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Abstract

Let K; be the graph obtained from K4 by deleting one edge. If G
doesn’t contain K as a subgraph, G is called K -free. K.Kawarabayashi
showed that a K -free k-connected graph has a k-contractible edge if k is
odd. Further, when k is even, K.Ando et.al showed that every vertex of
K -free contraction critical k-connected graph is contained in at least two
triangles. In this paper, we extend the result of K.Kawarabayashi and get
a new lower bound of k-contractible edges in a K -free k-connected graph
when k is odd. In addition, we give some characters and properties to
K -free contraction critical k-connected graph, and prove that this graph

has at least %ﬁl vertices of degree k.
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1. Introduction

In this paper, all graphs considered are finite, undirected, and with
neither loops nor multiple edges. Basically, we follow the terminology of
J.A.Bondy (2]. Let G = (V, E) be a graph with the vertex set V and the
edge set E. For a vertex v € V, we write N(v) for the neighborhood of v,
d(v) = |N(v)| denotes the degree of v in G. E(v) denotes the set of the
edges incident to v. For a subset S C V, we write G[S] for the induced
subgraph of S in G. For subsets S and T of V, E(S,T) denotes the set
of edges between S and T, if S = {z}, we simply write E(z,T) instead of
E({z},T). A subset S C V(G) is said to be a cutset or a separating set of
G, if G — S is not connected. A cutset S is said to be a k-cutset if |S| = k.
For a graph G, let Vi(G) be the set of vertices of G with degree k. We call
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{z} + 2K; a z-bowtie. Denote the cartesian product of two graphs G and
Hby Gx H.

For a subset F C V, let N(F) = (U ep N(z)) —Fand F=V - (FU
N(F)). The set F or the subgraph induced by F is called a fragment of
Gif F #0 # F and |N(F)| = (G), where k(G) denotes the connectivity
number of G. We call F a N(F)- fragment, we don’t distinct V(F') and F’
if it causes no confusion.

Let K7 be the graph obtained from Kj by deleting one edge. If G
doesn’t contain K; as a subgraph, G is called K -free. Let G be a
k-connected non-complete graph with k& > 2. An edge of G is called
k-contractible if its contraction yields again a k-connected graph. If G
does not have a k-contractible edge, it is said to be contraction critical
k-connected. If an edge is not k-contractible, then it is called a k-non con-
tractible edge. It is easy to see that a k-connected graph G is contraction
critical k-connected if and only if every edge of G is contained in some
k-cutsets. We denote the set of k-contractible edges in G by E.(G). If the
end vertices of e have a common neighbor of degree k, we call e is trivially
k-non contractible, shortly as trivially; if the end vertices of e have no a
common neighbor of degree k, we call e is nontrivially. Let E* denote the
set of trivially k-non contractible edge in G.

C.Thomassen|[8] proved that every k-connected graph without triangle
has a k-contractible edge. Y.Egawa|[3] improved the result in the following.

Theorem A. Every k-connected graph G without triangle has at least
min{|V(G)| + 3k? — 3k,|E(G)|} k-contractible edges.

As Theorem A shown, a k-connected graph G without triangle has
considerable k-contractible edges. Hence the condition “without triangle”
is too strong a condition for a k-connected graph to have k-contractible
edge. In fact, K.Kawarabayashi [5] obtained the following result.

Theorem B. Let k > 3 be an odd integer, G be a K -free k-connected
graph, then G has a k-contractible edge.

By Theorem B, we know, when k is odd, a K -free k-connected graph
has at least one k-contractible edge. We give a new lower bound of the
number of k-contractible edge in a K -free k-connected graph in this case.

Theorem 1. Letk > 3 be an odd integer and G be a K -free k-connected
graph. Then G has at least min{k + 1, J—g—:l} k-contractible edges.

We construct a K -free 5-connected graph Go which has 6 6-contractible
edges(see to Figure 1). Hence, the lower bound in Theorem 1 is sharp.
The same conclusion does not hold when & is even. K.Kawarabayashi|5)

constructed a regular graph G = K3z x Kz x --- K3 = Ks"i with k being
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even. Clearly, G is contraction critical k-connected and doesn’t contain
K. Thus there does exists a K -free contraction critical k-connected
graph. So it is natural to discuss the property of these graph. M.Fontet
[4] and independently N.Martinov [6] gave a complete characterization of
contraction critical 4-connected graphs. In view of the result of M.Fontet
and N.Matinov, we actually get a complete characterization of K -free
contraction critical 4-connected graph.

Theorem C. Let G be a K -free contraction critical 4-connected graph.
Then G is the line graph of a cyclically 4-edge connected cubic graph.

Further more, K.Ando et.al [1] proved the following result.

Theorem D.  Let G be a K -free contraction critical k-connected graph
with k > 4. Then k is even and every verter in G is contained in at least
two triangles.

In the following we construct two K - free contraction critical 6-connected
graphs G; which isn’t 6-regular, and G2 which exists a vertex contained
in exactly 2 triangles(see to Figure 2). The construction of G; is in the
following 4 steps:

Step 1.  Construction of a 4-regular graph H; V(H) = {z;i,yi, 2i|i =
0,1,.--,6}, C!isa 7-cycle, V(C') = {yo, %1, - -, ¥}, C? is another 7-cycle,
V(C?) = {20,21, -, 26}, Nu(z:i) = {i 2, Yit1, zi41} , Then H[{y;, 2, s,
Yi+1, Zi+1}] is a z;-bowtie(The addition of indices is taken mod 7).

Step 2. Construction of H;(see to Figure 1); add edges to H, let
YozaZa, Y224T6, Y5202 be triangles in Hy, Toys, T1y4, T3Ye, T5Y1, 2125, 2326 €
E(H,). Let Ap = {z0,y3}, A1 = {z1,94}, A2 = {3,¥6}, Az = {z5, 11}, As =
{21,25},‘45 = {23, ZG}'
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Step3. Construction of Ho; takea 6-cycle C3,V(C3) = {wo, w1, -,
ws}, for i =0,1,---,5, join w; to V(4;).

Step 4. Construction of G1; take 6 new vertices vg,v1,- -, s, 4
disjoint copies of Hs, join v; to w;,w;4+1 of all copies of Hz(The addition of
indices is taken mod 6).

The first two steps of construction of G2 is same to the construction
of Gy, the third step is taking a 6-cycle C%,V(C?) = {wo, w1, -+, ws}, 2
disjoint copies of H, join w; to V(A;) of all copies of Hj.

A

Structure of Gy Structure of G2
Figure 2

It’s easy to know that G; is a K -free contraction critical 6-connected
graph, but d(v;) = 8. In addition, we can see w; of G is exactly in
two triangles. This two examples tell us K - free contraction critical 6-
connected graph need not to be 6-regular, the result ‘2’ in Theorem D can’t
be improved further. We further study the property of K - free contraction
critical k-connected graph, and get some local properties of each vertex in
the following.

Theorem 2. Let k > 4 be an even integer, and let G be a K -free con-
traction critical k-connected graph. Then every vertex x in G is contained
in at least two edge disjoint triangles, and such triangles both have a vertex
of degree k other than z.

By Theorem 2, we can estimate the number of vertex degree of k in a
K -free contraction critical k-connected graph.

Theorem 3. Let k > 4 be an even integer, and let G be a K -free
contraction critical k-connected graph. Then |Vi| > szl|G|-

356



2. Properties of fragment
For the fragments, we have the following properties (see in [7]).

Lemma 1.  Let F and F” be two distinct fragments of G, T = N(F),T' =
N(F).

(1) IfFNF' %0, then |[FNT'| 2 |[F'nT|, |[F'nT|>|FnT.

(2) IfFNF' #0#FNF, then both FNF' and FNF" are fragments
of G, and NFUF) = (TNTYU(TNFYU(FNT)NFnF) =
(TNTYU(TNnFYUFNT).

(Bf FNF' # 0 and FNF' isn’t a fragment, then FNF = @ and
IFNT'|> [F'nT|,|F'nT|> |FnT|.

Mader(7] introduced some new concepts.

Definition 1.  Let S be a set of nonempty subset of V(G), if minimal
separating set T contain an element S in S, then T-fragment F is called
S-fragment. An inclusion minimal S- fragment is called an S-end, a min-
imum S- fragment is called an S-atom.

Mader(7] proved that S-atom has following property.

Lemma 2. 7] LetS be a set of subset of V(G), A be an S-atom in G. If
there is a minimal separating set T, such that TNA # 0 and TN(AUN(A))
contain an element of S € S, then ACT and |A| < 3|T — N(A)|.

Let S; = {{z,y}| y € N(z)}, then, by lemma 2, one can easily obtain
the following

Corollary 1. G be a contraction critical k-connected graph, z € V(G).
If A be an S;-atom, thus |A| < 551,

8. Proof of Theorem 1

Let k > 3 be an odd integer, G be a K -free k-connected graph. Since G
doesn’t contain K, for each e = zy € E(G), if e is contained in a triangle,
e = zy is contained in only one triangle, say zyz, we define d'(e) := d(2).
We let R = {e € E(G)| e isn’t contained in any triangle or d'(e) > k}, let
R = {{z,y}| zy € R}.

Assertion 1.  For every vertex v € Vi, there ezists an edge e € E(v)
such that e is not contained in any triangle.
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Proof. For any v € Vi, let H = G[N(v)]. Then dy(z) < 1 for every
vertex z € H, since G does not contain K; . Now, as |H| =d(v) =k is
odd, H has an isolate vertex, say u, then e = uv € E(v) is not contained
in any triangle.

Take S = R in Definition 1, we have several assertions in the following.
Assertion 2. IfR\E.(G) # 0, let A be a R-fragment. Then |A| > k—1.

Proof. Let A be a R-fragment, e = uv € R is contained in N(A4). If |A| =
1, then e = uv is contained in a triangle and d'(e) = k, which contradicts
to e € R. So |A| > 2 and there exists an edge zy in A. Now G does not
contain K; which implies that |N(z) N N(y)| < 1, thus |[N(z) U N(y)| =
IN(z)|+IN@)| - IN(=)NN(y)| = 2k-1. So |A| 2 2k—1-|N(A)| =k-1.

Assertion 3. If R\ E.(G) # 0, let A be a R-fragment, T = N(A).
Then R' = (E(A,T)UE(A))NR #0.

Proof. Assume R’ = 0, then, by the definition of R, we know that every
edge e € E(A,T) U E(A) is contained in a triangle and d’(e) = k. Now,
by Assertion 1, Vo, N A = 0. Thus, for any e = uv € E(A), we have
d(u) > k,d(v) > k. However, uv is in a triangle, say uvw, then vw €
E(A,T)U E(A),d (vw) = d(u) > k, a contradiction.

Assertion 4. IfR\ E.(G) #0, let A be a R-end, T = N(A). Then all
the edges in R' = (E(A,T) U E(A)) N R are k-contractible.

Proof. By Assertion 3, R’ # 0. Assume an edge e = uv € R’ is k-
non contractible. Take a R-fragment B such that {u,v} C § = N(B).
By Assertion 2, [A| > k—1,|4| > k- 1,|B| > k—1,|B| > k— 1. Let
H,=ANB,H, = ANS,Hy; = ANB,Q, =BnT,Q=5SNT,Q3 =
BNT,W, = AnB,W, = ANS, W3z = AnB. If H; # 0, since A is
a R-end and H; U Q2 U @, contain some element of R, it follows that
|H2U Q2U Q] > k. By Lemma 1(3), |Hz| > |Qs|, Wa = 0. Similarly, if
H; # @, we have |H2| > |Q1|, Wy =0.

Now if Hy # @ # Hj, then W) = @ = W3. Thus |W;| = IZI >k-1,
then |Q1] > k,|Qs| > k. So we get k = |T| = |Q1] + |Q2| + |Q3| = 2k, 2
contradiction.

So, without loss of generality, we assume H; # @,Hs = 0. Then,
similarly, we have W3 = 0, then |Q3| = |B| = k — 1. By Lemma 1(3),
|Ha| > |Q3| = k — 1, then |Hz| > k. By |S| = |Ha| + |Q2| + |[Wa|, we
know that |Hs| = k,Q2 = § = W,. Lemma 1(1) show that W; = 0. So
A=W, UW,UW; =0, a contradiction.

So we have H; = 0 and H3 = 0, that's tosay AC S. If W; # 0, by
Lemma 1(1), |Q1| = |Hz2| = k— 1, if W) = @, then |Q| = |B| > k-1,
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so we always have |Q1| > k — 1 and, similarly, [Q3| > k — 1. Hence,
[T} = |@1] + |Q2| + |Q3] = 2k — 2, a contradiction. So our assumption is
absurd, then all the edges in R’ = (E(A,T)UE(A))N R are k-contractible.

Now we are ready to complete the proof of Theorem 1.

Let R, = {e| e € E(G) is not contained in any triangle }, Ry = {e|e
is contained in a triangle and d'(e) > k}, then R = R; U Ry. Let V}, =
{vlde(v) = k}, Vsi = {v|dg(v) > k}.

We consider two cases whether R\ E¢(G) # 0 or R C E.(G).

Case 1. R\ E;(G) # 0

Thus there exists a R-fragment, take A as a R-end such that N(A) =
contain some element of R\ E;(G). So Assertion 2 implies that |A] > k—1.
By Assertion 4, all edges in R’ = (E(A,T)U E(A)) N R are k-contractible.

For v € A, let 71{v) = |{e|le € E(v) N Ry)}|, let 72(v) = |E(G[N(v)]) -
E(T)|.

For any v € V, N A, then, by Assertion 1, v;(v) > 1 and, hence, y2(v) +
-;-71(0) > % For any v € V5, N A, then there exists a vertex u € AN N(v).
Now if uw is contained i m a triangle uvw such that uw € Ry, then Y2(v) > 1.
So we also have y2(v) + 3711 (v) 2 3. Hence 72(v) + 371(v) > 1 always holds
for every vertex in A.

To estimate |R’|, we have

lRll Z % EveA m (’U) + Z'UeV)kﬁA 72(0)

= % ZvernA 7(v) + Zv€V>knA (v2(v) + %’71 (v))-
In the next, we shall prove |R'| > &tL.
Subcase 1.1 A\ Vi #0
That is to say V5, N A # @ and, hence {A| > k. If for any v € Vo, N
Ay2(v) 2 1, then |R| 2 ¥ crinam(v) + Yevainal 2 lﬁgﬁl +
Pogndl = 13l > &,
If there exists a vertex v € VsxNA,¥2(v) = 0, then |[R'| 2 1 Y ey qa 11(v)

+ 2 vevarna (12(v) + 3 (v)) 2 %ZvEanA 1+ Zuev>knA 32 ]7[ 23 3

Thus we always have |R’'| > -§ when A\ Vi # 0. Since |R'| is an mteger
and k is odd, we get [R'| > &t

Subcase 1.2 ACV;

Now for each vertex v € A,m(v) > 1. If E(A) N Ry = 0, then E(v) N
Ry C E(A,T) and, hence, |R'| > 35, cam1(v) > k— 1 > ELIf there are
e =uv € E(A)NR;, then N(u)ﬂN(v) 9,14 > ]N(u)UN(v)l—IN(A)| =
k. So |R| 2 33 camv) > 1%1 > £, at the same time, since |R'| is an
integer and k is odd, |R’| > &f1.

Thus we can say that |R'| > 5. Take another R-end A’ in 4, in
a similar way,we get all the edges in R = (E(A',T)U E(A’")) N R are
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k-contractible, |R”| > &£, Hence |E(G)| > |R|+|R"| 2 k + 1.

Case 2. RC E.(G)

Now all the edges in R are k-contractible. For every vertex v € V, let
61(v) = |{ele € E(v) N R1)}|, let 62(v) = |E(G[N(v)))I.

By Assertion 1, for any v € V,8,(v) > 1. For any v € V5, either
61(v) > 1 or 62(v) 2 2. So, in a word, 6;(v) + 62(v) > 1 for each vertex v.
Considering the graph (G, E(G) N R), we have

2R| 2 T ey, 01(0) + Xoev,, (01(0) +02(0) 2 Lpey, 1+ Loews 1 =
|G]. So |R| > 181, thus |E(G)| > 5.

From Case 1 and Case 2, we obtain |E.(G)| > min{k + 1, 1%1} and
complete the proof of Theorem 1.

4. Proof of Theorem 2

Let G be a K -free contraction critical k-connected graph with k > 4
and k is even, 8(z) = |E(z) N E*|,S. = {{z,y}| zy € E(z)\ E*}.

Assertion 5. G be a K -free contraction critical k-connected graph with
k > 4 and k is even. Then B(z) > 2 for every vertez x € V(G).

Proof. We first claim 8(z) > 1. If not, there exists a vertex z € V(G),
B(z) = 0, it means that all the edges in E(z) are nontrivial. Let A be a S;-
atom, by Corollary 1, |4| < "-;—1 Notice that N(A) contains some element
of E(z), so if |A] = 1, then E(z) contains a trivially edge, a contradiction.
Hence |A| > 2 and there exists an edge zy in A. By the fact that G is
K7 -free and |[N(u)NN(v)| < 1, we have |[N(u)UN(v)| > [N (u){+|N(v)|—
|N(u)NN(v)| > 2k—1. This implies |A] > 2k—1~|N(A)| = k—1. However,
together with |A| < 251 implies that £51 > k — 1, a contradiction.

Now if B(z) = 1, assume zy is trivially, z € N(z) — {y}. Take a k-
cutset T containing {z, z} and let F be a T- fragment, F = G- T ~ F
Since zy € E(G), either F N {z,y} =0 or F N {z,y} = 8. Without loss of
generality, we assume the former. Take an S.-end A such that A C F' and
N(A) contain an element of E(z)\ E*, then |A4| > 2,|A| > 2. Clearly, both
A and A contain an edge. Since G is K -free, we have |4| > k — 1, [4] >
k—1. As AnN(z) # 0, we can take a vertex w € AN N(z). Take a
k-cutset S containing {z,w} and let B be an S- fragment, B =G — S — B.
Since zw € S, now the fact B(z) = 1 show that |B| > 2,|B| > 2. Then,
again by the fact that G is K -free, |B| > k ~ 1,|B| > k — 1. Hence
|A] > k—1,[A| > k-1,|B| > k—1,|B| > k — 1. Similar to the proof
of Assertion 4, we obtain a contradiction. This contradiction shows that
B(z) > 2 for any z € V(G).
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Assertion 6.  Let G be a K -free contraction critical k-connected graph
with k > 4 and k is even, z € V(G) such that zy,zz € E(x) N E*,yz €
E(G). Then B(z) > 3.

Proof. For otherwise, we may assume, by Assertion 5, 3(z) = 2. That
is to say, zy,zz are two trivially edges. Assume w € N(z) — {y, z}, then
zw is not trivially. Take a k-cutset T containing {z,w} in G and F' be a
T- fragment, F = G — T — F. Then either E(F,T)NE*N E(z) = 0 or
E(F,T)nE*NE(z) = 0 since zyz is a triangle. Without loss of generality,
we assume the former case. Now, as zw is not trivially, we have |F| > 2
and |F| > 2. Further, both F and F contain some edges. So, similar to
Assertion 5, |F| > k — 1,[F| > k— 1. Take a S-end A in F. Similar to
Assertion 5, we can get a contradiction.

We now complete the proof of Theorem 2, take a vertex z € V(G). If
B(x) = 2, assume zy,zz € E*. By Assertion 6, yz ¢ E(G).

Notice that G doesn’t contain K, so zy,zz is contained in two edge
disjoint triangles zyu,zzv. Thus z is contained in a z-bowtie and d(u) =
d(v) = k. If B(z) > 3, there are two edges =y, zz which are contained in
two edge disjoint triangles. So we obtain the conclusion similarly.

5. Proof of Theorem 3

Let k£ > 4 be an even integer, and let G be K -free contraction critical
k-connected graph, E; be the set of edges which is contained in a triangle.
Denote H = G[Vi],W = G[E(H) — E;]. Fore =zyin H, e = zy is
contained in at most one triangle since G doesn’t contain K. Ife=zy €
E,, then let zyz be the triangle which contains zy, we define v, = z. Let

—|_ Jandlet U; = {ve V| |[E(GIN(w)NV])| =i}, fori=0,1,---,p

Let E; = {e € E(H)| v. € U;} ifi > 1 and let Ey = E(W). Then
V(G) = U Ui, E(H) = /o Ei, and if i # 0,|E;| = i|U;|. Note that
Ui, E; maybe empty.

Let £1(v) = {ele € E(v, Vi) N Ei}, &2(v) = |{ele € E(v, Vi) \ EL}l,
dy(v) = |[N(v) N Vi|, then dy(v) = & (v) + &2(v). By Assertion 6, if v € Up
then & (v) > 2; by Theorem 2, if v € U, then & (v) > 3; if v € U;(i > 2)
then &;(v) > 2i > 2 + ¢. This discussion implies

k|Vi| = EveV(G) du(v) = 2 yev(g) S1(v) + Yvev(e) §2(v)

2 Ez:O ZvEU €1 U) + Z‘UEV(W) £2('v) 2 21—.0 ZUEU (2 + 1') + 2|E0|

22 21—0 ZveUa 1+ Z:t:l ZUGU. i+ 2|E0|

> 23 P o Uil + X0 ilUs| + 2| Ey

> 2V]+ 00 | Ei| 2 2|V + |E(H).

By Theorem 2, 6(H) > 2, then 2|E(H)| = 32,y (py du(v) > Pveviay 2
> 2|H| %) |E(H)| > |H|, thus k|Vk| > 2|V| + |Vi|, then we get [Vi| >

=1Vl = 516G
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