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Abstract A graph is called Laplacian integral if its Laplacian spectrum consists
of integers. Let 8(ny,na. .., nk) be a generalized 8-graph (see Figure 1). Denote
by G, the set of (k — 1)-cyclic graphs each of them contains some generalized
6-graph 8(ny,nga, ..., nx) as its induced subgraph. In this paper, we give an edge
subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1), from
which we identify all the Laplacian integral graphs in the class Gx_; (Theorem
3.2).
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1 Introduction

The graph G, considered in this paper, is a simple and undirected graph with
vertex set V' = {v1,v2,...,un}. The Laplacian matrix of G is defined as L(G) =
D(G) — A(G), where D(G) = diag(d(v1),...,d(v,)) is the diagonal matrix
of the vertex degrees in G and A(G) is the adjacency matrix of G. It is well
known that L(G) is positive semidefinite so that its eigenvalues can be arranged as
follows: 113 (G) 2 p2(G) > - -+ 2 pn—1(G) = pn(G) = 0, where p,,1(G) > 0
if and only if G is connected and hence is called the algebraic connectivity of G.

Letzy > z3 > --- > x; be t distinct eigenvalues of L(G) with the cor-
respondmg multiplicities k1, k2, ..., k;. Denote by Specr(G) = [:cl ,1'2”, ves
T, ‘] the Laplacian spectrum of G. A graph is called a Laplacian integral graph if
its Laplacian spectrum consists of integers. Sometimes, we say that G is Lapla-

cian integral if G is a Laplacian integral graph.
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The research of integral graphs started in 1974 [1]. It has been discovered re-
cently [16] that integral graphs can play arole in the so called perfect state transfer
in quantum spin networks. Up to now, there are a few classes of integral graphs
are characterized. One can consult [8] for a survey. Some class of Laplacian inte-
gral graphs have been identified (such as the degree maximal graphs, see [6], the
unicyclic and bicyclic graphs, see [7]). Besides, some inductive constructions for
Laplacian integral graphs are given in {8-11]. In this paper, we pay attention to a
class of (k — 1)-cyclic graphs: Gi_1, which is defined in [15]. We identify all the
Laplacian integral graphs in the class G.—;.

Let Py, ;+2 be the paths on n; + 2 vertices where ny > ng > -+ 2 ngy > 1,
nr > 0and k > 2. The generalized 6-graph, denoted by 8(ny,na, ..., nk)
(see Figure 1), is the graph obtained from these paths by identifying the k initial
vertices as uo and terminal vertices as vg, respectively. Denoted by © the set of
all 0(n1,n2, .en ,nk).

A connected graph with n vertices and m edges is said to be a k-cyclic graph
ifk = m—=n+ 1. A k-cyclic graph is said to be a k-cyclic base graph if it
contains no pendant vertices. Clearly, all the graphs in O are (k — 1)-cyclic base
graph. Denote by Gk all the (k — 1)-cyclic graphs each of them contains some
8(ny,na,...,nk) as its induced (k — 1)-cyclic base subgraph.

The rest of this paper is organized as follows. In Section 2, we give an edge
subdividing theorem for Laplacian eigenvalues of a graph. In Section 3, we iden-
tify all the Laplacian integral graphs in Gx_.

.............................
.............................

...............................

ug Yo

...............................
................

...............................

Figure 1: The graph 8(n1,n2, ..., n)

2 Elementary

In this section, we list some useful lemmas and give an edge subdividing theorem
for Laplacian eigenvalues of a graph.

Lemma 2.1 ( [2,3]). Let G be a graph with at least one edge. Then u,(G) >
A(G) + 1. Moreover, if G is connected, then equality holds if and only if A(G) =
n—1

Lemma 2.2 ( [5,13)). Let G be a connected graph. Then

1(G) < max{d(v) + m(v) : v € V},
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where m(v) = ) o N(w) ¥(u)/d(v). Moreover, the equality holds if and only if
G is a regular bipartite graph or a semiregular bipartite graph.

The join of two vertex disjoint graphs G and G, is the graph G, VG5, obtained
from their union by including all edges between the vertices in G, and the vertices
in Gz.

Lemma 2.3 ([4,11]). If G, and G2 are graphs on k and m vertices respectively,
with Laplacian eigenvalues 0 = pg(G) < pe-1(G1) < ++- < 11(G1) and 0 =
#m(Gz2) < pm-1(G2) < -+ < u1(G2) respectively, then the Laplacian eigen-
values of G1 V G are given by 0, pi—1(G1) +m, ..., u(G1) +m, prm—1(G2) +
k,...,p1(G2) + k, and m + k.

Denote by G — u the graph obtained from G by deleting the vertex u € V(G)
along with the edges adjacent to u. Let v be a vertex of a connected graph G, if
G — v is disconnected, then v is called a cutpoint of G.

Lemma 2.4 ([12]). If G is a connected graph with a cutpoint v, then p1,,_1(G) <
1, where equality holds if and only if v is adjacent to every vertex of G.

Lemma 2.5 ( [14]). Ler A and B be Hermitian matrices of order n, and let
1<i<nandl <j<n Then

Ai(A) + Ai(B) € Aigj—n(A+B),i+j>n+1,
Ai(A) +X2(B) 2 Aigj-1(A+ B)i+j<n+1.

In either of these inequalities equality holds if and only if there exists a nonzero
n-vector that is an eigenvector to each of the three involved eigenvalues.

To subdivide an edge of G is to add a new vertex v to this edge. Note that the
Laplacian matrix L(G) is real symmetric, by Lemma 2.5 we obtain the following
edge subdividing theorem for Laplacian eigenvalues of a graph.

Theorem 2.1. Let G be a graph of order n, and let G' be the graph obtained
by subdividing the edge uv of G. Then we have 11;(G’') < pi—1(G) fori =
2,...,n+1and pi(G') 2 pip1(G) fori=1,...,n—1.

Proof. Let z be the inserted vertex on the edge uv. By assumption, G’ = G —
uwv + uz + vz. Let L(G) and L(G") be the Laplacian matrix of graphs G and G’
respectively, where the rows and columns of L(G") are labeled by z,u, v, .... It is
easy to verify that L(G") can be decomposed into L(G’) = Ly + L, where

— [ O1x1 O1xn _ H 03x (n-2) (2 -1-1
L,= (o,,,(l L(G)) yLo = (o(n_ma 0(n—2)x(n—2)) and H = (:} (1) (1) )
By direct computation, we know that H has eigenvalues: A;(H) = 3, \(H) =0

and A3(H) = -1, and so L has eigenvalues: A\;1(L2) = 3,Xp(L2) = ++- =
/\n(Lg) =0 and /\n+1(L2) = —1.
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Regarding A = Ly and B = Lo, andnote that (i — 1) +2 =i +1<n+2
fori=2,...,n+ 1, by Lemma 2.5 we have

M(L(GN) = Mi(Ly + La) < Aim1(Ln) + Aa(L2) = Aim1(La) ¢))

wherei = 2,...,n+1. Clearly, \;(L;) = p;(G) fori =1,...,nand An41(L1)
= 0; Mi(L(G")) = ps(G') fori =1,2,...,n + 1. Eq. (1) gives that

pi(G) L pic1(G), i=2,...,n+1.

Notethat (i +1)+n=n+1+4+i>n+2fori=1,...,n. Similarly, by
Lemma 2.5, we have

M(L(GN) = Mi(L1 + La) 2 Xig1(Ln) + An(L2) = Aig1(La), i=1,...,m,

which leads to
“‘i(G,) 2 ,ui+1(G)1 i=1,...,n—1

We complete this proof. O

Let G be a simple graph and H be the graph obtained from G by subdividing
some edges recursively. H is said to be the recursive subdivision graph of G and
in turn G is said to be the subdividing underline graph of H. By definition, the
recursive subdivision graph H of G is just the graph that is obtained by replacing
some edges of G by some paths, respectively. It immediately obtains the following
result by Theorem 2.1.

Corollary 2.1. Let G be a graph with n vertices, and let H be a recursive subdi-
vision graph of G with n' vertices. We have
(@) pign'—n-1(H) < pi—1(G) where2 <i<n+1;
(b) pimnrons1(H) > piy1(G) wherel <i<n—1landn’ <n+i

Taking i = n, we have pp—1(H) < pin—1(G) by Corollary 2.1 (a). Thus
pn—1(H) < 1if pp—1(G) < 1, which can be used to exclude non-integral
graphs in the next section.

3 The Laplacian integral graphs in G;_;

In order to identify all the Laplacian integral graphs in Gi_1, first we give the
Laplacian characteristic polynomials of some special generalized 6-graphs.

k—2
P
Lemma 3.1. Let G = 6(3,1,...,1,0) € ©r and k > 3. Then the Laplacian
characteristic polynomial of G is

UL(G) =p(u—2)*7201(p), where
B (p) = ud — (2k + 8)ut + (k2 + 14k + 23)u® — (6k2 + 32k + 32)u?
+(10k? 4 30k + 25)u — (4k% + 14k + 6).
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Proof. Here G consists of one Ps, (k — 2)’s P; and one P, and all these paths
have the common ends {uo,v} = Vo. We denote by V) the set of vertices of
degree two in P5 and V; the set of vertices of degree two in the latter (k — 2)’s
P;. Now we arrange the rows and columns of L(G) in the order of V;, V; and V5,
respectively. Thus uf — L(G) can be represented by

Jik-2)x2 Ok—2)x3 Bs

By C  Jax(k-2)
pl — L(G) = cT B2 0O3x(k-2) |, where

_ p=2 1 0

and Ja (x—2) denotes the matrix with all entries equal to 1. Set

I 'sz_k—z I, —CB:-!
Pl(n)=(’,3 - ),Pz(u)=(’ =)
-2

Iz

We have

B]_("‘:’_J2x2 _CBz—-lcT
Po(p) Pr(p)(p] — L(G)) = cT B )
3

Jik-2)x2
1 ) p2—4p43 2—p 1 i
Note that B2— = W 6pT¥10p—4 ( 2~p  (p-2)? 22"}‘ ), we obtain
1 2—p p*—4u+3
V(G) = |P(u)P(p)(p] — L(G))|
k—2)J. -

= |B - i—“-_)2ﬂ —CB;'CT| x| Ba| x |B|

= p(p-2)73:(p),
where

() = u— (2k+8)ut + (k% + 14k + 23)u® — (6k? + 32k + 32)p2
+(10k? + 30k + 25)p — (4k% + 14k + 6).
We complete this proof. |

k-1
Lemma 3.2, Let G = 60(2,...,2,0) € O, and k > 2. Then the Laplacian
characteristic polynomial of G is

UL(G) = ulp — 3)* (= 1)*(u— 2)(u — k) (1 — k - 2).



Proof. Here G consists of (k — 1)’s P4 and one P,, and all these paths have the
common ends {ug, vo} = Vp. We denote by V) the set of vertices of degree two
in the (k — 1)’s P;. Now we arrange the rows and columns of L(G) in the order
of Vp and V. Thus uJ — L(G) can be represented by

sI-LG) = (& 5),

where Bl—_— (“Ik pik)’ C—_-(I’l I - Iz )2X(2k—2)’ B= (Fiz }11—2) and B2=

B
B -
( . ) . Set P(u) = (" 'Ifﬁﬂ;) , we have
B/ (2k-2)x(2k-2)

P(u)(ul - L(@) = (P57 L ).

1l

B—l
B—l
-1 -1 _ 1 pu=2 -1
Note that B, ( . ), where B™' = = (P57 005).
B—l

Thus
VL (G) = |P(p)(ul-L(G))
= |By —CB;'CT| x| By
= |Bi—(k—1)B7!| x| B|"!
pp—3) 2 (u— 1) (u - 2)(p — k)(u — k- 2).
We complete this proof. O

k1 k—k1—1

-3 e
Lemma3.3. Let G =6(2,...,2,1,...,1,0)€ O, k>3and1 <k < k-2
Then the Laplacian characteristic polynomial of G is

U(G) = plp— 1)~ (u—3) = (u—2)**1=20y(n), where
®o(p) = pi—(2k + 6)ud+ (k% + 10k + 12)pu2—(4k% + 14k + 2ky + 10)p
+3k? + 2kk, + 6k — k2 + 2k; + 3.

Proof. Here G consists of k1’s Py, k — ky — 1 = k2’s P; and one P, and all
these paths have the common ends {ug, v} = Vo. We denote by V) the set of
vertices of degree two in the first k1’s Py and V5 the set of vertices of degree two
in the latter ko’s P;. Now we arrange the rows and columns vertices in L(G) in
the order of vertices Vg, V; and V5. Thus ul — L(G) can be represented by

By c Jaxky
ul —L(G)=| €T Bz Oayxk, |,

Jegx2 Okyx2ky  Bs
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where B = (#'{k “1k), C = (k- I)yy, B = ("7 ul2)' By =
B
B
( . ) » Bs = (i — 2)Iy, and Joxj, denotes the matrix with all
B/ 2k x2k,

entries equal to 1. Set

- J.
I _‘g.;z I, —cB!
Pyi(u) = ( zlzk, ),Pz(u)= ( AN ; )
k2

I,

We have

B-%22 _cpricT
P (p) Pr(p)(ud — L(G)) = ( ot )
3

szxz

B—l
Note that B! = & here B! = - (%77 )
ote that 5, " = . » where —m(-l p.—2)‘
g

Thus
V. (G) = |R(p)P(R)p - LG))
= |B - k;—J_z-’-‘z?- ~ CB3'CT| x| By| x| Bs|
T ’%{%ﬁ- — kiB~Y| x |By| x| Bs|
= plp— 1) (= 3) (- 2)R1=29, (),
where

®a(p) =pt—(2k +6)p3+(k? + 10k + 12)u2 — (4k2 + 14k + 2k + 10)p
+3k2 + 2kk + 6k — k2 4 2k; + 3.

We complete this proof. O

The following theorem completely determine all the Laplacian integral gener-
alized 8-graphs.

Theorem 3.1. Let G = 0(ny,nz,...,nk) € O whereny > ng > -« >
k
n. Then G is Laplacian integral if and only if G is one of 6(1,...,1), 6(2,2),
k-1 k—1

—— N,
6(1,...,1,0) and 6(2,...,2,0) (see Fig.2).
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Proof. Suppose that uo and v, are the initial and terminal vertices of G, respec-
tively. We distinguish two cases.
Case 1. n;. > 1, that is, ug = vo;

By assumption, n; > ng > ... > ngx > 1,andso A(G) = k < n—1. By
Lemma 2.1 we get 4, (G) > k+1. If G is Laplacian integral, then 41 (G) > k+2.
On the other hand, G is a connected graph, by Lemma 2.2 we have 11 (G) < k+2.
Thus, £1(G) = k + 2 and so G is a regular bipartite graph or a semiregular
bipartite graph.

If G is a regular bipartite graph then k = 2, and so G must be an even cycle
C,. where 7 is an even number no less than 4. It is well know that u;(Cr) =
2(1- cos(2—:';7-)) forj=0,1,..,n—1. Forn > 7, we have

0 < pn-1(Cr) =2(1 — cos(%’r)) <21- cos(277r)) < 0.7530.

Thus C, is not Laplacian integral. For 4 < n < 6, it is routine to verify that
C,, is Laplacian integral if and only if n € {4,6}. Hence, G = Cy = 6(1,1) or
G = Cg = 0(2,2) in this situation.

If G is a semiregular bipartite graph then £ > 3, and so G = 6(1,...,1) is
Ko i that is indeed Laplacian integral with Spec. (G) = [(k +2),k*,2"72,0'].
Case 2. n; = 0, that is, ug ~ vg.

According to our assumption, n; > ng > ... 2 ng—1 > 1. We distinguish
three cases.

Subcase 2.1. n; > 3. First we suppose that k > 4 and consider F' =

k—2

——
6(3,1,...,1,0). By Lemma 3.1, the Laplacian characteristic polynomial of F’ is

UL(F) = p(p—2)38(u),
& (n) = pd — (2k + 8)ut + (k2 + 14k + 23)u3 — (6k2 + 32k + 32)p?
+(10k2 + 30k + 25)u — (4k? + 14k + 6).

Clearly, ®,(0) = —(4k?+14k+6) < Oand ®;(1) = k?—4k+3 > 0. Thus F has
a Laplacian eigenvalue p* € (0,1), and 50 0 < po(py—1(F) < u* < 1. Clearly,
G = 0(n1,ny, ..., nk_1,0) are recursive subdivision graphs of F'if n; > 3 and
k > 4. Hence, by Corollary 2.1, we have 0 < pin_1(G) < pn(ry-1(F) < 1and
so G is not Laplacian integral.

Next we suppose that £ = 3. Then G = 6(ny,n2,0)(n1 > 3). By direct com-
putation we know that the graphs 6(3,1,0), 6(3,2,0) and 6(4, 1, 0) are not Lapla-
cian integral with Specy (6(3,1,0)) = [4.41,4,3,1.59,1,0], Spec.(6(3,2,0)) =
[4.88,3.80,2.65, 2.45,1.47,0.75,0] and Specy(8(4,1,0)) = [4.53,3.80,3.35,
2.45,1.12,0.75, 0], respectively. Observe that both 6(3,2,0) and 6(4, 1,0) have
a Laplacian eigenvalue p* = 0.75 < 1. It is easy to see that G = 6(n1,ny,0)
(ny > 3) would be recursive subdivision graphs of 8(3,2,0) or 8(4,1,0). By
Corollary 2.1, we have 0 < pn,—1(G) < p* < 1, and so G is not Laplacian
integral.
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Atlast, if k = 2 then G is a cycle. We claim, in the case of n; > 3, that G is
Laplacian integral if and only if G = Cs = 6(4,0) = 6(2,2) by the arguments in
Case 1.

k—1
" N—
Subcase 2.2. n; = 2. If G = 6(2,...,2,0) then G is Laplacian integral
ki k—ky—1

N e N,
by Lemma 3.2. Now we consider G = 6(2,...,2,1,...,1,0) where k > 3 and
1 < k; £ k — 2. By Lemma 3.3, the Laplacian characteristic polynomial of G is

Ui(G) = p(p— 1)~ (u = 3= (p — 2)%—*1-28y (),
®a(p) = pt—(2k+6)u3+ (k% + 10k + 12)p® — (4k? + 14k + 2k; + 10)p
+3k2 4 2kk, + 6k — k2 + 2k, + 3.

Since 1 < k; < k—2,andso ®(1) = k1(2k k1) > 0and ®(2) = —(k +
1- k1)2 < 0, then ®5(p) has a root u* € (1,2). Hence, G has a Laplacian
eigenvalue * € (1,2), and so G is not Laplacian integral.
k—1
Subcase 2.3. n; = 1. In this situation, G = 6(1,...,1,0) = Ky V Ky 1.
We know that Spec (K x—1) = [k}, 1¥2 01] and s0 Spec(G) = [(k +
1)2,2%-2,0!] by Lemma 2.3. Hence G = 4(1,..., 1,0) is Laplacian integral.
We complete this proof. g

SO AR

9(2,2) 6(1,...,1,0) 8(2,...,2,0) K1 V(K1k-1UsK1)
Figure 2: The Laplacian integral graphs in [_,

Now we come to the stage to prove our main result.

Theorem 3. 2 Let G € Gi_1. Then Gis Laplacxan integral if and only if G is

one of 6(1, 1), 6(2,2), 9(1 1,0),6(2,...,2,0) and K1V (K, k—1UsK))
(see th2)

Proof. If G has no pendant vertices, then G € ©. By Theorem 3.1, G is Lapla-
cian integral if and only if G is one of the following graphs: 6(1,...,1), 8(2,2),
6(1,...,1,0) and 6(2,...,2,0).

If G has some pendant vertices, then it has a cutpoint v. Then by Lemma
2.4, we have p,_1(G) < 1. Now suppose that G is Laplacian integral. Then
#n—-1(G) = 1, and thus G has a cutpoint v adjacent to all the other vertices again
by Lemma 2.4. Since G belongs to Gx_1, G must have an induced subgraph

k—1

6(1,...,1,0) and the cutpoint v is adjacent to other s > 1 pendant vertices. Thus
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G = K1 V (Ki1k-1 UsKj;). Conversely, G = K1 V (K1 x-1 UsK;)(s > 1)
is a graph in Gr_;. Since Specy (K1, U sK;) = [k!,1¥-2,0°*!], by Lemma
2.3 we get Specy(G) = [(k + s + 1), (k + 1)!,2¥-2,1%,0']. Hence G =
K, V (K1,k-1U sK,) is Laplacian integral.

We complete this proof. (]
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