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Abstract

A new hemisystem of the generalized quadrangle #(3, 49) admit-
ting the linear group PSL2(7) has been found.
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1 Introduction

A finite generalized quadrangle (GQ) is an incidence structure (P,B,I) in
which P and B are disjoint nonempty sets of objects called points and lines
(respectively), and for which I is a symmetric point-line incidence relation
satisfying the following axioms:

1. Each point is incident with ¢ + 1 lines (¢ > 1) and two distinct points
are incident with at most one line;

2. each line is incident with s + 1 points (s > 1) and two distinct lines
are incident with at most one point;
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3. if z is a point and £ is a line not incident with z, then there exists a
unique pair (y, M) € P x B for which zIMIyl¢.

The integers s and t are the parameters of the GQ and the GQ is said to
have order (s,t); if s = t, the GQ is said to have order s.

Here we are interested in the generalized quadrangle #(3, g2), the incidence
structure of all points and lines of a non-singular Hermitian surface in
PG(3,¢%), a generalized quadrangle of order (¢2,q), with automorphism
group PI'U(4, ¢%); and its dual Q~(5,¢).

In this paper we construct a new hemisystem of the generalized quadrangle
H(3,49) with full stabiliser PSLy(7).

We recall that a regular system of order m [9] on H(3,¢?) is a set R of lines
of H(3,¢?) with the property that every point lies on exactly m lines of R,
0 < m < g+ 1. Segre proved that, if ¢ is odd, such a system must have
m = (q+1)/2, and called a regular system on H(3,¢?) of order (¢+1)/2 a
hemisystem on H(3,¢2). A simple proof that a regular system on H(3, ¢2) is
a hemisystem (and so q is odd) was given by Thas in [10], by showing that
the concurrency graph of the lines of a regular system on #(3,¢?) of order
m is a strongly regular graph srg(v, k, A, i), with v = (g3 + 1)(g + 1) — m,
k=(g?+1)(g—m), \=q—m—1and p =¢*>+1—m(q+1), and by
applying the fact that in an srg(v,k, A\ p), (v—k—pu = k(k — A —1).
Even more general was the work of Cameron-Delsarte-Goethals [4], who
defined a hemisystem on a generalized quadrangle of order (s, s?), s odd,
to he a set of points meeting every line in (s + 1)/2 points and showed
that the collinearity graph of such a set is strongly regular. In [11], the
conjecture that there are no hemisystems on H(3, q?) for ¢ > 3 was made.
In [7) counterexamples to this conjecture were constructed on H(3, ¢?), for
all odd prime powers ¢ > 3, admitting PQ; (q), and giving Segre’s example
for ¢ = 3, and on H(3,25) admitting 3.47.2. Also, in [1] a hemisystem
of the Fisher-Thas-Walker-Kantor generalized quadrangle of order (5, 25),
has been constructed that is related to to the 3+ A7-hemisystem of H(3,25),
constructed by Cossidente and Penttila in (7).

All of this is motivated by the study of partial quadrangles. These were
introduced by Cameron [3]. A partial quadrangle PQ(s,t, 1) is an incidence
structure of points and lines with the properties that any two points are
incident with at most one line, every point is incident with ¢+ 1 lines, every
line is incident with s + 1 points, any two non-collinear points are jointly
collinear with exactly p points, and for any point P and line { which are
not incident, there is at most one point @ on I collinear with P. There
are not many constructions of partial quadrangles known: most of them
arise from a generalized quadrangle of order (s, s?) by deleting a point,
all lines on that point, and all points collinear with that point; this gives
a PQ(s — 1,s2,5% — s). Many generalized quadrangles of order (s, s?) are
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known. The exceptional examples apart from the (thin) partial quadrangles
with s = 1 (the Moore graphs (the pentagon, the Clebsch graph, and the
Hoffman-Singleton graph), the Gewirtz graph and the Higman-Sims graphs
on 77 and 100 vertices) are a partial quadrangle PQ(2, 10,2) arising from
Coxeter’s 11-cap, a partial quadrangle PQ(2, 55, 20) arising from Hill’s 56—
cap in PG(5,3), and a partial quadrangle PQ(3,77,14) arising from the
Hill’s 78-cap PG(5, 4), all via linear representations.

The preceding results imply that a hemisystem on a generalized quadrangle
of order (s, s?) gives a partial quadrangle PQ((s —1)/2, 52, (s — 1)2/2) (the
points of the partial quadrangle being the points of the hemisystem and
the lines of the partial quadrangle being the lines of the generalized quad-
rangle). In our case a new PQ(3,49, 18) arises.

It should be mentioned that hemisystems of generalized quadrangles also
give rise to Q-polynomial association schemes [8]. The GQ has a strongly
regular point graph. So we have a 2-class association scheme with relations
Ry, R; (collinear) and R; (non-collinear). If we split the lines into red and
blue lines so that each point lies on (t+1)/2 red and (t+1)/2 blue lines (by
using a hemisystem), then we may split R; and R; into two relations each,
yielding another, finer, association scheme on the points. In this case, the
association scheme is " Q-polynomial” (or cometric) and there are very few
examples of these known which are not distance-regular graphs, nor duals
of distance-regular graphs.

2 The new hemisystem

Let 1(3,4%) be the Hermitian surface of PG(3,¢?), q odd, with equation
b CARITD ¢ Lt qu"'l 4+ X§*! = 0, where Xy, X1, X2, X3 are homogeneous
coordinates in PG(3, ¢?) and let p denote the unitary polarity induced by
H(3,9%). Let {Q. | @ € GF(¢g?) \ {0}, a?*! = 1} denote a family of
g + 1 quadrics of PG(3,¢%), where Q, has equation aX? + X? + X2 +
X2 = 0. Straightforward computations show that each of these quadrics is
hyperbolic and any two of them intersect in the conic C, given by equation
X? + X? + X2 = 0, lying in the plane # with equation Xo = 0. Let 7
denote the Baer subplane of # whose normalized point coordinates lie in
the subfield GF(g), and let C = C N 7 denote the associated subconic of
C in 7. Furthermore, let U = H(3,¢%) N 7 = H(2,¢%) be the Hermitian
curve, given by equation X i""l + Xg'“ + X3*! = 0, that one obtains by
intersecting the Hermitian surface (3,¢2) with the plane 7. Then, by [6,
Lemma 3.2, C=H3,¢> )N =UNC =H(3,¢*)nC.

From [9, p. 146] each quadric Q, is permutable with H(3, ¢2). In particular,
(g +1)/2 of them, say Qa,,Qas: Qayyyy» are such that H(3,¢%) N Q,, is
an elliptic quadric &; embedded in a Baer subgeometry B; = PG(3,q) of
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PG(3,¢%), fori=1,2,...,(g+1)/2 and with a,f"“)” = —1. Also, from [9,
Section 75] Q,, N H(3,4%) = B; N H(83,¢%) = &; for each i. The remaining
(g + 1)/2 quadrics, say Qb,,Qb,) Qb2 are such that H(3,¢%) N Qy, is
a hyperbolic quadric Z; embedded in a Baer subgeometry S; = PG(3, q) of
PG(3,q2), fori = 1,2,...,(g + 1)/2 and with b*V/% = 1. Also, from [9,
Section 75] S; N H(3,q%) = Z; for each ¢, whereas Qs, N H(3, q?) consists
of 2¢® + ¢° + 1 points lying on 2(g + 1) generators. These generators are
partitioned into two (extended) subreguli, actually the subregulus and its
opposite of the hyperbolic quadric Z;. Notice that all Baer subgeometries
B; and S;, where i € {1,2,...,(¢ + 1)/2}, share the Baer subplane =
containing the Baer conic C and the point P = #* = (1,0,0,0).

With the notation introduced above, set

(g+1)/2 (g+1)/2
B= (

Uzvu U s,-)\{c'}.
i=1 i=1

The following lemma proved in [5] plays a crucial role.
Lemma 2.1. Let P be a point of B, then

i) if P belongs to some elliptic quadric &;, then no generator of H(3, q°%)
through P can meet the set B in a further point;

ii) if P belongs to some hyperbolic quadric I;, then no generator of
H(3,q%) through P can meet the set B in a point which does not
lie on the same hyperbolic quadric Z;.

We are interested in the orbits of the group L ~ PSLs(q) stabilizing the
Baer subconic C on the generators of H(3,¢%). We distinguish two cases.
Certainly L has q + 1 orbits of size ¢ + 1 corresponding to reguli of the
hyperbolic quadrics Z;’s, for any i € {1,2,...,(g+1)/2}.

Let P € &;. There are g + 1 generators through P and P” intersects 7 in
a Baer subline external to the conic C. Since L acts transitively on &;\ C,
then |Stabr(P)| = (¢ 4+ 1)/2 and in this case Stabr(P) contains no central
involution. Hence, the set of ¢+ 1 generators through P splits under L into
two orbits of size (g +1)/2. As we have (g + 1)/2 elliptic quadrics &;, from
Lemma 2.1, we have ¢ + 1 orbits of size (g% — g)(g + 1)/2.

Let P € Z;. Then P? meets 7 in a Baer subline which is secant to the conic
C. There are q — 1 generators through P distinct from the two lines of the
reguli of Qp, through P. Again, since L acts transitively on Z; \ C, then
|Stabg (P)| = 2 and in this case Staby (P) contains a central involution. It
follows that the set of ¢ — 1 generators through P splits under L into four
orbits each of size (¢ — 1)/4. In this case we have 2(q + 1) orbits of size

(*+4q)(g—1)/4
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Summing up, we have (g + 1)(¢* + 1) lines, i.e., the total number of gener-
ators of H(3, ¢?).
Specializing to the case ¢ = 7 we found that generators for L are

(1 0 0 0]
0 4 3 2
0 4 3 51|

[0 2 2 0|

[1 0 0 0]
0 001
010 0]/

[0 0 1 0|

(1000‘
0 205
0 4 5 4

| 0 3 5 3|

The new L(7)-hemisystem is obtained using Magma (2] by gluing together
4 orbits of size 8, 8 orbits of size 84 and 4 orbits of size 168. Representative
lines of the orbits of size 8 are:

Ll = ((1v 0a3’5)1 (17 31250», LZ = ((01 1a294)= (1a6)w71w20))’
L3 ={((0,1,5,4),(1,0,w™, w?)), Ly = ((1,6,w?,w?), (0,1, 4,5)).
Representative lines of the orbits of size 84 are:
Ls = {(1,3,4,w"),(1,5,0% w®)), Ls = ((0,1,1,w?"), (1, 1,w?, 1)),
L; ={(1,0, wg,O), (0, 1,0,w39)), Lg = ((1,3,w31,w3°), (1,2,5,w% ),
L9 = ((Lwawzawlz), (1,3,4,0\]44)), LlO = ((lv 01 2,“)26)? (Oa 11w261w28)>a
Lll = ((01 1, 11w23)v (lvwai 21(‘)))! L12 = ((l: 0, 27“’20)9 (1,(«)2,0, w28))’

Representative lines of the orbits of size 168 are

)
)

L1z = {(1,3,1,w),(1,0,w",w?)), L14 = {(1,4,4,3),(1,0,w®,w®)),

Lis = ((0,1,0?,w'%), (1,0,w*,w™)), L16 = ((1,w,2,w33), (1,0, %)),
where w” +6w+3 = 0. The full stabilizer of the new hemisystem is PSLy(7)

(2.
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Remark 2.2. When g = 5 gluing together PSLy(5)-orbits we found again
using Magma {2] just the hemisystems admitting PQ} (5) and 3.A7.2 from
[7]. When g = 9, gluing together PSL(9)-orbits we just found the P2y (9)-
hemisystem from [7]. It might be hoped that focussing on the group
PSLy(7) may equally in the future lead to a generalization to another in-
finite family of hemisystems of (3, ¢2), at least when g = 7*.
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