, if it exists. Let
A’ be the set of all such ¢; in A. Then, |A| < s—1. Let C = A\A’
and clearly |C| > (n —s)+2 > [3]4+2 > s+ 2. Thus, we have s
vertices, say S = {z1,%2,...,Zs}, in A, which do not adjacent to each
b; in B. Let us consider F[D], where D = AU {by,by,...,bs_1}. Thus,
|F{D]| = n + s, in which each element of the set S in A is adjacent to
each other vertex in F[D]. Note that the set S forms a K, in F[D].
Now, observe that the subgraph F[D] — K, of F[D] has order n with
§(FD)-Ks) 2n-s2>n-|3] > (%] 2 % By Lemma 1, the sub-
graph F[D] — K, contains a cycle with order n, which together with K,
forms a graph K, + C, in F, which leads a contradiction that F contains
no K + C,,. Thus F contains sKj.

The inequality R(sK3, K + Cp,) = n+2s—1 follows from the fact that
the graph W ~ K451 5-1 is a (sK3, K + Cy)-good graph on n + 2s — 2
vertices. This completes the proof. O

Consider the graph K; + Cp, for s > 1 and n > 3. The set of graphs
g= {L{ :U C K, +C,} consists of all the connected spanning subgraph of
K, + C,. Therefore, by Theorem 5 we obtain R(sK2,U) < R(sKy, K, +
Cp) =n+2s — 1 for every U € G. Meanwhile, the inequality R(sK2,U) >
|4} +s—1=mn+2s—1is derived from the fact that the graph K =~
Kpts—1,6-1 is a (sKa2,U)-good graph on n + 2s — 2 vertices. Note that
the graphs Wy is—1, fat+s—1, Fnts~1; Jnts—1 and Crpys are a member of
G. Therefore, if the graph Q is isomorphic to one of these graphs then
R(sK3, Q) = n+ 2s — 1. Thus, the following corollary holds.

Corollary 1 Let C, and K, be a cycle of order n > 3 and a complete
graph of order s > 1, respectively. Let G = {U :U C K, + Cy,} be the set
of graphs consisting of all the connected spanning subgraph of K, + Cy,. If
3] > s then R(sKq,U) =n+2s~1, for everyUU € G.

The following theorem gives the exact Ramsey numbers R(sKj, H) if H
is the union graphs which each component is isomorphic to the connected
spanning subgraph of K, + Cp, forn >3 and s > 1.

Theorem 6 Let k,s > 1 be integers and G; = K, + Cp, with n; 2 3, for
everyi=1,2,...k. Let G; = {Ui U; C G,—} be the set of graphs consisting
of all the connected spanning subgraph of G;. If H = Uleui withU; € G;,
and | 5] > s for every i, then R(sK2, H) = Zf=1 ni+(k+1)s—1.
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Proof. Let H = |Jf_,U with U; € Gi, i = 1,2,..,k. We will prove
R(sK2,H) < 3% n; + (k+ 1)s — 1 by induction on k. For k = 1, the
theorem holds by Corollary 1. Let P be an arbitrary graph on Zfal n; +
(k 4+ 1)s — 1 vertices that contains no sK,. We will show that P con-
tains H. By induction hypothesis on k, P contains Uf__fxl U;. Write W =
V(’P)\V(U::l1 U;). Clearly, |W|=nj+2s~1. Let us consider T =P|W].
Since 7 does not contain sK3 then Corollary 1 ensures that 7 contains U
for every Uy in G. Thus, P D H.

Next, consider the graphs F =~ K, ;,_; and its complement F =
K, 1 UK,_,, whge t = Zf___l n; + ks. It can be verified that F does not
contain sK> and F does not contain H. Therefore, F is a (sK>, H)-good
graph on t + s — 2 vertices and hence R(sKj,, H) > E:-;l ni+(k+1)s—1.
The proof is now complete. O
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