FULL FRIENDLY INDEX SETS OF SPIDERS

HIU-FAI LAW

ABSTRACT. We determine the full friendly index sets of spiders and
disprove a conjecture by Lee and Salehi [4] that the friendly index
set of a tree forms an arithmetic progression.

1. INTRODUCTION

Let G be a finite graph and A be an abelian group. A vertex labelling F
is a function F': V(G) — A. The induced edge labelling f : E(G) — A
is defined by f(uv) = F(u) 4 F(v) for each uv € E(G). A vertex labelling
F is called friendly if [F~!(a)| and |F'~!(b)| differ by at most one for all
a,b € A; i.e. the vertex classes are all about the same size. A friendly
labelling F is called A-cordial if |f~?(a)| and |f~1(b)| differ by at most one
for all a,b € A; i.e. the edge classes are all about the same size. A graph
that admits an A-cordial labelling is called A-cordial, or simply k-cordial if
A=1Z.

Cordial labelling was first introduced as a weakened version of graceful
labelling by Cahit (1], who showed that all trees are 2-cordial. Since then
cordial labellings have been extensively studied. In particular, Hovey [2]
showed that all trees are k-cordial for k = 3,4,5 and for each k provided
a finite test whose passing shows that all trees are k-cordial. Moreover,
Hovey proved that a tree on n vertices is k-cordial for & > 2(n—-1) and
conjectured that any tree is k-cordial for all k.

When A = Z,, Lee and Salehi [4] generalize the concept of cordiality
to friendly index sets. Each friendly labelling gives rise to an equitable
bipartition of V(G), that is, a bipartition into Vg U V; such that ||Vp| —
IVill < 1. The full friendly indez set FFI(G) of G is the set of differences
e(Vo, V1)—(e(Vo)+e(V1)) over all equitable bipartitions VoUV; of G, whereas
the friendly indez set FI(G) is the set of absolute value of the differences.
Thus, G is 2-cordial if 0 or 1 is in FI(G).

Equivalently, we shall work in terms of cutsize, namely, let
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C(G) = {e(Vo, V1) | Vo U W is an equitable bipartition of G}.

Then FFI(G) = 2C(G) — e(G). We say that s is attainable if there is an
equitable bipartition Vo U V) with e(Vo, V1) = s, i.e. s € C(G). While it is
easy to get a cut of any size in a tree, there need not be an equitable cut
of every size.

As an example, we consider the simplest tree. See Lee and Salehi [4].

Proposition 1. C(P,) = [n —1].

Proof. Let E(P,) = {v1v2,v2v3, -+ ,Un-19n}. It is clear that 1,n~1 €
C(P,), so that we need only to show that 2 < k < n — 2 is attainable.

We first prove by induction that C(P,) = [n — 1] for even n. There is
nothing to prove for n = 2. Consider Pp42. For each 2 < k < n, we extend
the equitable bipartition of P, attaining k — 1 by putting vn41 in the same
class as v, and vn42 to an equitable bipartition of Pr2 with k cross-edges.

For odd n, since 1 < k € n — 2 is attainable in the even P,_,, each i
between 2 and n — 1 is attainable in P,. 0O

By Proposition 1, FI(P,) forms an arithmetic progression. More gener-
ally, Lee and Salehi [4] (see also [3]) conjectured the following.

Conjecture 2. For any tree T, FI(T) forms an arithmetic progression.

The stronger statement that FFI(T) forms an arithmetic progression
is clearly false. For example, consider H obtained by joining the cen-
tres of two K3 by an edge. Then C(H) = {1,3,4,5,7} and FFI(H) =
{-5,—1,1,3,7} but FI(H) = {1,8,5,7}.

In Section 2, we determine the full friendly index sets of spiders. In par-
ticular, we show that if G is a spider then FI(G) is an arithmetic progression
with difference 2. In Section 3, we disprove Conjecture 2 by providing an
infinite family of counterexamples.

2. FULL FRIENDLY INDEX SETS OF SPIDERS
In this section, we compute the friendly index sets of subdivided stars

otherwise known as spiders. For k € N and positive integers n; 2 n2 2
-+ > ny (we also write n(i) for n;),let N =1+ Z:-;l n; and

J
m=min{j12nizt-’:‘;’-1}, m=n-1- L),
i=1
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where | = |{i | n; is odd}|. A spider G = S(ny,---,ny) is obtained by
identifying the leaves of the star K ; with endvertices of paths. More
precisely, let E(Ky ) = {vvy,vva,: - ,vvx}. The edge vv; is replaced by
a path on n; + 1 vertices, namely, (v,z; = z;;, Tig, - - - »Tin(i) = ¥i). We
shall refer to this path as leg i and denote the path from z; to y; by
P(3). Thus, |G| = N. An equitable bipartition V, U V; is called mazimum
(resp. minimum) if e(Vo, V1) = max C(G) (resp. min C(G)) and an edge in
E(Vo, V1) is called a cross-edge, otherwise, it is an in-class edge.

Proposition 3. min C(G) = m and maxC(G) = M.

Proof. Let v € V. Suppose min C(G) < m. Then at most m — 1 legs have
vertices in V;. Hence, for some S C [k],|S| =m -1,

m—~1 N
Ml< m <Y m<|F)

i€S i=1

Thus, VoUV; cannot be an equitable bipartition. To attain m, we put P(7)
in V; for 1 <4 <m—1, and the last a > 0 vertices of P(m) in V; where

M+ +np-1+a= I_N/QJ

Next, consider a maximum equitable bipartition of G. Let A,B C (%]
such that ¢ € A if P(i) has a; > 0 more vertices in V; than Vj, j € B if
P(3) has b; > 0 more vertices in Vj. Since we have an equitable bipartition
of G, |Yicaai —(1+ >_jen bi)l < 1. Moreover, we may assume z; € V;
and z; € Vp to maximize the size of the cut. Thus, we have

(Vo Vi) < Y (ni—ai+1)+Y (s—b)+ 3 n,

i€A jeB pgAUB
= N—I—Z(ai—l)—ij
i€A JEB
< N-1-) b <N-1-(B|
jEB !

As there are [ odd paths, at least [ paths have a positive imbalance. Hence,
we minimize |B| subject to 0 < |A| — [B] < 2 and |A| + |B] > ! which
has the solution |B| = ||!5}|]. On the other hand, M can be attained via
greedily attaching legs one at a time while keeping the bipartition equitable
at every step. : a

Proposition 4. C(G) = [m, M].

Proof. We separate the proof into two cases depending on whether there is
a leg of length 1 or not.
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(1) ng > 2: We first show that [k, N -1 ~k] C C(G) by exhibiting
equitable bipartitions of G in which for each 1, P(z) is also par-
titioned equitably and such that leg ¢ contributes ¢; cross-edges
where 1 < ¢; < n; — 1. This relies on the fact that the endvertices
of P(i) in an equitable partition attaining odd ¢; lie in different
classes. If ¢; is even, then we take an equitable bipartition of P(7)
attaining ¢; — 1 and make use of the edge incident with v. We add
one leg at a time and keep the partition equitable. More precisely,
let VO = {v},VP? = 0. For i > 1, iterate the following:

(a) ¢; odd: Let S*UT" be an equitable bipartition of P(3) attaining
c; such that |T%| > |S¢|.
() [Vt > V5| Let Vg = V§~'US* and Vj = V{~'UT",
where z; € St.
(i) [Vi~1| < |Vi~!): Let V§ = V¢~ 'UT and Vff = V{~1US",
where z; € T*.

(b) c; even: Let S*UT" be an equitable bipartition of P(¢) attain-
ing ¢; — 1 such that |T%| > |S¥.
(@) [VE~Y > |ViY: Let Vg = Vg~ 'uStand Vi = Vi~ 1UTY,
where z; € T".
(if) (Vi < [Vi~}}: Let Vi = V§~'UT" and V§ = Vi 1US",
where z; € S*.

To cover [m, k], we alter the minimum equitable bipartition in
Proposition 3 by forcing each leg to contribute an edge. Introduce
an ordering on the set of L%J — m non-leaf-vertices in V; as

(zl,"' 3 21,T2y "0 322, 3 Tm—1,""" 1Zm—1Tmby" " ,Zm),

where z; = Z; n(i)-1 and Tmp is the first vertex of leg m in V;. Let
L = (Yx,Yk—1,"** »Ym+1) be an ordering of the leaves in Vo. For
1 < a < k — m, exchange the first a leaves in L with the first a
non-leaf-vertices in V;. This gives an equitable bipartition attaining
m + a. We would not run out of vertices in ¥}, since nx > 2, which
in turn implies a < k—-m < (&} —m.

To cover [N — k, M], we alter the maximum equitable biparti-
tion in Proposition 3. It suffices to construct equitable bipartitions
where legs that contribute n; cross-edges in the maximum bipar-
tition now contribute an edge fewer. If n; is even, we join v to y;
instead of z;. If n; is odd, then |P(i) N Vj| = (n; + 1)/2. Replace
the equitable partition of P(i) with the one attaining n; — 2 with
;,Ti 2 in Vi. Then we still have |P(i) N V4| = (n: + 1)/2, so that
the resulting partition of G remains equitable. Moreover, with vz;,
leg i now contributes n; — 1 cross-edges.
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(2) ng—g > ng_g4y = 1 for some g > 0: Let G/ = S(ny, -+ ,ng_g)
and suppose there are [ odd values among these n;’s. We construct
equitable bipartitions of G as follows.

Given an equitable bipartition of G’ with cutsize s, we evenly
distribute the legs of length 1 to V, and V4, namely, put the h =
[(g +1)/2] leaves Ly = {x, k-1, - ,Zk—p+1} to V; and the rest
{Zk—g, -+ yzk-n} to Vy. Note that there are s + h cross-edges in
this bipartition.

Clearly, if g is even, we have an equitable bipartition of G. On
the other hand, observe that in Case (1), all values s € C(G') are
attained with partitions such that v is never in the smaller class
unless > 0 is even and s = max C(G'). Thus, unless g is odd and
! > 0 is even, our partition is equitable for all s € C(G’). Moreover,
by checking the parities of g and I, we have maxC(G’) + h =
max C(G). Thus, we have [min C(G’) + h,max C(G’) + h] c C(G).

When [ > 0 is even and g is odd, the same construction yields
an equitable bipartition of G for s up to max C(G’) — 1. Note that
in this case, max C(G) = maxC(G’) — 1 + h. Hence, we also have
[min C(G’) + h,max C(G)] C C(G).

We now proceed to show that cutsizes from min C(G') + h down
to min C(G) are attainable. Starting from our minimum equitable
bipartition of G’, we transfer the legs of length 1 from V; to Vj
one by one. Indeed, suppose j = min C(G’) is the maximum index
for which P(j) has vertices in Vy and z;, is the last vertex in Vp.
Introduce an ordering of the vertices in V; as

(mj,qamj.q—l,"' y s Yjdls ot sy Tj41y yYk—g,y vxk—g7v)'

For any 0 < a < h, we exchange a vertices from L, with the first
a vertices of Vo N V(G’). Whenever it is the turn of y; to be put
into V3, we have the same number of cross-edges. Otherwise, we
decrease the number of cross-edges by one. Proceeding all the way
to our minimum equitable bipartition, we attain all values down to
min C(G).

O

Corollary 5. Let a = N — 2| N/2|. Then FI(G) = {a, a+2, a+4, -,
max{|2m — N + 1,|2M — N + 1|}}.
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FIGURE 1. Above: equitable bipartitions of 5(3, 3,2, 2) at-
taining 2 to 10 cross edges; below: equitable bipartitions
of 5(3,3,2,2,1,1,1) at the extremal ends from bipartitions
of 5(3,3,2,2). e — Vp50 -V

3. COUNTEREXAMPLES TO CONJECTURE 2

The conjecture of Lee and Salehi [4] says that the friendly index set of a
tree forms an arithmetic progression. We shall construct an infinite family
of caterpillars as counterexamples.

A caterpillar is a graph formed by identifying the vertices of a path by the
centres of stars. Given a path (vy,v9,- - ,vx) and integers ny,ng,- - , Nk 2
0, a caterpillar is constructed by identifying v; with the centre of the star
Ky ni)-

Our family of caterpillar is defined as follows. For an integer k > 3, let
R(k) be the caterpillar obtained from the path Ppx on 2k vertices with ng =
Nk—1 = Nk = ngk—1 = 1 and n; = 0 for all other i. That is V(R(k)) = PUA
where P = {v1,v2, - ,v2x} and A = {re,Tk=1,Tk,T2x—1} and E(R(k)) =
{v,-v,-.,.l |i=1,2,--- , 2k — 1} V) {vjrj I ji=2k—1,k2k - 1}. Let B =
{v2,vk—1, vk, v2k—1}. The following proposition disproves Conjecture 2.

Proposition 6. For k > 4, 2k —3,2k—1,2k+3 € FI(R(k)) and 2k +1 ¢
FI(R(k)).
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Proof. Let R = R(k). To show that 2k — 3,2k — 1,2k + 3 € FI(R), it
suffices to construction equitable bipartitions attaining 2k,2k + 1,2k + 3
cross-edges respectively. Before that, we observe that in any bipartition
of Vg U VY of Py with v; € V and exactly one in-class edge e, we have
vor € V4 and either

(3.1) Vil=k+1,|V/|=k-1 ifecE(V])or
Vol =|¥/|=k  otherwise.

We now show that 2k + 3,2k + 1, 2k € C(R).

(1) 2k + 3 € C(R): Take a maximum equitable bipartition Vo UV of
Pai with v; € V5. Hence, v; € V{ and vpk—; € V. Moreover, as
Vg1, Vx lie in different classes, it follows that Vg N Bl = 2. Hence,
we may extend the partition by attaching the leaves in A to attain
2k + 3 cross-edges.

(2) 2k +1 € C(R): Let V§ UV/ be a partition of Py with 2k — 2
cross-edges and both vox_y, v2x € V§. By (3.1), |V§| = k+ 1. Then
Ww=WU{r}and ; = V/U {rk-1,7k, 7261} is an equitable
bipartition of R with 2k + 1 cross-edges.

(3) 2k € C(R): Let j be the smallest odd integer at least k. Let
Vo U V] be a partition of Py with 2k — 2 cross-edges such that
{vi,v5,v9;.1} € V4. By (38.1), |[Vg| = k+ 1. It is easy to check
that Vo = Vj U {rx_1} and V] = VI U {re, 1,21} for k odd;
Vo =VjU{r} and V; = V] U {r2,7k-1,72k-1} for k even is an
equitable bipartition of R with 2k cross-edges.

It remains to show that 2k+1 ¢ FI(R) which is equivalent to 1,2k +2 ¢
C(R). As there is no edge disconnecting R to components of equal orders,
1 ¢ C(R). Suppose 2k + 2 € C(R). Let Vo UV; be an equitable bipartition
with e as the only in-class edge. Note that e cannot be incident with a
vertex in A, for the only way to have e = v;r; is to change the maximum
equitable bipartition of R by putting 7; to the same partition as v; which
clearly upsets the bipartition. Hence, P must be partitioned with 2k — 2
cross-edges, so that vy, vy, lie in the same class, say, Vq.

(1) Ifee E(Vp), then Vo nPl =k+1. Asv,vy € Vo, v2,vor_1
cannot both be in V. If v,vot—y € Vi, then 73,7051 € V; so
that [Vo| > k+3 > k + 2 = |R|/2 which is a contradiction. On
the other hand, if vy, vor_; lie in different classes, then either vyv;
Or vox_1vgk is the in-class edge. Hence, r9,795_; are in different
classes. The same is true for the pairs (vk—1,vk) and (rg—1,7%).
Hence, |Vp N A| = 2, so that |Vo| = k + 3.
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(2) If e € E(Vi), then [Vo N P| = k. Hence, vz,v2k-1 € V, and
r9,T2k—1 € Vo. Moreover, Tk1,Tk cannot both be in V) because
vk_1, vk cannot both be in V5. Again, we have |Vo| = k + 3 which
is not allowed by an equitable bipartition.

0

/ANNAN

FIGURE 2. Counterexample R(5) to Conjecture 2: above,
nonequitable partition with cutsize 12; below, equitable
partitions with cutsize 10,11,13. o — Vojo -V

4. CONCLUSION

We have shown that the friendly index sets of spiders form an arithmetic
progression with difference 2. This is also true for some other families of
trees whose friendly index sets form arithmetic progressions, see [4]. This
suggests the following.
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Question 7. Suppose that the friendly index set of a tree forms an arith-
metic progression. What could the difference be?
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