On the Laplacian integral (k-1)-cyclic graphs*

Xueyi Huang, Qiongxiang Huang †

College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, P.R.China

Abstract A graph is called Laplacian integral if its Laplacian spectrum consists of integers. Let $\theta(n_1, n_2, \ldots, n_k)$ be a generalized θ -graph (see Figure 1). Denote by \mathcal{G}_{k-1} the set of (k-1)-cyclic graphs each of them contains some generalized θ -graph $\theta(n_1, n_2, \ldots, n_k)$ as its induced subgraph. In this paper, we give an edge subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1), from which we identify all the Laplacian integral graphs in the class \mathcal{G}_{k-1} (Theorem 3.2).

Keywords: Laplacian spectrum; Laplacian integral graph; generalized θ -graph

AMS Subject classification: 05C50

1 Introduction

The graph G, considered in this paper, is a simple and undirected graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$. The Laplacian matrix of G is defined as L(G) = D(G) - A(G), where $D(G) = diag(d(v_1), \ldots, d(v_n))$ is the diagonal matrix of the vertex degrees in G and A(G) is the adjacency matrix of G. It is well known that L(G) is positive semidefinite so that its eigenvalues can be arranged as follows: $\mu_1(G) \ge \mu_2(G) \ge \cdots \ge \mu_{n-1}(G) \ge \mu_n(G) = 0$, where $\mu_{n-1}(G) > 0$ if and only if G is connected and hence is called the algebraic connectivity of G.

Let $x_1 > x_2 > \cdots > x_t$ be t distinct eigenvalues of L(G) with the corresponding multiplicities k_1, k_2, \ldots, k_t . Denote by $Spec_L(G) = [x_1^{k_1}, x_2^{k_2}, \ldots, x_t^{k_t}]$ the Laplacian spectrum of G. A graph is called a Laplacian integral graph if its Laplacian spectrum consists of integers. Sometimes, we say that G is Laplacian integral if G is a Laplacian integral graph.

^{*}This work is supported by NSFC Grant No. 11261059.

[†]Corresponding author. E-mail addresses: huangqx@xju.edu.cn

The research of integral graphs started in 1974 [1]. It has been discovered recently [16] that integral graphs can play a role in the so called perfect state transfer in quantum spin networks. Up to now, there are a few classes of integral graphs are characterized. One can consult [8] for a survey. Some class of Laplacian integral graphs have been identified (such as the degree maximal graphs, see [6], the unicyclic and bicyclic graphs, see [7]). Besides, some inductive constructions for Laplacian integral graphs are given in [8-11]. In this paper, we pay attention to a class of (k-1)-cyclic graphs: \mathcal{G}_{k-1} , which is defined in [15]. We identify all the Laplacian integral graphs in the class \mathcal{G}_{k-1} .

Let P_{n_i+2} be the paths on n_i+2 vertices where $n_1 \ge n_2 \ge \cdots \ge n_{k-1} \ge 1$, $n_k \ge 0$ and $k \ge 2$. The generalized θ -graph, denoted by $\theta(n_1, n_2, \ldots, n_k)$ (see Figure 1), is the graph obtained from these paths by identifying the k initial vertices as u_0 and terminal vertices as v_0 , respectively. Denoted by Θ_k the set of all $\theta(n_1, n_2, \ldots, n_k)$.

A connected graph with n vertices and m edges is said to be a k-cyclic graph if k=m-n+1. A k-cyclic graph is said to be a k-cyclic base graph if it contains no pendant vertices. Clearly, all the graphs in Θ_k are (k-1)-cyclic base graph. Denote by \mathcal{G}_{k-1} all the (k-1)-cyclic graphs each of them contains some $\theta(n_1, n_2, \ldots, n_k)$ as its induced (k-1)-cyclic base subgraph.

The rest of this paper is organized as follows. In Section 2, we give an edge subdividing theorem for Laplacian eigenvalues of a graph. In Section 3, we identify all the Laplacian integral graphs in \mathcal{G}_{k-1} .

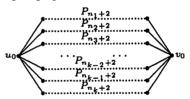


Figure 1: The graph $\theta(n_1, n_2, \ldots, n_k)$

2 Elementary

In this section, we list some useful lemmas and give an edge subdividing theorem for Laplacian eigenvalues of a graph.

Lemma 2.1 ([2,3]). Let G be a graph with at least one edge. Then $\mu_1(G) \ge \Delta(G) + 1$. Moreover, if G is connected, then equality holds if and only if $\Delta(G) = n - 1$.

Lemma 2.2 ([5, 13]). Let G be a connected graph. Then

$$\mu_1(G) \le \max\{d(v) + m(v) : v \in V\},\$$

where $m(v) = \sum_{u \in N(v)} d(u)/d(v)$. Moreover, the equality holds if and only if G is a regular bipartite graph or a semiregular bipartite graph.

The *join* of two vertex disjoint graphs G_1 and G_2 is the graph $G_1 \vee G_2$ obtained from their union by including all edges between the vertices in G_1 and the vertices in G_2 .

Lemma 2.3 ([4,11]). If G_1 and G_2 are graphs on k and m vertices respectively, with Laplacian eigenvalues $0 = \mu_k(G_1) \le \mu_{k-1}(G_1) \le \cdots \le \mu_1(G_1)$ and $0 = \mu_m(G_2) \le \mu_{m-1}(G_2) \le \cdots \le \mu_1(G_2)$ respectively, then the Laplacian eigenvalues of $G_1 \lor G_2$ are given by $0, \mu_{k-1}(G_1) + m, \dots, \mu_1(G_1) + m, \mu_{m-1}(G_2) + k, \dots, \mu_1(G_2) + k$, and m + k.

Denote by G - u the graph obtained from G by deleting the vertex $u \in V(G)$ along with the edges adjacent to u. Let v be a vertex of a connected graph G, if G - v is disconnected, then v is called a *cutpoint* of G.

Lemma 2.4 ([12]). If G is a connected graph with a cutpoint v, then $\mu_{n-1}(G) \le 1$, where equality holds if and only if v is adjacent to every vertex of G.

Lemma 2.5 ([14]). Let A and B be Hermitian matrices of order n, and let $1 \le i \le n$ and $1 \le j \le n$. Then

$$\lambda_i(A) + \lambda_j(B) \le \lambda_{i+j-n}(A+B), i+j \ge n+1,$$

$$\lambda_i(A) + \lambda_j(B) \ge \lambda_{i+j-1}(A+B), i+j \le n+1.$$

In either of these inequalities equality holds if and only if there exists a nonzero n-vector that is an eigenvector to each of the three involved eigenvalues.

To *subdivide* an edge of G is to add a new vertex v to this edge. Note that the Laplacian matrix L(G) is real symmetric, by Lemma 2.5 we obtain the following edge subdividing theorem for Laplacian eigenvalues of a graph.

Theorem 2.1. Let G be a graph of order n, and let G' be the graph obtained by subdividing the edge uv of G. Then we have $\mu_i(G') \leq \mu_{i-1}(G)$ for $i = 2, \ldots, n+1$ and $\mu_i(G') \geq \mu_{i+1}(G)$ for $i = 1, \ldots, n-1$.

Proof. Let x be the inserted vertex on the edge uv. By assumption, G' = G - uv + ux + vx. Let L(G) and L(G') be the Laplacian matrix of graphs G and G' respectively, where the rows and columns of L(G') are labeled by x, u, v, ... It is easy to verify that L(G') can be decomposed into $L(G') = L_1 + L_2$, where

$$L_1 = \begin{pmatrix} \mathbf{0}_{1\times 1} & \mathbf{0}_{1\times n} \\ \mathbf{0}_{n\times 1} & L(G) \end{pmatrix}, L_2 = \begin{pmatrix} H & \mathbf{0}_{3\times (n-2)} \\ \mathbf{0}_{(n-2)\times 3} & \mathbf{0}_{(n-2)\times (n-2)} \end{pmatrix} \text{ and } H = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$

By direct computation, we know that H has eigenvalues: $\lambda_1(H)=3$, $\lambda_2(H)=0$ and $\lambda_3(H)=-1$, and so L_2 has eigenvalues: $\lambda_1(L_2)=3$, $\lambda_2(L_2)=\cdots=\lambda_n(L_2)=0$ and $\lambda_{n+1}(L_2)=-1$.

Regarding $A=L_1$ and $B=L_2$, and note that $(i-1)+2=i+1\leq n+2$ for $i=2,\ldots,n+1$, by Lemma 2.5 we have

$$\lambda_i(L(G')) = \lambda_i(L_1 + L_2) \le \lambda_{i-1}(L_1) + \lambda_2(L_2) = \lambda_{i-1}(L_1) \tag{1}$$

where $i=2,\ldots,n+1$. Clearly, $\lambda_i(L_1)=\mu_i(G)$ for $i=1,\ldots,n$ and $\lambda_{n+1}(L_1)=0;$ $\lambda_i(L(G'))=\mu_i(G')$ for $i=1,2,\ldots,n+1$. Eq. (1) gives that

$$\mu_i(G') \le \mu_{i-1}(G), i = 2, \dots, n+1.$$

Note that $(i+1)+n=n+1+i\geq n+2$ for $i=1,\ldots,n$. Similarly, by Lemma 2.5, we have

$$\lambda_i(L(G')) = \lambda_i(L_1 + L_2) \ge \lambda_{i+1}(L_1) + \lambda_n(L_2) = \lambda_{i+1}(L_1), i = 1, \dots, n,$$

which leads to

$$\mu_i(G') \ge \mu_{i+1}(G), i = 1, \dots, n-1.$$

We complete this proof.

Let G be a simple graph and H be the graph obtained from G by subdividing some edges recursively. H is said to be the recursive subdivision graph of G and in turn G is said to be the subdividing underline graph of H. By definition, the recursive subdivision graph H of G is just the graph that is obtained by replacing some edges of G by some paths, respectively. It immediately obtains the following result by Theorem 2.1.

Corollary 2.1. Let G be a graph with n vertices, and let H be a recursive subdivision graph of G with n' vertices. We have

- (a) $\mu_{i+n'-n-1}(H) \leq \mu_{i-1}(G)$ where $2 \leq i \leq n+1$;
- (b) $\mu_{i-n'+n+1}(H) \ge \mu_{i+1}(G)$ where $1 \le i \le n-1$ and $n' \le n+i$.

Taking i=n, we have $\mu_{n'-1}(H) \leq \mu_{n-1}(G)$ by Corollary 2.1 (a). Thus $\mu_{n'-1}(H) < 1$ if $\mu_{n-1}(G) < 1$, which can be used to exclude non-integral graphs in the next section.

3 The Laplacian integral graphs in \mathcal{G}_{k-1}

In order to identify all the Laplacian integral graphs in \mathcal{G}_{k-1} , first we give the Laplacian characteristic polynomials of some special generalized θ -graphs.

Lemma 3.1. Let $G = \theta(3, 1, ..., 1, 0) \in \Theta_k$ and $k \geq 3$. Then the Laplacian characteristic polynomial of G is

$$\begin{array}{ll} \Psi_L(G) &= \mu(\mu-2)^{k-3}\Phi_1(\mu), \quad \textit{where} \\ \Phi_1(\mu) &= \mu^5 - (2k+8)\mu^4 + (k^2+14k+23)\mu^3 - (6k^2+32k+32)\mu^2 \\ &+ (10k^2+30k+25)\mu - (4k^2+14k+6). \end{array}$$

Proof. Here G consists of one P_5 , (k-2)'s P_3 and one P_2 , and all these paths have the common ends $\{u_0, v_0\} = V_0$. We denote by V_1 the set of vertices of degree two in P_5 and V_2 the set of vertices of degree two in the latter (k-2)'s P_3 . Now we arrange the rows and columns of L(G) in the order of V_0 , V_1 and V_2 , respectively. Thus $\mu I - L(G)$ can be represented by

$$\mu I - L(G) = \begin{pmatrix} B_1 & C & J_{2\times(k-2)} \\ C^T & B_2 & 0_{3\times(k-2)} \\ J_{(k-2)\times 2} & 0_{(k-2)\times 3} & B_3 \end{pmatrix}, \text{ where }$$

 $B_1 = \begin{pmatrix} \mu - k & 1 \\ 1 & \mu - k \end{pmatrix}, B_2 = \begin{pmatrix} \mu - 2 & 1 & 0 \\ 1 & \mu - 2 & 1 \\ 0 & 1 & \mu - 2 \end{pmatrix}, B_3 = (\mu - 2)I_{k-2}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$ and $J_{2 \times (k-2)}$ denotes the matrix with all entries equal to 1. Set

$$P_1(\mu) = \begin{pmatrix} I_2 & \frac{-J_{2\times(k-2)}}{\mu-2} \\ I_3 & I_{k-2} \end{pmatrix}, P_2(\mu) = \begin{pmatrix} I_2 - CB_2^{-1} \\ I_3 & I_{k-2} \end{pmatrix}.$$

We have

$$P_2(\mu)P_1(\mu)(\mu I - L(G)) = \begin{pmatrix} B_1 - \frac{(k-2)J_{2\times 2}}{\mu-2} - CB_2^{-1}C^T \\ C^T & B_2 \\ J_{(k-2)\times 2} & B_3 \end{pmatrix}.$$

Note that
$$B_2^{-1} = \frac{1}{\mu^3 - 6\mu^2 + 10\mu - 4} \begin{pmatrix} \mu^2 - 4\mu + 3 & 2-\mu & 1 \\ 2-\mu & (\mu - 2)^2 & 2-\mu \\ 1 & 2-\mu & \mu^2 - 4\mu + 3 \end{pmatrix}$$
, we obtain

$$\begin{split} \Psi_L(G) &= |P_2(\mu)P_1(\mu)(\mu I - L(G))| \\ &= |B_1 - \frac{(k-2)J_{2\times 2}}{\mu - 2} - CB_2^{-1}C^T| \times |B_2| \times |B_3| \\ &= \mu(\mu - 2)^{k-3}\Phi_1(\mu), \end{split}$$

where

$$\Phi_1(\mu) = \mu^5 - (2k+8)\mu^4 + (k^2+14k+23)\mu^3 - (6k^2+32k+32)\mu^2 + (10k^2+30k+25)\mu - (4k^2+14k+6).$$

We complete this proof.

Lemma 3.2. Let $G = \theta(2, ..., 2, 0) \in \Theta_k$ and $k \geq 2$. Then the Laplacian characteristic polynomial of G is

$$\Psi_L(G) = \mu(\mu - 3)^{k-2}(\mu - 1)^{k-2}(\mu - 2)(\mu - k)(\mu - k - 2).$$

Proof. Here G consists of (k-1)'s P_4 and one P_2 , and all these paths have the common ends $\{u_0, v_0\} = V_0$. We denote by V_1 the set of vertices of degree two in the (k-1)'s P_4 . Now we arrange the rows and columns of L(G) in the order of V_0 and V_1 . Thus $\mu I - L(G)$ can be represented by

$$\mu I - L(G) = \begin{pmatrix} B_1 & C \\ C^T & B_2 \end{pmatrix},$$
 where $B_1 = \begin{pmatrix} \mu - k & 1 \\ 1 & \mu - k \end{pmatrix}$, $C = \begin{pmatrix} I_2 & I_2 & \cdots & I_2 \end{pmatrix}_{2 \times (2k-2)}$, $B = \begin{pmatrix} \mu - 2 & 1 \\ 1 & \mu - 2 \end{pmatrix}$ and $B_2 = \begin{pmatrix} B & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

$$P(\mu)(\mu I - L(G)) = \begin{pmatrix} B_1 - CB_2^{-1}C^T \\ C^T & B_2 \end{pmatrix}.$$

Note that
$$B_2^{-1} = \begin{pmatrix} B^{-1} & & \\ & B^{-1} & \\ & & \ddots & \\ & & & B^{-1} \end{pmatrix}$$
, where $B^{-1} = \frac{1}{\mu^2 - 4\mu + 3} \begin{pmatrix} \mu - 2 & -1 \\ -1 & \mu - 2 \end{pmatrix}$.

Thus

$$\Psi_{L}(G) = |P(\mu)(\mu I - L(G))|
= |B_{1} - CB_{2}^{-1}C^{T}| \times |B_{2}|
= |B_{1} - (k-1)B^{-1}| \times |B|^{k-1}
= \mu(\mu - 3)^{k-2}(\mu - 1)^{k-2}(\mu - 2)(\mu - k)(\mu - k - 2).$$

We complete this proof.

Lemma 3.3. Let $G = \theta(\overbrace{2,\ldots,2}^{k_1},\overbrace{1,\ldots,1}^{k-k_1-1},0) \in \Theta_k, \ k \geq 3$ and $1 \leq k_1 \leq k-2$. Then the Laplacian characteristic polynomial of G is

$$\begin{array}{ll} \Psi_L(G) &= \mu(\mu-1)^{k_1-1}(\mu-3)^{k_1-1}(\mu-2)^{k-k_1-2}\Phi_2(\mu), \quad \mbox{where} \\ \Phi_2(\mu) &= \mu^4 - (2k+6)\mu^3 + (k^2+10k+12)\mu^2 - (4k^2+14k+2k_1+10)\mu \\ &+ 3k^2 + 2kk_1 + 6k - k_1^2 + 2k_1 + 3. \end{array}$$

Proof. Here G consists of k_1 's P_4 , $k-k_1-1=k_2$'s P_3 and one P_2 , and all these paths have the common ends $\{u_0,v_0\}=V_0$. We denote by V_1 the set of vertices of degree two in the first k_1 's P_4 and V_2 the set of vertices of degree two in the latter k_2 's P_3 . Now we arrange the rows and columns vertices in L(G) in the order of vertices V_0 , V_1 and V_2 . Thus $\mu I - L(G)$ can be represented by

$$\mu I - L(G) = \begin{pmatrix} B_1 & C & J_{2 \times k_2} \\ C^T & B_2 & 0_{2k_1 \times k_2} \\ J_{k_2 \times 2} & 0_{k_2 \times 2k_1} & B_3 \end{pmatrix},$$

where
$$B_1 = \binom{\mu-k-1}{1-\mu-k}$$
, $C = (I_2 I_2 \cdots I_2)_{2\times 2k_1}$, $B = \binom{\mu-2-1}{1-\mu-2}$, $B_2 = \binom{B}{1-\mu-2}$, $B_3 = (\mu-2)I_{k_2}$ and $J_{2\times k_2}$ denotes the matrix with all entries equal to 1. Set

$$P_1(\mu) = \begin{pmatrix} I_2 & \frac{-J_{2\times k_2}}{\mu - 2} \\ I_{2k_1} & I_{k_2} \end{pmatrix}, P_2(\mu) = \begin{pmatrix} I_2 - CB_2^{-1} \\ I_{2k_1} & I_{k_2} \end{pmatrix}.$$

We have

$$P_2(\mu)P_1(\mu)(\mu I - L(G)) = \begin{pmatrix} B_1 - \frac{k_2 J_2 \times 2}{\mu - 2} - C B_2^{-1} C^T \\ C^T \\ J_{k_2 \times 2} & B_2 \\ B_3 \end{pmatrix}.$$

Note that
$$B_2^{-1} = \begin{pmatrix} B^{-1} & & & \\ & B^{-1} & & \\ & & \ddots & \\ & & & B^{-1} \end{pmatrix}$$
, where $B^{-1} = \frac{1}{\mu^2 - 4\mu + 3} \begin{pmatrix} \mu - 2 & -1 \\ -1 & \mu - 2 \end{pmatrix}$.

Thus

$$\begin{split} \Psi_L(G) &= |P_2(\mu)P_1(\mu)(\mu I - L(G))| \\ &= |B_1 - \frac{k_2 J_{2 \times 2}}{\mu - 2} - CB_2^{-1}C^T| \times |B_2| \times |B_3| \\ &= |B_1 - \frac{k_2 J_{2 \times 2}}{\mu - 2} - k_1 B^{-1}| \times |B_2| \times |B_3| \\ &= \mu(\mu - 1)^{k_1 - 1} (\mu - 3)^{k_1 - 1} (\mu - 2)^{k - k_1 - 2} \Phi_2(\mu), \end{split}$$

where

$$\Phi_2(\mu) = \mu^4 - (2k+6)\mu^3 + (k^2+10k+12)\mu^2 - (4k^2+14k+2k_1+10)\mu + 3k^2 + 2kk_1 + 6k - k_1^2 + 2k_1 + 3.$$

We complete this proof.

The following theorem completely determine all the Laplacian integral generalized θ -graphs.

Theorem 3.1. Let
$$G = \theta(n_1, n_2, ..., n_k) \in \Theta_k$$
 where $n_1 \geq n_2 \geq ... \geq n_k$. Then G is Laplacian integral if and only if G is one of $\theta(1, ..., 1)$, $\theta(2, 2)$, $\theta(1, ..., 1, 0)$ and $\theta(2, ..., 2, 0)$ (see Fig.2).

Proof. Suppose that u_0 and v_0 are the initial and terminal vertices of G, respectively. We distinguish two cases.

Case 1. $n_k \geq 1$, that is, $u_0 \nsim v_0$;

By assumption, $n_1 \ge n_2 \ge \ldots \ge n_k \ge 1$, and so $\Delta(G) = k < n-1$. By Lemma 2.1 we get $\mu_1(G) > k+1$. If G is Laplacian integral, then $\mu_1(G) \ge k+2$. On the other hand, G is a connected graph, by Lemma 2.2 we have $\mu_1(G) \le k+2$. Thus, $\mu_1(G) = k+2$ and so G is a regular bipartite graph or a semiregular bipartite graph.

If G is a regular bipartite graph then k=2, and so G must be an even cycle C_n where n is an even number no less than 4. It is well know that $\mu_j(C_n)=2(1-\cos(\frac{2\pi j}{n}))$ for j=0,1,...,n-1. For $n\geq 7$, we have

$$0 < \mu_{n-1}(C_n) = 2(1 - \cos(\frac{2\pi}{n})) \le 2(1 - \cos(\frac{2\pi}{7})) < 0.7530.$$

Thus C_n is not Laplacian integral. For $4 \le n \le 6$, it is routine to verify that C_n is Laplacian integral if and only if $n \in \{4,6\}$. Hence, $G = C_4 = \theta(1,1)$ or $G = C_6 = \theta(2,2)$ in this situation.

If G is a semiregular bipartite graph then $k \geq 3$, and so $G = \theta(1, \ldots, 1)$ is $K_{2,k}$ that is indeed Laplacian integral with $Spec_L(G) = [(k+2)^1, k^1, 2^{n-3}, 0^1]$. Case 2. $n_k = 0$, that is, $u_0 \sim v_0$.

According to our assumption, $n_1 \ge n_2 \ge \ldots \ge n_{k-1} \ge 1$. We distinguish three cases.

Subcase 2.1. $n_1 \ge 3$. First we suppose that $k \ge 4$ and consider $F = \theta(3, 1, ..., 1, 0)$. By Lemma 3.1, the Laplacian characteristic polynomial of F is

$$\begin{array}{ll} \Psi_L(F) &= \mu(\mu-2)^{k-3}\Phi_1(\mu), \\ \Phi_1(\mu) &= \mu^5 - (2k+8)\mu^4 + (k^2+14k+23)\mu^3 - (6k^2+32k+32)\mu^2 \\ &+ (10k^2+30k+25)\mu - (4k^2+14k+6). \end{array}$$

Clearly, $\Phi_1(0) = -(4k^2 + 14k + 6) < 0$ and $\Phi_1(1) = k^2 - 4k + 3 > 0$. Thus F has a Laplacian eigenvalue $\mu^* \in (0,1)$, and so $0 < \mu_{n(F)-1}(F) \le \mu^* < 1$. Clearly, $G = \theta(n_1, n_2, \ldots, n_{k-1}, 0)$ are recursive subdivision graphs of F if $n_1 \ge 3$ and $k \ge 4$. Hence, by Corollary 2.1, we have $0 < \mu_{n-1}(G) \le \mu_{n(F)-1}(F) < 1$ and so G is not Laplacian integral.

Next we suppose that k=3. Then $G=\theta(n_1,n_2,0)(n_1\geq 3)$. By direct computation we know that the graphs $\theta(3,1,0)$, $\theta(3,2,0)$ and $\theta(4,1,0)$ are not Laplacian integral with $Spec_L(\theta(3,1,0))=[4.41,4,3,1.59,1,0]$, $Spec_L(\theta(3,2,0))=[4.88,3.80,2.65,2.45,1.47,0.75,0]$ and $Spec_L(\theta(4,1,0))=[4.53,3.80,3.35,2.45,1.12,0.75,0]$, respectively. Observe that both $\theta(3,2,0)$ and $\theta(4,1,0)$ have a Laplacian eigenvalue $\mu^*=0.75<1$. It is easy to see that $G=\theta(n_1,n_2,0)$ $(n_1\geq 3)$ would be recursive subdivision graphs of $\theta(3,2,0)$ or $\theta(4,1,0)$. By Corollary 2.1, we have $0<\mu_{n-1}(G)\leq\mu^*<1$, and so G is not Laplacian integral.

At last, if k=2 then G is a cycle. We claim, in the case of $n_1 \ge 3$, that G is Laplacian integral if and only if $G = C_6 = \theta(4,0) = \theta(2,2)$ by the arguments in Case 1.

by Lemma 3.2. Now we consider $G = \theta(2, \ldots, 2, 1, \ldots, 1, 0)$ where $k \ge 3$ and $1 \le k_1 \le k - 2$. By Lemma 3.3, the Laplacian characteristic polynomial of G is

$$\begin{array}{ll} \Psi_L(G) &= \mu(\mu-1)^{k_1-1}(\mu-3)^{k_1-1}(\mu-2)^{k-k_1-2}\Phi_2(\mu), \\ \Phi_2(\mu) &= \mu^4 - (2k+6)\mu^3 + (k^2+10k+12)\mu^2 - (4k^2+14k+2k_1+10)\mu \\ &+ 3k^2 + 2kk_1 + 6k - k_1^2 + 2k_1 + 3. \end{array}$$

Since $1 \le k_1 \le k-2$, and so $\Phi(1) = k_1(2k-k_1) > 0$ and $\Phi(2) = -(k+1-k_1)^2 < 0$, then $\Phi_2(\mu)$ has a root $\mu^* \in (1,2)$. Hence, G has a Laplacian eigenvalue $\mu^* \in (1,2)$, and so G is not Laplacian integral.

Subcase 2.3. $n_1=1$. In this situation, $G=\theta(\overbrace{1,\ldots,1},0)=K_1\vee K_{1,k-1}$. We know that $Spec_L(K_{1,k-1})=[k^1,1^{k-2},0^1]$, and so $Spec_L(G)=[(k+1)^2,2^{k-2},0^1]$ by Lemma 2.3. Hence $G=\theta(1,\ldots,1,0)$ is Laplacian integral. We complete this proof.

 $\theta(1,\ldots,1) \qquad \theta(2,2) \qquad \theta(1,\ldots,1,0) \qquad \theta(2,\ldots,2,0) \qquad K_1 \vee (K_{1,k-1} \cup sK_1)$

Figure 2: The Laplacian integral graphs in Γ_{k-1}

Now we come to the stage to prove our main result.

Theorem 3.2. Let $G \in \mathcal{G}_{k-1}$. Then G is Laplacian integral if and only if G is one of $\theta(\overbrace{1,\ldots,1})$, $\theta(2,2)$, $\theta(\overbrace{1,\ldots,1},0)$, $\theta(\overbrace{2,\ldots,2},0)$ and $K_1 \vee (K_{1,k-1} \cup sK_1)$ (see Fig. 2).

Proof. If G has no pendant vertices, then $G \in \Theta_k$. By Theorem 3.1, G is Laplacian integral if and only if G is one of the following graphs: $\theta(1,\ldots,1)$, $\theta(2,2)$, $\theta(1,\ldots,1,0)$ and $\theta(2,\ldots,2,0)$.

If G has some pendant vertices, then it has a cutpoint v. Then by Lemma 2.4, we have $\mu_{n-1}(G) \leq 1$. Now suppose that G is Laplacian integral. Then $\mu_{n-1}(G) = 1$, and thus G has a cutpoint v adjacent to all the other vertices again by Lemma 2.4. Since G belongs to G_{k-1} , G must have an induced subgraph k-1

 $\theta(\widehat{1,...,1},0)$ and the cutpoint v is adjacent to other $s\geq 1$ pendant vertices. Thus

 $G = K_1 \vee (K_{1,k-1} \cup sK_1)$. Conversely, $G = K_1 \vee (K_{1,k-1} \cup sK_1)(s \ge 1)$ is a graph in G_{k-1} . Since $Spec_L(K_{1,k-1} \cup sK_1) = [k^1, 1^{k-2}, 0^{s+1}]$, by Lemma 2.3 we get $Spec_L(G) = [(k+s+1)^1, (k+1)^1, 2^{k-2}, 1^s, 0^1]$. Hence $G = K_1 \vee (K_{1,k-1} \cup sK_1)$ is Laplacian integral. We complete this proof.

References

- [1] F. Harary, A.J. Schwenk, Which graphs have integral spectra? In Graphs and Combinatorics (eds. R. Bari and F. Harary), Lecture Notes in Math. 406, Springer-Verlag, Berlin (1974) 45-51.
- [2] K.C. Das, The Laplacian spectrum of a graph, Comput. Math. Appl. 48 (2004) 715-724.
- [3] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994) 143-176.
- [4] R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl. 278(1998) 221-236.
- [5] R. Merris, A note on the Laplacian graph eigenvalues, Linear Algebra Appl. 285 (1998) 33-35.
- [6] R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl. 199 (1994) 381-389.
- [7] M.H. Liu, B.L. Liu, Some results on the Laplacian spectrum, Comput. Math. Appl. 59 (2010) 3612-3616.
- [8] K.T. Balińska, D. Cvetković, Z. Radosavljević, S.K. Simić, D. Stevanović, A survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 13 (2002) 42-65.
- [9] S. Fallat, S. Kirkland, J. Molitierno, M. Meumann, On graphs whose Laplacian matrices have distinct integer eigenvalues, J. Graph Theory 50(2) (2005) 162-174.
- [10] S. Kirkland, Constructably Laplacian integral graphs, Linear Algebra Appl. 423 (2007) 3-21.
- [11] S. Kirkland, Completion of Laplacian integral graphs via edge addition, Discrete Math. 295 (2005) 75-90.
- [12] S. Kirkland, A bound on algebraic connectivity of a graph in terms of the number of cutpoints, Linear Multilinear Algebra 47 (2000) 93-103.
- [13] Y.L. Pan, Sharp upper bounds for the Laplacian graph eigenvalues, Linear Algebra Appl. 355 (2002) 287-295.
- [14] W. So, Commutativity and spectra of Hermitian matrices, Linear Algebra Appl. 212-213 (1994) 121-129.
- [15] X.Z. Tan, B.L. liu, The nullity of (k-1)-cyclic graphs, Linear Algebra Appl. 438 (2013) 3144-3153.
- [16] M. Christandl, N. Datta, A. Ekert, A.J. Landahl, Perfect state transfer in quantum spin networks, Phys. Rev. Lett. 92 (2004) 187902.