k-Connected Graphs Without K_4^-

Xiang-Jun Li¹

School of Information and Mathematics Yangtze University Jingzhou, Hubei, 434102, PR China

Abstract

Let K_4^- be the graph obtained from K_4 by deleting one edge. If G doesn't contain K_4^- as a subgraph, G is called K_4^- -free. K.Kawarabayashi showed that a K_4^- -free k-connected graph has a k-contractible edge if k is odd. Further, when k is even, K.Ando et.al showed that every vertex of K_4^- -free contraction critical k-connected graph is contained in at least two triangles. In this paper, we extend the result of K.Kawarabayashi and get a new lower bound of k-contractible edges in a K_4^- -free k-connected graph when k is odd. In addition, we give some characters and properties to K_4^- -free contraction critical k-connected graph, and prove that this graph has at least $\frac{2|G|}{k-1}$ vertices of degree k.

Keywords: K_4^- -free ; Contractible edge; Contraction critical k-connected 2008 MSC: 05C40

1. Introduction

In this paper, all graphs considered are finite, undirected, and with neither loops nor multiple edges. Basically, we follow the terminology of J.A.Bondy [2]. Let G = (V, E) be a graph with the vertex set V and the edge set E. For a vertex $v \in V$, we write N(v) for the neighborhood of v, d(v) = |N(v)| denotes the degree of v in G. E(v) denotes the set of the edges incident to v. For a subset $S \subseteq V$, we write G[S] for the induced subgraph of S in G. For subsets S and T of V, E(S,T) denotes the set of edges between S and T, if $S = \{x\}$, we simply write E(x,T) instead of $E(\{x\},T)$. A subset $S \subseteq V(G)$ is said to be a cutset or a separating set of G, if G-S is not connected. A cutset S is said to be a k-cutset if |S| = k. For a graph G, let $V_k(G)$ be the set of vertices of G with degree k. We call

Email address: Franklxj001@163.com, Corresponding author (Xiang-Jun Li)

 $\{x\}+2K_2$ a x-bowtie. Denote the cartesian product of two graphs G and H by $G\times H$.

For a subset $F \subseteq V$, let $N(F) = (\bigcup_{x \in F} N(x)) - F$ and $\overline{F} = V - (F \cup N(F))$. The set F or the subgraph induced by F is called a fragment of G if $F \neq \emptyset \neq \overline{F}$ and $|N(F)| = \kappa(G)$, where $\kappa(G)$ denotes the connectivity number of G. We call F a N(F)- fragment, we don't distinct V(F) and F if it causes no confusion.

Let K_4^- be the graph obtained from K_4 by deleting one edge. If G doesn't contain K_4^- as a subgraph, G is called K_4^- -free. Let G be a k-connected non-complete graph with $k \geq 2$. An edge of G is called k-contractible if its contraction yields again a k-connected graph. If G does not have a k-contractible edge, it is said to be contraction critical k-connected. If an edge is not k-contractible, then it is called a k-non contractible edge. It is easy to see that a k-connected graph G is contraction critical k-connected if and only if every edge of G is contained in some k-cutsets. We denote the set of k-contractible edges in G by $E_c(G)$. If the end vertices of e have a common neighbor of degree e, we call e is trivially e-non contractible, shortly as trivially; if the end vertices of e have no a common neighbor of degree e, we call e is nontrivially. Let e denote the set of trivially e-non contractible edge in e.

C.Thomassen[8] proved that every k-connected graph without triangle has a k-contractible edge. Y.Egawa[3] improved the result in the following.

Theorem A. Every k-connected graph G without triangle has at least $min\{|V(G)| + \frac{2}{3}k^2 - 3k, |E(G)|\}$ k-contractible edges.

As Theorem A shown, a k-connected graph G without triangle has considerable k-contractible edges. Hence the condition "without triangle" is too strong a condition for a k-connected graph to have k-contractible edge. In fact, K.Kawarabayashi [5] obtained the following result.

Theorem B. Let $k \geq 3$ be an odd integer, G be a K_4^- -free k-connected graph, then G has a k-contractible edge.

By Theorem B, we know, when k is odd, a K_4^- -free k-connected graph has at least one k-contractible edge. We give a new lower bound of the number of k-contractible edge in a K_4^- -free k-connected graph in this case.

Theorem 1. Let $k \geq 3$ be an odd integer and G be a K_4^- -free k-connected graph. Then G has at least $min\{k+1, \frac{|G|}{2}\}$ k-contractible edges.

We construct a K_4^- -free 5-connected graph G_0 which has 6 6-contractible edges(see to Figure 1). Hence, the lower bound in Theorem 1 is sharp.

The same conclusion does not hold when k is even. K.Kawarabayashi[5] constructed a regular graph $G=K_3\times K_3\times \cdots K_3=K_3^{\frac{k}{2}}$ with k being

Figure 1

even. Clearly, G is contraction critical k-connected and doesn't contain K_4^- . Thus there does exists a K_4^- -free contraction critical k-connected graph. So it is natural to discuss the property of these graph. M.Fontet [4] and independently N.Martinov [6] gave a complete characterization of contraction critical 4-connected graphs. In view of the result of M.Fontet and N.Matinov, we actually get a complete characterization of K_4^- -free contraction critical 4-connected graph.

Theorem C. Let G be a K_4^- -free contraction critical 4-connected graph. Then G is the line graph of a cyclically 4-edge connected cubic graph.

Further more, K.Ando et.al [1] proved the following result.

Theorem D. Let G be a K_4^- -free contraction critical k-connected graph with $k \geq 4$. Then k is even and every vertex in G is contained in at least two triangles.

In the following we construct two K_4^- -free contraction critical 6-connected graphs G_1 which isn't 6-regular, and G_2 which exists a vertex contained in exactly 2 triangles(see to Figure 2). The construction of G_1 is in the following 4 steps:

Step 1. Construction of a 4-regular graph H; $V(H) = \{x_i, y_i, z_i | i = 0, 1, \dots, 6\}$, C^1 is a 7-cycle, $V(C^1) = \{y_0, y_1, \dots, y_6\}$, C^2 is another 7-cycle, $V(C^2) = \{z_0, z_1, \dots, z_6\}$, $N_H(x_i) = \{y_i, z_i, y_{i+1}, z_{i+1}\}$, Then $H[\{y_i, z_i, x_i, y_{i+1}, z_{i+1}\}]$ is a x_i -bowtie(The addition of indices is taken mod 7).

Step 2. Construction of H_1 (see to Figure 1); add edges to H, let $y_0z_2x_4, y_2z_4x_6, y_5z_0x_2$ be triangles in $H_1, x_0y_3, x_1y_4, x_3y_6, x_5y_1, z_1z_5, z_3z_6 \in E(H_1)$. Let $A_0 = \{x_0, y_3\}, A_1 = \{x_1, y_4\}, A_2 = \{x_3, y_6\}, A_3 = \{x_5, y_1\}, A_4 = \{z_1, z_5\}, A_5 = \{z_3, z_6\}$.

- Step 3. Construction of H_2 ; take a 6-cycle C^3 , $V(C^3) = \{w_0, w_1, \dots, w_5\}$, for $i = 0, 1, \dots, 5$, join w_i to $V(A_i)$.
- Step 4. Construction of G_1 ; take 6 new vertices $v_0, v_1, \dots, v_5, 4$ disjoint copies of H_2 , join v_i to w_i, w_{i+1} of all copies of H_2 (The addition of indices is taken mod 6).

The first two steps of construction of G_2 is same to the construction of G_1 , the third step is taking a 6-cycle C^3 , $V(C^3) = \{w_0, w_1, \dots, w_5\}$, 2 disjoint copies of H_1 , join w_i to $V(A_i)$ of all copies of H_1 .

Figure 2

It's easy to know that G_1 is a K_4^- -free contraction critical 6-connected graph, but $d(v_i) = 8$. In addition, we can see w_i of G_2 is exactly in two triangles. This two examples tell us K_4^- - free contraction critical 6-connected graph need not to be 6-regular, the result '2' in Theorem D can't be improved further. We further study the property of K_4^- - free contraction critical k-connected graph, and get some local properties of each vertex in the following.

Theorem 2. Let $k \geq 4$ be an even integer, and let G be a K_4^- -free contraction critical k-connected graph. Then every vertex x in G is contained in at least two edge disjoint triangles, and such triangles both have a vertex of degree k other than x.

By Theorem 2, we can estimate the number of vertex degree of k in a K_4^- -free contraction critical k-connected graph.

Theorem 3. Let $k \geq 4$ be an even integer, and let G be a K_4^- -free contraction critical k-connected graph. Then $|V_k| \geq \frac{2}{k-1}|G|$.

2. Properties of fragment

For the fragments, we have the following properties (see in [7]).

Lemma 1. Let F and F' be two distinct fragments of G, T = N(F), T' = N(F').

- (1) If $F \cap F' \neq \emptyset$, then $|F \cap T'| \geq |\overline{F'} \cap T|$, $|F' \cap T| \geq |\overline{F} \cap T'|$.
- (2) If $F \cap F' \neq \emptyset \neq \overline{F} \cap \overline{F'}$, then both $F \cap F'$ and $\overline{F} \cap \overline{F'}$ are fragments of G, and $N(F \cup F') = (T \cap T') \cup (T \cap F') \cup (F \cap T'), N(\overline{F} \cap \overline{F'}) = (T \cap T') \cup (T \cap \overline{F'}) \cup (\overline{F} \cap T')$.
- (3) If $F \cap F' \neq \emptyset$ and $F \cap F'$ isn't a fragment, then $\overline{F} \cap \overline{F'} = \emptyset$ and $|F \cap T'| > |\overline{F'} \cap T|, |F' \cap T| > |\overline{F} \cap T'|.$

Mader[7] introduced some new concepts.

Definition 1. Let S be a set of nonempty subset of V(G), if minimal separating set T contain an element S in S, then T-fragment F is called S-fragment. An inclusion minimal S- fragment is called an S-end, a minimum S- fragment is called an S-atom.

Mader[7] proved that S-atom has following property.

Lemma 2. [7] Let S be a set of subset of V(G), A be an S-atom in G. If there is a minimal separating set T, such that $T \cap A \neq \emptyset$ and $T \cap (A \cup N(A))$ contain an element of $S \in S$, then $A \subseteq T$ and $|A| \leq \frac{1}{2}|T - N(A)|$.

Let $S_x = \{\{x,y\} | y \in N(x)\}$, then, by lemma 2, one can easily obtain the following

Corollary 1. G be a contraction critical k-connected graph, $x \in V(G)$. If A be an S_x -atom, thus $|A| \leq \frac{k-1}{2}$.

3. Proof of Theorem 1

Let $k \geq 3$ be an odd integer, G be a K_4^- -free k-connected graph. Since G doesn't contain K_4^- , for each $e = xy \in E(G)$, if e is contained in a triangle, e = xy is contained in only one triangle, say xyz, we define d'(e) := d(z). We let $R = \{e \in E(G) | e \text{ isn't contained in any triangle or } d'(e) > k\}$, let $\mathcal{R} = \{\{x,y\} | xy \in R\}$.

Assertion 1. For every vertex $v \in V_k$, there exists an edge $e \in E(v)$ such that e is not contained in any triangle.

Proof. For any $v \in V_k$, let H = G[N(v)]. Then $d_H(x) \leq 1$ for every vertex $x \in H$, since G does not contain K_4^- . Now, as |H| = d(v) = k is odd, H has an isolate vertex, say u, then $e = uv \in E(v)$ is not contained in any triangle.

Take S = R in Definition 1, we have several assertions in the following.

Assertion 2. If $R \setminus E_c(G) \neq \emptyset$, let A be a R-fragment. Then $|A| \geq k-1$.

Proof. Let A be a \mathcal{R} -fragment, $e = uv \in R$ is contained in N(A). If |A| = 1, then e = uv is contained in a triangle and d'(e) = k, which contradicts to $e \in R$. So $|A| \ge 2$ and there exists an edge xy in A. Now G does not contain K_4^- which implies that $|N(x) \cap N(y)| \le 1$, thus $|N(x) \cup N(y)| = |N(x)| + |N(y)| - |N(x) \cap N(y)| \ge 2k - 1$. So $|A| \ge 2k - 1 - |N(A)| = k - 1$.

Assertion 3. If $R \setminus E_c(G) \neq \emptyset$, let A be a R-fragment, T = N(A). Then $R' = (E(A, T) \cup E(A)) \cap R \neq \emptyset$.

Proof. Assume $R' = \emptyset$, then, by the definition of R, we know that every edge $e \in E(A,T) \cup E(A)$ is contained in a triangle and d'(e) = k. Now, by Assertion 1, $V_k \cap A = \emptyset$. Thus, for any $e = uv \in E(A)$, we have d(u) > k, d(v) > k. However, uv is in a triangle, say uvw, then $vw \in E(A,T) \cup E(A)$, d'(vw) = d(u) > k, a contradiction.

Assertion 4. If $R \setminus E_c(G) \neq \emptyset$, let A be a \mathcal{R} -end, T = N(A). Then all the edges in $R' = (E(A,T) \cup E(A)) \cap R$ are k-contractible.

Proof. By Assertion 3, $R' \neq \emptyset$. Assume an edge $e = uv \in R'$ is knon contractible. Take a \mathcal{R} -fragment B such that $\{u,v\} \subseteq S = N(B)$. By Assertion 2, $|A| \geq k-1, |\overline{A}| \geq k-1, |B| \geq k-1, |\overline{B}| \geq k-1$. Let $H_1 = A \cap B, H_2 = A \cap S, H_3 = A \cap \overline{B}, Q_1 = B \cap T, Q_2 = S \cap T, Q_3 = \overline{B} \cap T, W_1 = \overline{A} \cap B, W_2 = \overline{A} \cap S, W_3 = \overline{A} \cap \overline{B}$. If $H_1 \neq \emptyset$, since A is a \mathcal{R} -end and $H_2 \cup Q_2 \cup Q_1$ contain some element of R, it follows that $|H_2 \cup Q_2 \cup Q_1| > k$. By Lemma 1(3), $|H_2| > |Q_3|, W_3 = \emptyset$. Similarly, if $H_3 \neq \emptyset$, we have $|H_2| > |Q_1|, W_1 = \emptyset$.

Now if $H_1 \neq \emptyset \neq H_3$, then $W_1 = \emptyset = W_3$. Thus $|W_2| = |\overline{A}| \geq k - 1$, then $|Q_1| \geq k$, $|Q_3| \geq k$. So we get $k = |T| = |Q_1| + |Q_2| + |Q_3| \geq 2k$, a contradiction.

So, without loss of generality, we assume $H_1 \neq \emptyset$, $H_3 = \emptyset$. Then, similarly, we have $W_3 = \emptyset$, then $|Q_3| = |\overline{B}| \geq k - 1$. By Lemma 1(3), $|H_2| > |Q_3| \geq k - 1$, then $|H_2| \geq k$. By $|S| = |H_2| + |Q_2| + |W_2|$, we know that $|H_2| = k$, $Q_2 = \emptyset = W_2$. Lemma 1(1) show that $W_1 = \emptyset$. So $\overline{A} = W_1 \cup W_2 \cup W_3 = \emptyset$, a contradiction.

So we have $H_1 = \emptyset$ and $H_3 = \emptyset$, that's to say $A \subseteq S$. If $W_1 \neq \emptyset$, by Lemma 1(1), $|Q_1| \geq |H_2| \geq k-1$, if $W_1 = \emptyset$, then $|Q_1| = |B| \geq k-1$,

so we always have $|Q_1| \geq k-1$ and, similarly, $|Q_3| \geq k-1$. Hence, $|T| = |Q_1| + |Q_2| + |Q_3| \ge 2k - 2$, a contradiction. So our assumption is absurd, then all the edges in $R' = (E(A, T) \cup E(A)) \cap R$ are k-contractible.

Now we are ready to complete the proof of Theorem 1.

Let $R_1 = \{e | e \in E(G) \text{ is not contained in any triangle } \}, R_2 = \{e | e \}$ is contained in a triangle and d'(e) > k, then $R = R_1 \cup R_2$. Let $V_k =$ $\{v|d_G(v)=k\}, V_{>k}=\{v|d_G(v)>k\}.$

We consider two cases whether $R \setminus E_c(G) \neq \emptyset$ or $R \subseteq E_c(G)$.

Case 1. $R \setminus E_c(G) \neq \emptyset$

Thus there exists a \mathcal{R} -fragment, take A as a \mathcal{R} -end such that N(A) = Tcontain some element of $R \setminus E_c(G)$. So Assertion 2 implies that $|A| \geq k-1$. By Assertion 4, all edges in $R' = (E(A, T) \cup E(A)) \cap R$ are k-contractible.

For $v \in A$, let $\gamma_1(v) = |\{e|e \in E(v) \cap R_1\}|$, let $\gamma_2(v) = |E(G[N(v)]) - F(v)|$ E(T).

For any $v \in V_k \cap A$, then, by Assertion 1, $\gamma_1(v) \ge 1$ and, hence, $\gamma_2(v) +$ $\frac{1}{2}\gamma_1(v) \geq \frac{1}{2}$. For any $v \in V_{>k} \cap A$, then there exists a vertex $u \in A \cap N(v)$. Now if uv is contained in a triangle uvw such that $uw \in R_2$, then $\gamma_2(v) \ge 1$. So we also have $\gamma_2(v) + \frac{1}{2}\gamma_1(v) \ge \frac{1}{2}$. Hence $\gamma_2(v) + \frac{1}{2}\gamma_1(v) \ge \frac{1}{2}$ always holds for every vertex in A.

To estimate |R'|, we have

$$|R'| \ge \frac{1}{2} \sum_{v \in A} \gamma_1(v) + \sum_{v \in V_{>k} \cap A} \gamma_2(v)$$

 $= \frac{1}{2} \sum_{v \in V_k \cap A} \gamma_1(v) + \sum_{v \in V_{>k} \cap A} (\gamma_2(v) + \frac{1}{2} \gamma_1(v)).$

In the next, we shall prove $|R'| \ge \frac{k+1}{2}$.

Subcase 1.1 $A \setminus V_k \neq \emptyset$

That is to say $V_{>k} \cap A \neq \emptyset$ and, hence $|A| \geq k$. If for any $v \in V_{>k} \cap$ $A, \gamma_2(v) \geq 1$, then $|R'| \geq \frac{1}{2} \sum_{v \in V_k \cap A} \gamma_1(v) + \sum_{v \in V_{>k} \cap A} 1 \geq \frac{|V_k \cap A|}{2} +$ $\frac{|V_{>k}\cap A|}{2} = \frac{|A|}{2} \ge \frac{k}{2}.$ If there exists a vertex $v \in V_{>k}\cap A$, $\gamma_2(v) = 0$, then $|R'| \ge \frac{1}{2} \sum_{v \in V_k \cap A} \gamma_1(v)$

 $+ \sum_{v \in V_{>k} \cap A} (\gamma_2(v) + \frac{1}{2}\gamma_1(v)) \ge \frac{1}{2} \sum_{v \in V_k \cap A} 1 + \sum_{v \in V_{>k} \cap A} \frac{1}{2} \ge \frac{|A|}{2} \ge \frac{k}{2}.$

Thus we always have $|R'| \ge \frac{k}{2}$ when $A \setminus V_k \ne \emptyset$. Since |R'| is an integer and k is odd, we get $|R'| \ge \frac{k+1}{2}$.

Subcase 1.2 $A \subset V_k$

Now for each vertex $v \in A, \gamma_1(v) \ge 1$. If $E(A) \cap R_1 = \emptyset$, then $E(v) \cap$ $R_1 \subseteq E(A,T)$ and, hence, $|R'| \ge \sum_{v \in A} \gamma_1(v) \ge k-1 \ge \frac{k+1}{2}$. If there are $e = uv \in E(A) \cap R_1$, then $N(u) \cap N(v) = \emptyset$, $|A| \ge |N(u) \cup N(v)| - |N(A)| = \emptyset$ k. So $|R'| \ge \frac{1}{2} \sum_{v \in A} \gamma_1(v) \ge \frac{|A|}{2} \ge \frac{k}{2}$, at the same time, since |R'| is an integer and k is odd, $|R'| \ge \frac{k+1}{2}$.

Thus we can say that $|R'| \geq \frac{k+1}{2}$. Take another \mathbb{R} -end A' in \overline{A} , in a similar way, we get all the edges in $R'' = (E(A', T) \cup E(A')) \cap R$ are k-contractible, $|R''| \ge \frac{k+1}{2}$. Hence $|E_c(G)| \ge |R'| + |R''| \ge k+1$. Case 2. $R \subseteq E_c(G)$

Now all the edges in R are k-contractible. For every vertex $v \in V$, let $\theta_1(v) = |\{e|e \in E(v) \cap R_1)\}|$, let $\theta_2(v) = |E(G[N(v)])|$.

By Assertion 1, for any $v \in V_k$, $\theta_1(v) \geq 1$. For any $v \in V_{>k}$, either $\theta_1(v) \geq 1$ or $\theta_2(v) \geq 2$. So, in a word, $\theta_1(v) + \theta_2(v) \geq 1$ for each vertex v. Considering the graph $(G, E(G) \cap R)$, we have

 $\begin{array}{l} 2|R| \geq \sum_{v \in V_k} \theta_1(v) + \sum_{v \in V_{>k}} \left(\theta_1(v) + \theta_2(v)\right) \geq \sum_{v \in V_k} 1 + \sum_{v \in V_{>k}} 1 = \\ |G|. \text{ So } |R| \geq \frac{|G|}{2}, \text{ thus } |E_c(G)| \geq \frac{|G|}{2}. \end{array}$

From Case 1 and Case 2, we obtain $|E_c(G)| \ge \min\{k+1, \frac{|G|}{2}\}$ and complete the proof of Theorem 1.

4. Proof of Theorem 2

Let G be a K_4^- -free contraction critical k-connected graph with $k \geq 4$ and k is even, $\beta(x) = |E(x) \cap E^*|, S_x' = \{\{x,y\} | xy \in E(x) \setminus E^*\}.$

Assertion 5. G be a K_4^- -free contraction critical k-connected graph with $k \geq 4$ and k is even. Then $\beta(x) \geq 2$ for every vertex $x \in V(G)$.

Proof. We first claim $\beta(x) \geq 1$. If not, there exists a vertex $x \in V(G)$, $\beta(x) = 0$, it means that all the edges in E(x) are nontrivial. Let A be a S'_x -atom, by Corollary 1, $|A| \leq \frac{k-1}{2}$. Notice that N(A) contains some element of E(x), so if |A| = 1, then E(x) contains a trivially edge, a contradiction. Hence $|A| \geq 2$ and there exists an edge xy in A. By the fact that G is K_4^- -free and $|N(u) \cap N(v)| \leq 1$, we have $|N(u) \cup N(v)| \geq |N(u)| + |N(v)| - |N(u) \cap N(v)| \geq 2k-1$. This implies $|A| \geq 2k-1-|N(A)| = k-1$. However, together with $|A| \leq \frac{k-1}{2}$ implies that $\frac{k-1}{2} \geq k-1$, a contradiction.

Now if $\beta(x)=1$, assume xy is trivially, $z\in N(x)-\{y\}$. Take a k-cutset T containing $\{x,z\}$ and let F be a T- fragment, $\overline{F}=G-T-F$. Since $xy\in E(G)$, either $F\cap\{x,y\}=\emptyset$ or $\overline{F}\cap\{x,y\}=\emptyset$. Without loss of generality, we assume the former. Take an S'_x -end A such that $A\subseteq F$ and N(A) contain an element of $E(x)\setminus E^*$, then $|A|\ge 2$, $|\overline{A}|\ge 2$. Clearly, both A and \overline{A} contain an edge. Since G is K_4^- -free, we have $|A|\ge k-1$, $|\overline{A}|\ge k-1$. As $A\cap N(x)\ne\emptyset$, we can take a vertex $w\in A\cap N(x)$. Take a k-cutset S containing $\{x,w\}$ and let B be an S- fragment, $\overline{B}=G-S-B$. Since $xw\in S$, now the fact $\beta(x)=1$ show that $|B|\ge 2$, $|\overline{B}|\ge 2$. Then, again by the fact that G is K_4^- -free, $|B|\ge k-1$, $|\overline{B}|\ge k-1$. Hence $|A|\ge k-1$, $|\overline{A}|\ge k-1$, $|B|\ge k-1$. Similar to the proof of Assertion 4, we obtain a contradiction. This contradiction shows that $\beta(x)\ge 2$ for any $x\in V(G)$.

Let G be a K_4^- -free contraction critical k-connected graph Assertion 6. with $k \geq 4$ and k is even, $x \in V(G)$ such that $xy, xz \in E(x) \cap E^*, yz \in E(x)$ E(G). Then $\beta(x) > 3$.

Proof. For otherwise, we may assume, by Assertion 5, $\beta(x) = 2$. That is to say, xy, xz are two trivially edges. Assume $w \in N(x) - \{y, z\}$, then xw is not trivially. Take a k-cutset T containing $\{x, w\}$ in G and F be a T- fragment, $\overline{F} = G - T - F$. Then either $E(F,T) \cap E^* \cap E(x) = \emptyset$ or $E(\overline{F},T) \cap E^* \cap E(x) = \emptyset$ since xyz is a triangle. Without loss of generality, we assume the former case. Now, as xw is not trivially, we have |F| > 2and $|\overline{F}| \geq 2$. Further, both F and \overline{F} contain some edges. So, similar to Assertion 5, $|F| \geq k-1$, $|\overline{F}| \geq k-1$. Take a S'_r -end A in F. Similar to Assertion 5, we can get a contradiction.

We now complete the proof of Theorem 2, take a vertex $x \in V(G)$. If $\beta(x) = 2$, assume $xy, xz \in E^*$. By Assertion 6, $yz \notin E(G)$.

Notice that G doesn't contain K_4^- , so xy, xz is contained in two edge disjoint triangles xyu, xzv. Thus x is contained in a x-bowtie and d(u) =d(v) = k. If $\beta(x) \geq 3$, there are two edges xy, xz which are contained in two edge disjoint triangles. So we obtain the conclusion similarly.

5. Proof of Theorem 3

Let $k \geq 4$ be an even integer, and let G be K_4^- -free contraction critical k-connected graph, E_t be the set of edges which is contained in a triangle. Denote $H = G[V_k], W = G[E(H) - E_t]$. For e = xy in H, e = xy is contained in at most one triangle since G doesn't contain K_4^- . If $e=xy\in$ E_t , then let xyz be the triangle which contains xy, we define $v_e = z$. Let $p = \lfloor \frac{|H|}{2} \rfloor$ and let $U_i = \{v \in V | |E(G[N(v) \cap V_k])| = i\}$, for $i = 0, 1, \dots, p$. Let $E_i = \{e \in E(H) | v_e \in U_i\}$ if $i \ge 1$ and let $E_0 = E(W)$. Then $V(G) = \bigcup_{i=0}^p U_i, E(H) = \bigcup_{i=0}^p E_i, \text{ and if } i \neq 0, |E_i| = i|U_i|.$ Note that U_i, E_i maybe empty.

Let $\xi_1(v) = |\{e|e \in E(v, V_k) \cap E_t\}|, \ \xi_2(v) = |\{e|e \in E(v, V_k) \setminus E_t\}|,$ $d_H(v) = |N(v) \cap V_k|$, then $d_H(v) = \xi_1(v) + \xi_2(v)$. By Assertion 6, if $v \in U_0$ then $\xi_1(v) \geq 2$; by Theorem 2, if $v \in U_1$ then $\xi_1(v) \geq 3$; if $v \in U_i (i \geq 2)$ then $\xi_1(v) \geq 2i \geq 2+i$. This discussion implies

$$\begin{aligned} k|V_k| &= \sum_{v \in V(G)} d_H(v) = \sum_{v \in V(G)} \xi_1(v) + \sum_{v \in V(G)} \xi_2(v) \\ &\geq \sum_{i=0}^p \sum_{v \in U_i} \xi_1(v) + \sum_{v \in V(W)} \xi_2(v) \geq \sum_{i=0}^p \sum_{v \in U_i} (2+i) + 2|E_0| \\ &\geq 2 \sum_{i=0}^p \sum_{v \in U_i} 1 + \sum_{i=1}^p \sum_{v \in U_i} i + 2|E_0| \\ &\geq 2 \sum_{i=0}^p |U_i| + \sum_{i=1}^p i|U_i| + 2|E_0| \\ &\geq 2|V| + \sum_{i=0}^p |E_i| \geq 2|V| + |E(H)|. \end{aligned}$$

By Theorem 2, $\delta(H) \ge 2$, then $2|E(H)| = \sum_{v \in V(H)} d_H(v) \ge \sum_{v \in V(H)} 2$ $\geq 2|H|$, so $|E(H)| \geq |H|$, thus $k|V_k| \geq 2|V| + |V_k|$, then we get $|V_k| \geq \frac{2}{k-1}|V| = \frac{2}{k-1}|G|$.

Acknowledgment

We would like to thank the anonymous referees for their kind comments and valuable suggestions.

References

- [1] K.Ando et.al, Contractible edges in k-connected graphs containing no K_4^- , SUT J. Math., 36(1) (2000), 99-103.
- [2] J.A.Bondy, U.S.R.Murty, Graph Theory with Applications, MacMillan (1976).
- [3] Y.Egawa, Contractible edges in triangle-free graphs, Combinatorica, 6(1986), 15-21.
- [4] M.Fontet, Graphes 4-essentiels, C.R. Acad. Sci. Paris 287 (1978), 289-290.
- [5] K.Kawarabayashi, Note on contractible edges in k-connected graphs. Australas. J. Combin. 24 (2001), 165-168.
- [6] N.Martinov, Uncontractible 4-connected graphs, J. Graph Theory, 3 (1982), 343-344.
- [7] W.Mader, Generalizations of critical connectivity of graphs, Discrete Math. 72 (1988), 267-283.
- [8] C.Thomassen, Nonseparating cycles in k-connected graphs, J. Graph Theory, 5 (1981), 351-354.