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Abstract

Given non-negative integers r,s and ¢, an [r,s, t|-coloring of a
graph G = (V(G), E(G)) is a function ¢ from V(G) U E(G) to the
color set {0,1,...,k — 1} such that |c(v;) — ¢(v;)| > r for every two
adjacent vertices v, vj, |c(ei)—c{e;)] = s for every two adjacent edges
ei,ej, and |c{vi) — c(e;)| > t for all pairs of incident vertices v; and
edges e;. The [r, s, t]-chromatic number x;s,¢(G) is the minimum k
such that G admits an {r, s, t]-coloring. In this paper, we examine
[r, s, t}-chromatic numbers of fans for every positive integer r, s and t.
Keywords: [r, s, t]-coloring, [r, s, t]-chromatic number, wheels, friend-
ship graphs, fans

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). A
vertex coloring of a graph G is a mapping ¢ from V(G) to the color set
{0,1,...,k — 1} such that no adjacent vertices receive the same color. An
edge coloring of a graph G is a mapping ¢ from E(G) to the color set
{0,1,...,k—1} such that no adjacent edges receive the same color. A total
coloring of a graph G is a mapping ¢ from V(G) U E(G) to the color set
{0,1,...,k—1} such that no adjacent or incident elements receive the same
color. For each of these colorings, the minimum k that G admits such a
coloring is called the chromatic number x(G), the chromatic index x'(G)
and the total chromatic number x"(G), respectively.

Given non-negative integers r,s and t, an [r, s, ]-coloring of a graph
G = (V(G), E(G)) is a mapping ¢ from V(G) U E(G) to the color set
{0,1,...,k —1} such that |c(v;) — ¢(v;)| > r for every two adjacent vertices
i, V5, |c(e;) — c(e;)| > s for every two adjacent edges e;, e;, and |e(v;) —
c(ej)| > t for all pairs of incident vertices and edges. The minimum k such
that G admits an [r, s, t]-coloring is called the [r, s, t]-chromatic number of
G and is denoted by xr,;,:(G).

[, s, t]-colorings are obvious generalization of all the classical colorings,
because a [1, 0, 0]-coloring is a vertex coloring, a [0, 1, 0]-coloring is an edge
coloring, and a [1, 1, 1]-coloring is a total coloring. Due to these relations to
the classical colorings, there are different applications for [r, s, t]-colorings,
as described in [7].
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First results on the [r, s, t]-coloring are given by Kemnitz and Maran-
gio [7], such as monotonicity properties and general bounds. They also
presented exact values and bounds on the [r,s,t]-chromatic number for
complete graphs, for the cases that at least one of the parameters r,s,t
is 0, and for the cases that two of the parameters r,s,t are 1. Further
results on the [r, s, t]-chromatic number of complete graphs can be found
in [6,9,13]. Moreover, Kemnitz, Marangio, and Mihék (8] characterized
hereditary properties of graphs that have an [r, s, t]-chromatic number less
than k, for k = 1,2,3 as well as for £ > 3 and max{r,s,t} = 1. Other re-
sults on the [r, s, t]-chromatic number are presented in [1,2,5,11-13], where
exact values and bounds are proved for some graphs and graph products.

Let n be a positive integer. A fan F), of order n + 1 is a graph obtained
by connecting a single vertex to all vertices of a path P, of order n. A
fan F, is called even or odd if n is even or odd, respectively. Fans play an
important role in coloring problems (3,4, 10, 14].

In this paper, we aim to investigate [r, s, t]-chromatic numbers of fans
for any positive integers r, s and ¢.

We first recall the following notations and definitions. The maximum
degree of G is denoted by A(G). The three conditions of an |[r, s, t]-coloring
of G between the colors of vertices and edges are denoted by r-condition,
s-condition and t-condition, see [1]. A friendship graph C’én) is a graph
obtained by taking n copies of the cycle graph C3 with a vertex in common,
and a wheel W,, of order n + 1 is a graph obtained by connecting a single
vertex to all vertices of a cycle graph C,, of order n, see [4]. We need the
following lemmas from [7] and [11] to study [r, s, t]-colorings of fans.

Lemma 1.1. ( [7]) If H C G, then xrs:(H) < Xr,s.t(G).

Lemma 1.2. ([7]) max{r(x(G)—1)+1,s(x'(G)=1)+1,t+1} < xr,:(G) <
r(x(G) 1) +s(x'(G) - 1) +t+1.

Lemma 1.3. ( [11]) If A(G) > 2 and G is class 1, then
(AG)-1)s+1 if s > 2t,

Xrst(G) 2 (AG)-2)s+2t+1 ift<s<2t,
(A(G)-1)s+t+1 ifs<t.

Lemma 1.4. ( [11]) Let C{™ be a friendship graph with A(CS™) > 4. For
min{r, s,t} > 1, the [r, s, t}-chromatic number of c$™ is given by:
(1) if s > 2t, then

2r+1 ifr > ns —t,
Xrot(CS) = { max{2r+1,(2n-1)s+1} if(n—1)s+t<r<ns—t,
2n-1)s+1 fr<(n-1)s+t.

(2) ift <s< 2t then
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ey = [ 2+l ¥r2(n—1)s+t,
Xr,s,t\Cg ") = (2n—-2)s+2t+1 ifr<(n—1)s+t.
(3) if s <t < ns, then

2r+1 ifr>(mn—-1)s+t,
Xrst(CSP) =4 (S)r+(m—1)s+t+1 ifns<r<(n—1)s+t,
(2n—-1s+t+1 if r < ns.

Lemma 1.5. ( [11]) Let W,, be an even wheel and Cg(,") be a spanning
friendship graph of Wa, such that A(Wy,) = A(Cg")) >6. If s >t, then
Xr,s.t(Wan) = Xr,s,6(C§™).

2 The [r,s,t]-chromatic number of fans

In this section we investigate [r, s, t]-colorings of fans for any positive
integers 7, s and t. Let the vertex set and edge set of the fan F, be defined
as follows: V(F,) = {z} U {y]l < i < n} and E(F,) = {zy|l <i <
n} U {y:9i4+1]1 < i < n—1}. Even fans and odd fans are denoted by Fb,
and Fyp 1, respectively. Moreover, let Cy = [¢y min, Cymax] be the color set
used for all the vertices of odd fans Fan41, and Ce = [Ce min, Ce max] the color
set used for the edges {zy;|1 < i < 2n + 1} of odd fans Fo,y;.

We first prove that under some conditions on 7,s and t, the [r,s,t]-
chromatic number of an even fan Fi, is equal to the [r, s, t}-chromatic
number of its largest induced friendship graph Cg").

Theorem 2.1. Let F, be an even fan and 03(") be a spanning friendship
graph of Fon such that A(Fy,) = A(Cs(,")) >4. Ifs>tor, s<t<mns and
r > (n—1)s+t, then Xr.ot(Fan) = Xrae(CM).

Proof. Since 03(“) C F, ¢ Wy, by Lemma 1.1, xr's,t(C:,")) < Xrst(Fon) <
Xr,s,t{Wan). Moreover, according to Lemma 1.5, if s > t and A(Wa,) > 6,
then Xrst(C§™) = Xra,t(Wen). Therefore Xrs:(Fon) = Xr0e(CS™) if
A(F»,) > 6 and s > ¢. Now we consider the remaining cases:

Case 1. A(Fon) >4, s<t<nsandr > (n-— 1)s+t.

By Lemma 1.4, x,,s,t(C:,(.")) = 2r+1. Then we prove X, s.¢:(Fan) = 2r+1.
First, we prove x,st(Fon) < 2r + 1 by construction. Fb, is colored as
follows: ¢(z) = r, c(y;) = 0 and c(y;4+1) = 2r, for j = 1,3,...,2n —
Loelzy) =7 +tc(zys) = r+t+s,-- ,c(Tyan1) = 7+t + (n = 1)s;
c(zyz) = 0,c(zys) = s, ,c(zy2n) = (n — 1)s; c(y;yj41) = c(Y2n—1Y2n) =
T e(Yj+1Yj+2) =7+ s, for j=1,3,...,2n - 3.

For this coloring, the r-condition is obviously fulfilled. Since s < t < ns
and r > (n—1)s+t, it follows that |c(y;y;+1) —c(zy;)| = [r—(r+t)| >t > s,
le(yiyi+1)—clzyir1)| 2 [r—(n=1)s| 2 t > s, |e(yj1Y542) —c(zy;1)] > Ir+
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s—(n—2)s| > s, |e(yj+1¥5+2) —c(TYj42)| 2 [r+s—(r+t+s)| 2 s, as well as
le(yje1) —c(zys1)] 2 12r = (n=1)s| 2 t, [e(yj+1) —c(yj+19542)] 2 |2r—(r+
S)l 2t |C(yj+1) —C(nyJ+l)l 2 l27'—7'| 2t, for aan =1, 3: coey2n—1 The
s-condition and t-condition of remaining cases are also satisfied. Therefore
Xr.s,t(Fan) < 2r + 1. Moreover, the lower bound is proved by Lemma 1.2.
Thus Xrs,¢(Fon) = 2r + 1.

Case 2. A(Fy,)=4and s > t.

Lemma 1.4 presents exact values for the [r, s, t]-chromatic number of
c§2) if s > t. For each case, we color Fy with x,.,s,t(C'gz)) colors.

First, if s > 2t and r > 2s —t,ort < s < 2tandr > s+t Fyis
colored as follows: c(z) = r,c(y1) = c(ys) = 2r,c(y2) = c(ys4) = 0; c(zy) =
T+t c(zys) = 7+t + s,c(zys) = 0,c(zya) = 8 c(y1y2) = t,c(yoys) =
s+t,c(yaya) = 25 +t. Second, if s > 2t and s+t < r < 25 —t, we color
F4 similar to the first coloring, and only recolor the edges zy, and zys:
c(zy;) = 2s and ¢(zyz2) = 3s. Third, if s > 2t and r < s + ¢, we color Fy
similar to the second coloring, and only recolor the vertices z,y; and ya:
c(z) = s+t and c(y1) = c(y3) = 3s. Finally,ift <s < 2tand r < s+t
Fy is colored as follows: c(z) = s + t,e(y1) = c(ya) = 25 + 2t,¢(y2) =
c(yq) = 0; c(zy1) = s + 2t,c(zy2) = 2s + 2t,c(zys) = 0, c(xyq) = s;
c(n1y2) = t,c(y2ys) = s + t,c(ysys) = 25 + t.

For each coloring, the three conditions of an [r, s, t]-coloring of Fy are
fulfilled. Therefore Xr.s¢(Fa) < Xrs(CSD). Moreover, by Lemma 1.1,
Xr,,6(Fa) 2 Xr,8,t(CS?), and therefore Xr,s,e(F1) = Xr,s,:(C5")-

Hence, Xr.s.t(Fan) = Xr,se(CS™) in the considered cases. a

We establish an upper bound for the [r, s, t]-chromatic number of Fs,, if
s<t<nsandr <(n-1)s+t.

Theorem 2.2. Let F, be an even fan with A(Fa,) > 4. Ifmin{r,s,t} > 1,
s<t<ms andr < (n—1)s+t, then xrs¢(Fon) < (2n —2)s+2t + 1.

Proof. We prove the upper bound by contradiction. We color F3, as follows:
e(z) = (n—1)s+t, c(y;) =0, c(yj+1) = (2n—2)s+2t,forj = 1,3,...,2n—1.
e(zy1) = (n— 1)s + 2t,e(xy3) = ns + 2t,- -+ ,c(TYan-1) = (2n — 2)s + 2¢;
c(zy2) = 0,c(zya) = s, -, c(Tyan) = (n — 1)5; c(Y;¥j+1) = c(Y2n-1Y2n) =
(n—1)s+t,c(yj4+1Yj+2) =ns+t, for j =1,3,...,2n—3. For this coloring,
all the required conditions to have an [r, s, t]-coloring are fulfilled. Therefore
Xrst(Fon) £ (2n —2)s+ 2t + 1. O

In the rest of this paper we study [r, s, t]-colorings of odd fans Fon4y
for every positive integer r, s and t. We start by a lemma that is used to
determine [r, s, |-chromatic numbers of odd fans Fz,,1 with A(Fan41) > 5.
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Lemma 2.1. Let Fpny) be an odd fan with A(Fy,y1) > 5. If min{r,s,t} >
1 and s > ¢, then

(Fams1) > 2ns+t+1 ifns<r<ns+t,
XrotlFm+l) 20 or 4t 41 if (n —1)s + max{s — t,t} < r < mns.

Proof. Since x(G) = 3 and x'(G) = 2n, by the r-condition between ¢, min
and ¢, max, and the s-condition between c¢ iy and cemax, it follows that
Cymax = 27 + Cymin and Cemax > 215 + Cemin- If ns < 7 < ns + ¢, we prove
Xr,s,t(F2n41) > 2ns +t + 1 by contradiction. Suppose that there exists an
[, s, t])-coloring on the set of colors {0,1,...,k} with k < 2ns + t. Since
¢(x) is distinct from c(zy;) for 1 < i < 2n + 1, it follows that c(z) < cemin,
c(x) > Cemaxy OF Cemin < C(IB) < Ce max-

First, let ¢(z) < Cemin OF ¢(Z) > Cemax- If ¢(T) < Cemin, due to the
t-condition between c¢(z) and Cemin, Cemin = ¢(z) +t > t. Thus, Cemax >
Cemin + 2ns > 2ns + t. Similarly, if ¢(x) > ce max, then ¢(z) > cemax + 1 >
2ns +t. Therefore k > 2ns + ¢, a contradiction.

Second, let e min < ¢(Z) < Cemax- Since x(G) = 3 and k < 2ns+t < 3r,
it follows that ¢(z) = ¢, min, ¢(Z) = Cymax) OF Cymin +7 < ¢(z) < Cymax — T
If ¢(x) = cymin, then ¢y max = 2r +¢() > 2r + Cemin +t > 27 +t, a contra-
diction. If ¢(x)} = ¢y max, then cemax = ¢(z) + ¢ > 2r + t, a contradiction.
Therefore ¢, min +7 < ¢(2) < Cymax —7- Since Cymax < 2ns+t < r+ns+t,
r < ¢(z) < ns+t. Due to the t-condition between the colors c(z) and c(zy;),
c(zy:) < c(z)—tor c(zy;) > c(z)+t, forany 1 < i < 2n+1. Sincer < ¢(z) <

ns+t, at most n colors of {c¢(zy1), c(zy2), . . ., c(Zy2n+1)} can be less than or
equal to ¢(z) —t and at least n +1 colors of {c(zy1), c(zy2), - ., c(TY2n+1)}
must be greater than or equal to ¢(z) +¢t. Moreover, by the s-condition
among the n+ 1 colors of {c(zy1), ¢(zy2), ..., c(zy2n+1)} which are not less

than ¢(z) + ¢, cemax = ¢(z) + t + ns > 2ns + t, a contradiction.

By a proof similar to the above, we can obtain the second result. O

Next we study [r, s, t]-colorings of odd fans Fy,,; with A(Fznyi) > 5
for every positive integer r,s, and t < ns except in a few cases.

Theorem 2.3. Let Fo, 41 be an odd fan with A(Fany1) > 5. Ifmin{r,s, t} >

1, then

Xr,s,t(F2n+1) =

(2r+1ifs>tors<t<ns, andr >ns+t,

max{2r+1,2ns+t+1} if s> 2t andns<r <ms+t,ort <s <2t and
28<1r<3s—t,ort<s<2, n>3, andns<r<ns+t,

) (L)yr+(n—-1)s+t+lifs<t<nsandns<r <ns+t,

max{2r +t+1,(2n — 1)s + max{s, 2t} + 1}

if s>t and (n — 1)s + max{s — ¢t,t} <r < ns,
(2n — 1)s + max{s,2t} +1 if s > t and r < (n — 1)s + max{s — t,t},
2n-1)s+t+1ifs<t<nsandr<mns.
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Proof. We prove these results independently.
Claim 1: xrs.¢(Font1) =2r+1,if s>tor s <t <ns, and r > ns +1¢.

We prove the upper bound by construction. We consider the following
coloring of Fonyy1: c(z) = 2r, c(y;) = c(y2nt1) = 0 and c(yj41) = 7,
for j = 1,3,...,2n — 1. c(zy;) = ns,c(zys) = (n+1)s,--- ,c(zyons1) =
ons; c(zy2) = 0,c(xys) = s,-- ,e(zyan) = (n — 1)s; c(y;¥;41) = 2r and
c(yj+1¥j+2) =ns, for j=1,3,...,2n - 1.

For this coloring, the r-condition and s-condition are obviously fulfilled.
Since r > ns +t, le(z) — c(zy:)| 2 |2r — 2ns| 2 1, |e(yje1) — e(@Y;+1)] 2
Ir— (n = )s] > ¢, |e(yse1) — ey 2 Ir — 27| > ¢, and |e(ys41) -
c(yj=1yj42)| = Ir—ns| > ¢, foranyi=1,2,...,2n+land j=1,3,...,2n—
1. Moreover, since ¢(y;) = 0 for any j = 1,3,...,2n+1, the color difference
hetween the vertex y; and its incident edges is not less than ns. Thus the
t-condition is verified. Therefore X, s¢(Fans+1) < 2r + 1. Moreover, by
Lemma 1.2, Xrs,t(Font1) = 2r + 1. Hence Xrs,t(F2n+1) = 2r + 1.

Claim 2: Xrs¢(Font1) = max{2r +1,2ns + ¢t + 1}, if s > 2t and ns <
r<ns+t,ort<s<2tand2s<r<3s—t ort<s<2,n2>3 and
ns<r<ns+t.

We prove the upper bound by construction. We color Fp, 4 as follows:
c(x) = max{2r,2ns + t}, c(y;) = c(y2n+1) = 0 and c(y;41) = 7, for j =
1,3,...,2n — 1. c(zy1) = ns,c(zys) = (n+ 1)s, -+ ,c(zy2n41) = 2ns;
c(zy2) = 0,c(Tyq) = 8,--+ , c(zy2n) = (n — 1)8; c(Yjy;+1) = 27, c(y2y3) =
c(yays) = --- = c(y2n—2y2n-1) = (n — 1)s and c(y2nY2n4+1) = 7 + ¢, for
i=13,...,2n—-1.

For this coloring, the three conditions of an [r, s, t]-coloring are fulfilled.
Therefore the upper bound is proved. On the other hand, by Lemma 1.2 and
Lemma 2.1, Xrs.¢(Fons1) = max{2r+1,2ns+t+1}. Hence xrs,¢(Fons1) =
max{2r +1,2ns +t + 1}.

Claim 3: xrs,¢(Font1) Sr+ns+t+1,if s <t <nsand ns <r < ns+t.

We give a coloring of Fo,4) to prove the upper bound. Fs,, ., is colored
as follows: ¢(z) = r+ns+t,c(y;) = c(y2n+1) = 0, and c(y;+1) = ns+1 for
j=13,...,2n—1. c(zy1) = ns,c(zys) = (n + 1)s,-- - ,c(TY2n41) = 2ns;
c(zye) = 0,c(zys) = s, -+, e(xyon) = (n — 1)s; c(y;¥j+1) =T +ns +t and
c(Yyj+1Yj+2) =ns, for j=1,3,...,2n - 1.

For this coloring, the r-condition and s-condition are obviously fulfilled.
Since s <t < ns and ns <7 < ns+t, |c(x) —c(zy)| = |[r+ns+t—2ns| > ¢,
le(y;) = elzy;)l 2 10 — ns| > ¢, |e(y;) — e(y;-195)| 2 10 — ns| > ¢, le(y;) —
c(Ysyi+1)| 2 [0—(r+ns+t)| > ¢, [e(yj+1) —c(zyj+1)] 2 Ins+i—(n—1)s| > ¢,
le(yj+1) —e(¥iyj+1)| 2 Ins+t—(r+ns+t)| 2 ¢, and |c(yj1) —c(yj+1¥5+2)| 2
[ns+t—ns| >t fori=1,2,...,2n+1and j =1,3,...,2n+1. Therefore
the t-condition is also verified. Thus Xy s,¢(Fon41) <T+ns+t+ 1.
Claim 4: xrs:(Font1) = max{2r +t + 1,(2n — 1)s + max{s, 2t} + 1}, if
s>tand (n—1)s + max{s —t,t} <r < ns.
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We prove the upper bound by construction. We color Fb,,; similar to
the coloring of Claim 2, and only recolor the vertex z, as well as the edges
TYan+1 and y;y;4 for j =1,3...,2n—1. First, if (2n—1)s+max{s—t,t} <
2r < 2ns, then c¢(z) = 2r and c(zy2n41) = c(y;y;+1) = 2r +¢. Second,
if 2(n — 1)s + max{2s — 2¢,2t} < 2r < (2n — 1)s + max{s — ¢,t}, then
c(z) = (2n — 1)s + max{s — t,t} and c(zy2nt1) = c(y;yj+1) = (2n — 1)s +
max{s,2t}. For each coloring, the three condition of an [r, s, t]-coloring are
fulfilled. Therefore the upper bound is proved. Moreover, the lower hound
is easily obtained by Lemma 1.3 and Lemma 2.1. Hence Xy s¢(Fon+1) =
max{2r +t + 1, (2n — 1)s + max{s, 2t} + 1}.

Claim 5: xrs,(F2n41) = (2n — 1)s + max{s,2t} + 1, if r < (n — 1)s +
max{s — t,t}.

First, if s > 2t and r < ns — ¢, we color Fy,41 as follows: c(z) =
ns —t,¢(y;) = c(Yans1) = 0 and c(y;41) = 2ns, for j = 1,3,...,2n — 1.
c(zy1) = ns,c(zys) = (n +1)s,-++ , c(TY2n41) = 2ns; c(zy2) = 0,c(zYs) =
8-+, e(xyen) = (n = 1)s; c(y1y2) = (2n — 1)s and c(yiyi1) = (L - 1)s,
for 1 =2,3,...,2n. Second, if t < s<2andr < (n—1)s+¢, Fonyy
is colored as follows: c(z) = (n — 1)s + t,c(y;) = c(y2nt+1) = O and
c(yj+1) = 2n —1)s+2t, for j = 1,3,...,2n — 1. c(zy;) = (n — 1)s +
2, czys) = ns +2t, -+ ,c(zyans1) = (20 — 1)s + 2 clayz) = 0, c(ays) =
8,y &(Ty2n) = (n—1)s; c(y1y2) = (2n—2)s+2t and c(yiyi41) = (I-1)s, for
1 =2,3,...,2n. For each coloring, all the required conditions of an [r, s, t]-
coloring are fulfilled. Therefore Xr,s,t(Fan+1) < (2n — 1)s + max{s, 2t} + 1.

On the other hand, the lower bound is easily obtained by Lemma 1.3.
Hence xrs,¢(Fan+1) = (2n — 1)s + max{s, 2t} + 1.

Claim 6: x,s,.:(Fony1) =2ns+t+1,ifr <nsand s <t < ns.

If r <nsand s <t < ns, Fyuyy is colored as follows: ¢(z) = 2ns +
t, c(y;) = c(y2ns1) = 0 and c(yj41) = ns+ ¢, for j = 1,3,...,2n — 1.
c(zy1) = ns,c(zys) = (n+1)s,- -, c(xYan+1) = 2ns; c(zyz) = 0,c(zys) =
8-+, ¢(TY2n) = (n—1)s; c(y;¥;41) = 2ns+t and c(yj+1Y;4+2) = ns, for j =
1,3,...,2n—1. For this coloring, the three conditions of an [r, s, t]-coloring
are fulfilled. That is, Xy s,¢(Fant1) < 2ns+t+1. Moreover, by Lemma. 1.3,
Xr,s,t(Fant1) 2 2ns 4+t + 1. Hence xrs¢(Font1) = 2ns +t + 1. a

Note that we give exact values and an upper bound in one case for the
[, s, t]-chromatic number of odd fans Fy,; with A(Fyp1y) > 5 for every
positive integer r, s, and ¢ < ns except the case that n =2, t < s < 2t and
3s—t<r<2s+t. Whatis x,s,(F5) ift <s<2tand 3s—t <7 < 25 +17?

In the last part of this paper we study [r, s, t|]-colorings of fans F3 which
are isomorphic to complete graphs K, without an edge, for every positive
integer r, s and t. We first establish a lower bound for the results in Theorem
2.4 in the next lemma.

Lemma 2.2. Let F3 be an odd fan with A(F3) = 3. If min{r,s,t} > 1,
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s>t and max{s—t,t} <r<s+t,aswellass <tandt <r <s+t, then
Xrst(F3) 2r+s+t+1.

Proof. We prove the lower bound by contradiction. Suppose that there
exists an [r, s, t]-coloring of F3 on the color set {0, 1,...,k} with k < r+s+t.
Since x(F3) = 3, there are at least three relations between the color ¢(z)
and the color set Cy: ¢(T) = Cymin, ¢(Z) = Cymax, OF Comin + 7 < ¢(z) <
Comax — 7. Furthermore, if e(z) > ¢ymin + 37, we deduce a contradiction
similar to the case that c(z) = cymax- Thus we only consider the three
relations mentioned above in the following proof.

We first consider the case that max{s,t} < r < s +t. Since c(z) is
different from c(zy;) for 1 < i < 3, we distinguish the following two cases:
Case 1. c(z) is in C, (i.e. Cemin < ¢(T) < Cemax)-

As argument in Lemma 2.1, if ¢(2) = ¢y min OF ¢(Z) = Cymax, k > 2r+t >
r + s +t, a contradiction. Therefore cymin +7 < ¢(z) < Cymax — 7. Since
k<r+s+t,r <c(r) <s+t. By the t-condition between the colors ¢(x)
and c(zy;) for 1 < i < 3, at least two colors of {c(xy1), c(zy2), c(zy3)} are
not less than ¢(z) +t. Thus cemax = ¢(z)+t+s > 74 s+t, a contradiction.
Case 2. ¢(z) is not in C, (i.e. ¢(Z) < Cemin OF €(Z) > Cemax)-

Fact, ¢(z) = cymin OF ¢(Z) = Cymax- If Comin +7 < () < Comax — T,
Cemax = 25+ Cemin = 25+ c(z) +t > 25+ 1 4+t if ¢(T) < Cemin, and
Comax 2 T+¢(T) > r+Cemax+t = r+2s+t if ¢(T) > Cemax, a contradiction.

First, let ¢(z) = cymin- If ¢(z) > Cemax, then cymax = 27 + Cemax + 2
2r + 2s + t, a contradiction. Thus ¢(z) < cemin. Thent < c(x) +t <
Cemin <T+t—sand 2s+¢t < cCemax <T+s+t. s+t <clzy)) <r+t
or s+t < c(zys) < r +t. Without loss of generality, assume that s +¢ <
c(zy1) <r+t. Then c(Ty2) = Cemax and ¢(zy3) = Cemin, OF c(Ty2) = Cemin
and ¢(zy3) = Cemax. Since k < 7+ s+t < 3s + ¢, it follows that s +¢ <
c(yoys) < r+t. Since max{s,t} <r < s+t, c(y2) = s+2t or ¢(ya) > s+2t.
Thus ¢, max > 7+ s + 2t, a contradiction. If s+t < ¢(zys) < 7+ ¢, without
loss of generality, assume that c¢(zy1) = Cemin and c(zys) = Cemax. It
follows that 25+t < c(y1y2) < r+s+t. Since max{2s,2t} < 2r < r+s+t,
c(y1) 2 25+ 2t or c(y2) = 2s + 2t, a contradiction.

Second, let ¢(z) = cymax- If ¢(z) < Cemin, then cemax = 25 + Cemin =
2s +c(z) +t > 25 + 2r + ¢t, a contradiction. Thus ¢(z) > cemax. Since
c(x) <r+5+t,25<Cemax <T+sand 0 < cemin <7—5. If s Celzyr) <7
or s < ¢(zy3) < r, without loss of generality, assume that s < c(zy) < 7.
Then ¢(y;) < c(yz). Otherwise, c(z) > r+c(y;) 2 r+c(zyr) +t > 745+,
a contradiction. If s > tand s < 7 < s+, since r < ¢(y2) < s+ ¢,
at least two colors of {c(zy2), c(y1¥2), c(y2y3)} are not less than c(y2) + ¢.
Therefore at least one color of {c(zy2),c(v1y2),c(y2y3)} is not less than
r + s +t, a contradiction. If s < t and t < 7 < s + ¢, since c(y1) < c(y2)
andc(z) <7 +s+t<2r+t, 0L c(yy) <t Thent < ¢(zy;) < r and
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s+t <c(rys) <r+s. Since ¢(z) <7+ s+t < 3r, c(y3) < c(y2). By the
s-condition between the colors c(y2y3) and c(zy2), c(y2ys) and c(zy3), and
the t-condition between the colors c(y2ys) and c(y3), 25+t < c(zys3) + s <
c(yays) < r+s+tort <clys)+t < clyeys) Seclzyz) —s <7 Ift <
c(yay3) <1, then c(z) > r+c(ya) > r+c(y2ys) +t > r+2¢, a contradiction.
If 2s +t < c(y2y3) < r+ s+t then s+t < clzy;) +s < c(nyz) <
c(y2ys) —s < r+t. Thus c(z) > 7+ c(y2) > 7 +c(yryz) +t > r + s+ 2t,
a contradiction. If s < ¢(zyy) < 7, without loss of generality, assume
that ¢(zy1) = Cemin and ¢(zy3) = Cemax- Then c(y2) < c(ys). Otherwise,
c(z) 2 r+c(y2) 2 r+c(xy2) +t > r+ 5+ ¢, a contradiction. If s > 2t and
s<r<s+t,andt<s<2tand s<r<2s—t thenk<r+s+t<3s.
Thus 0 < c(yoys) < r—s. Ift < s<2tand2s—t < r < s+t then
T+t <c(ys) +t < clzys) <r+s. Sincek<r+s+t 0<c(yys) <7 —s.
Since c(y2) < ¢(y3), c(y2) = t. Thus ¢(z) > 2r + ¢, a contradiction. If s < ¢
and ¢t <r < s+t since r < c(ys) < s+t, e(zys) > c(ys) +t >+t Thus
c(z) > c(zys) +t >+ 2t > r + s+ t, a contradiction.

Now we consider the case that s > t and max{s —¢,t} < r < s. As
argument in Lemma 2.1, if ¢(z) is not in C,, then k > 25+t > r + s + ¢,
a contradiction. Therefore ¢(z) is in Ce. If ¢ymin +7 < ¢(z) € Cymax — 7
by an argument similar to the case that max{s,t} < r < s+, we can
deduce a contradiction that cemax = r + s + t. Therefore ¢(z) = ¢y min or
C(.’l?) = Cy max-

First, let c¢(z) = ¢ymin- Since ¢(z) > Cemin and k < r + s + ¢, it
holds that ¢t < ¢(z) < s+t —r and max{s + 2£,2s} < Cemax < 7 +
s+t If max{s,2t} < c(zy1) < r +t or max{s,2t} < c(zy3) < r +t,
without loss of generality, assume that max{s, 2t} < c(zy;) < r +¢t. Then
c(zy2) = Cemax and ¢(zy3) = Cemin, OF C(:l?yg) = Cemin and ¢(TY3) = Cemax-
Since k < r+ s+t < max{3s,2s + 2t}, s < c(yoy3) < r +t. Since
max{s,2t} < r+t < s+t c(y2) = s+t or c(yz) > s+ t. Therefore
Cymax = T + 5 + ¢, a contradiction. If max{s,2t} < c(zys) < r + ¢, without
loss of generality, assume that c(zy1) = Cemax and c(zy3) = Cemin- Then
max{2s, s+2t} < c(yays) < r+t+s. Since max{3t,2s—1t} < 2r+t < 2s+t,
c(y2) = max{s + 3t,2s + t} or c(y3) > max{s + 3t, 2s + t}, a contradiction.

Second, let ¢(z) = cymax- Then 0 € Cemin < 7+t —s and 25 < Cemax <
r+t+s. If s <elzy)) <r+tors<e(zys) <+t by a proof similar
to the above case that ¢(z) = ¢, min, We can deduce a contradiction that
c(z) > 7+ s +t. Therefore s < c(zy2) < r + t. Without loss of generality,
assume that c(zy;) = cemax and ¢(zy3) = Cemin. Since k < r + s+t < 3s,
0 < c(y1y2) < r+t—s. Then ¢(y;) > tor ¢(yz) > t. Therefore c(z) > 2r+t,
and therefore ¢, max > ¢(x) +¢ > 2r + 2t > r 4+ s + t, a contradiction. O

Theorem 2.4. Let F3 be an odd fan with A(F3) = 3. If min{r,s,t} > 1,
then

271



2r+1 ifr>s+t,

r4+s+t+1 if s >t and max{s —¢t,t} <r <s+t,

Xr,s,t(F3) = ors<tandt<r<s+t,
max{s,2t} +s+1 ifs>t and r < max{s —t,t},
(LD)s+2t+1 ifs<tandr<t.

Proof. We prove the following results on fans F3.
Claim 1: x,:(F3) =2r+1,ifr > s+t

If s > t, by a proof similar to Claim 1 in Theorem 2.3, Xxr,s,:(F3) = 2r+1.
If s < t, by Lemma 1.2, xrs,:(F3) > 2r + 1. We color F3 as follows: c(z) =
2r, c(y1) = c(ys) = 0 and c(y2) = 7; c(zy1) = t,c(zy2) = 0,¢(zys) = s + ¢;
c(y1y2) = 7+t and c(y2y3) =7 +t + s. We can deduce that the proposed
coloring is an [r, s, t]-coloring. Thus Xr,s,:(F3) = 2r + 1.

Claim 2: xrs:(F3) =7+s+t+1,if s >t and max{s —¢,t} <7 < s+,
ors<tandt<r<s+t.

If s > tand s < r < s+t, then F3 is colored as follows: ¢(z) = r+s+t,
c(31) = c(ys) = 0 and c(y2) = s +t; c(zy1) = s,¢(zy2) = 0,¢(zYs) = 2s;
c(y2) =7+ s+t and c(yoys) = s. If s >t and max{s —¢,t} <7 <,
then Fj is colored as follows: c(x) =7, c(y1) = c(y3) = 0 and c(y2) =7 +s;
e(zyr) = 7+ t,c(zye) = 0,c(zys) = r+t+ s c(y1ye) = 7+ s+t and
c(yoys) = s. If s < tandt <7 < s+t then F3 is colored similar to
the coloring of Claim 1, and only use the color r + s + ¢ to recolor the
vertex z. For each coloring, the three conditions of an [r, s, t]-coloring are
fulfilled. Therefore Xrs:(F3) < 7+ s+t + 1. Moreover, by Lemma 2.2,
Xrst(F3) 27+ s+t+ 1. Thus xrst(F3) =7+s+t+ 1.

Claim 3: X, s:(F3) = max{s,2t} + s+ 1, if s >t and 7 < max{s —t,t}.

If s > t and r < max{s — t,t}, then F; is colored as follows: c(z) =
max{s — t,t}, c(y1) = c(y3) = 0 and c(y2) = max{s — t,t} + s; c(zy1) =
max{s, 2t},c(zyz) = 0,c(zys) = s + max{s,2t}; c(y1y2) = s + max{s, 2t}
and c(yoy3) = s. For this coloring, the three conditions of an [r, s, t]-coloring
are fulfilled. Therefore x,s,(F3) < max{s,2t}+s+1. Moreover, by Lemma
1.3, Xr,s,t(F3) > max{s, 2t} + s + 1. Thus x»s,(F3) = max{s, 2t} + s+ 1.
Claim 4: x,,(F3) <s+2t+1,ifs<tandr<t.

If s < tand r < t, then Fj is colored as follows: ¢(z) =t, ¢(y1) = c(y3) =
0 and ¢(y2) = s+ 2t; c(zy1) = 2¢,c(zy2) = 0, c(zys) = s+ 2¢; c(y1y2) = ¢
and c(yay3) = s +t. For this coloring, all the required conditions of an
[, s,t)-coloring are satisfied. Thus Xy ,.(F3) <s+2t+1. O
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