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Abstract: The toughness, as the parameter for measuring stability and
vulnerability of networks, has been widely used in computer communication
networks and ontology graph structure analysis. A graph G is called a
fractional (a, b, n)-critical deleted graph if after deleting any n vertices from
G, the resulting graph is still a fractional (a, b)-deleted graph. In this paper,
we study the relationship between toughness and fractional (a, b, n)-critical
deleted graph. A sufficient condition for a graph G to be a fractional

(@, b,n)-critical deleted graph is determined.
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1 Introduction

All graphs considered in this paper are finite, loopless, and without

multiple edges. The notations and terminologies used but undefined in this
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paper can be found in [1]. Let G be a graph with the vertex set V(G) and
the edge set E(G). For a vertex z € V(G), we use dg(z) and Ng(z) to
denote the degree and the neighborhood of z in G, respectively. Let §(G)
denote the minimum degree of G. For any S C V(G), the subgraph of G
induced by S is denoted by G[S].

Suppose that g and f are two integer-valued functions on V(G) such that
0 < g(z) £ f(z) for all z € V(G). A fractional (g, f)-factor is a function
h that assigns to each edge of a graph G a number in [0,1] so that for each
vertex £ we have g(x) < Y h(e) < f(x). A graph G is called a fractional
(g, fyn)-critical graph if :,efti(: )deleting any n vertices from G, the resulting
graph still has a fractional (g, f)-factor. A graph G is called a fractional
(g, f)-deleted graph if after deleting any edge e from G, the resulting graph
still has a fractional (g, f)-factor. A graph G is called a fractional (g, f,n)-
critical deleted graph if after deleting any n vertices from G, the resulting
graph still is a fractional (g, f)-deleted graph. Furthermore, if g(z) = a
and f(z) = b for all z € V(G), then fractional (g, f)-deleted graph, frac-
tional (g, f,n)-critical graph, and fractional (g, f, n)-critical deleted graph
are just fractional |a, b]-deleted graph, fractional (a, b, n)-critical graph, and
fractional (a, b, n)-critical deleted graph, respectively. Several sufficient con-
ditions for a graph to have fractional factor avoiding certain subgraphs can
refer to [5), (6], [7], (8], [11], [12], [13], [14] and [15].

Let

{ 2, T is not independent set
g(8,T) =< 1, T is an independent set, and eq(T,V(G)\ (SUT)) > 1
0, Otherwise.

The proof of our main result relies heavily on the following lemma.
Lemma 1 (Gao [3]) Let G be a graph. Let a, b, n be non-negative integers
such that a < b. Then G is a fractional (a, b, n)-critical deleted graph if and
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only if
b|S| — a|T| + dg-s(T) > bn +¢(S,T) (1)

for all disjoint subsets S,T of V(G) with |S| > n.

The notion of toughness was first introduced by chvétal in [2]: if G is
complete graph, {(G) = oo; if G is not complete,

t(G) = min{w(—cl,sj—& w(G - S) > 2}

and where w(G — S) is the number of connected components of G — S.
Recently, Gao et al. [4] obtained a result that G is a fractional (a,b, n)-
critical graph if t(G) > 2¢=tte=l 4 . Tt inspires us to think about the
sufficient toughness condition for fractional (a, b, n)-critical deleted graphs.
The contribution of our paper is to show that this bound of toughness is
sufficient for a graph G to be a fractional (a, b, n)-critical deleted graph.

Our main result to be proved in next section can be stated as follows.
Theorem 2 Let G be a graph and let a,b be two nonnegative integers sat-
isfying 2 < a < b. Let n be a non-negative integer. |V(G)| >n+a+2if G
is complete. Ift(G) > “—"‘—"g}'“—‘l +n, then G is a fractional (a, b, n)-critical
deleted graph.
To prove Theorem 2, we need the following lemmas.

Lemma 3 (Chvital 2]) If a graph G is not complete, then ¢t(G) < 146(G).
Lemma 4 (Liu and Zhang (9]) Let G be a graph and let H = G[T] such
that 5(H) > 1 and 1 < dg(z) < k—1 for every z € V(H) where T C V(G)
and k > 2. Let Th,...,Tk_1 be a partition of the vertices of H satisfying
dc(z) = j for each z € T; where we allow some T; to be empty. If each

component of H has a vertex of degree at most k — 2 in G, then H has a

mazimal independent set I and o covering set C = V(H) — I such that

k-1 k-1
Sk —)e; 3 (k- 2)(k - 5)ij,
i=1 i=1
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where ¢; = |CNTy| and ij = [INTj| for every j=1,...,k—1.
The lemma below can be deduced from Lemma 2.2 in [9].

Lemma 5 (Liu and Zhang [9]) Let G be a graph and let H = G(T] such that
dg(z) = k — 1 for every z € V(H) and no component of H is isomorphic
to K where T C V(G) and k > 2. Then there erist an independent set |
and the covering set C = V(H) — I of H satisfying

iy - 1
V) < 3otk =4 D01 = 5=

and

k ¢))
gy Y
ICl < ,-§=1(k IO - ==,

k .
where I® = {zx € I,dy(z) =k —i},1<i<kand 3 |TD]|=|I|.
i=1

2 Proof of Theorem 2

If G is complete, due to |V(G)| > n+ a + 2, clearly, G is a fractional
{(a, b, n)-critical deleted graph. In the following, we assume that G is not
complete.

Suppose that G satisfies the conditions of Theorem 2, but is not a frac-
tional (a, b, n)-critical deleted graph. According to Lemma 1 and (S, T) <
2, there exist disjoint subsets S and T of V(G) such that

bS] - alT| +dg—s(T) < bn+1 (2)
We choose subsets S and T such that |T| is minimum. Obviously, T # 0.
Claim 1 dg-s(z)<a-1 foranyz €T.

Proof. If dg_s(z) > a for some = € T, then the subsets S and T \ {z}
satisfy (2). This contradicts the choice of S and T'. 0

380



Let ! be the number of the components of H' = G[T] which are isomor-
phic to K, and let To = {x € V(H')|dg-s(z) = 0}. Let H be the subgraph
obtained from H' — T by deleting those ! components isomorphic to K.

If |V(H)| =0, then by (2), we deduce

b|S| < a|Tol +al+bn+1

or

a|To| +1) + bn + 1

b
Clearly, w(G — §) = |To| +1 > 1. If w(G — S) > 1, then ¢(G) < —(?'f'—s;

S(TelEAEitl < atbatl which contradicts £(G) > Sb=bie=libn gnq p >
a 22 Ifw(G-S8) =1, then |To|+! = 1. Hence dg_s(z) =a—1or
dg-s(z) = 0 for z € V(G)\ S. Since dg_s(z) + |S| > dg(z) > §(G) >
2t(G), we have 2¢(G) < a —1+5| < a — 1 + 22+l which contradicts
t(G) > eb=bia=libn and b > q > 2.

Now we consider that |V(H)| > 0. Let H = H; U H, where H, is the

15| <

union of components of H which satisfies that dg_g(z) = a — 1 for every
vertex ¢ € V(H,;) and H, = H — H;. By Lemma 5, H; has a maximum
independent set I; and the covering set Cy = V(H;) — I such that

(1)
V(D <3 a—i+ D)0 - 1

i=1

(3)

and
II )I

IC1] < Z(a HIO| - (4)

where I) = {z € I},dy,(z) =a—i},1< i< aand Z | 19| = |I;|. Let
= {x € V(Hy)|ldg-s(z) =j}for1<j<a-1 Each component of Hy
has a vertex of degree at most a — 2 in G — S by the definitions of H and

Hj. According to Lemma 4, H, has a maximal independent set [ and the
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covering set Co = V(Hz) — I such that

a-—1 a—1
S a-d)e; €Y (a—2)(a—is (5)
i=1 j=1

where ¢; = |Co N Tj| and i; = [l N Tj| for every j = 1,...,a — 1. Set
W=V(G)-S-Tand U =SUCU(Ng(l;)NW))UCzU(Ng(Il2) "W).
We infer

a—1 a
U] <1 8|+ + Y g+ D - 1)) (6)
i=1 i=1
and .
W(G-U) 2 to+1+I|+ i, (7
j=1

where to = |To|. Let t(G) = t. Then when w(G — S§) > 1, we have
|U| = tw(G - 5), (8)

and it is also hold when w(G — S§) = 1. In terms of (6), (7) and (8), we get

a—1 a
IS+ 1C11 = 3 (t - 4)is +tto + D) + tlI] = Y G =IO (9)
j=1 i=1

In view of a|T| — dg-s(T) > b|S| — bn — 1, we obtain

a-1 a—1
ato +al + |V(Hy)|+ D (a—3j)i; + Y _(a—j)e; 2 b|S|—bn—1
i=1 i=1

Combining with (9), we deduce

a—1 a—1
ato +al + [V(HD)| + (a—3)i; + Y (e —d)c; +bC1| + bn+ 1
i=1 i=1
a-1 a )
> ) (bt — by)i; + bi(to +1) + bt| 11| - by (i -1}
j=1 i=1
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Therefore,
a—1
[V(H) + ) _(a - 5)e; +b|Cy|
i=1
a—1
D (bt — bj — a+ 5)i; + (bt — a)(to +1) + bt| ]y

=1

b (- IO —bn-1. (10)
i=1

v

y (3) and (4), we have

e , (1)
V()| +8Ca| < S (ab—bi+a—i+ 10| - (—b+—12)|f—-' (1)
i=1
Using (5), (10) and (11), we get
a—1 a
D (a—2)(a—3)i;+ Y _(ab—bi+a—i+ )T
i=1 i=1
a-1
(b+ 1)V
> ,Zl(bt bj — a + j)i; + bt|L| + ——2)|—|
=b (i = DIV} + (bt — a)(to +1) —bn — 1. (12)

The following proof splits into two cases by the value of tg + [.
Case 1. o +1>1. By bt > ab—b+a— 1+ bn, we have (bt — a)(to +
ly—bn—-1>ab—b—-2=>b(a—1)~2>0. Thus, (12) becomes

|
—-

3 (a— )(a—])'t,-{-Z(ab bi+a—i+1)|19)

i=1

¢Y) X
> (bt — bj —a + j)i; + bt| | + —F——— (b+1)|I | b§ —1)|I9)|.
1

[
_

a w

.
1

And then, at least one of the following two cases must hold.

Subcase 1.1. E(a-— Ya —3)i; > Z(bt—by—a+g)z,
=
Then, there is at least one j such that

(a—2)(a—j)2bt—-bj—a+j,
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which implies

ab—b+a-1+m<bt<(a-2)(a—j)+bj+a—7j
= ala-2)+(b-a+1)j+a<ab—-b+a—-1
Hence, E;’;f i; = 0, which contradicts the definition of H; and the choice

of I (see the proof of Lemma (9] such that Z‘J’;f i; # 0).
Subcase 1.2.

Z(ab—bi+a—i+l)|I(‘)l

i=1

by + SV 1 W bz - 1|19

v

v

() a ,
(ab—b+a—1+bn)|L|+ g>_+_12)|1_1 - bZ(i - 1)|ID|
i=1

1 o
> (ab-b+a- 1)|I|+(bi)—|{——| bZ ~ IO,

i=1
This implies
— . @) b Ly
D (=i IO+ (=5 + DD > 0.
=2
Ifto+1>2or (a,b) # (2,2), then by (bt —a)(to+1) —bn—1> 1 we get

1
Z(ab bz+a—z+1)|I(‘)|>bt|I|+-(-b-i-1—)u bz —1)ID) +1,

i=1

and
Z(—z +2)I9| + (—— + = )|I(1)| > 1,
i=2

a contradiction.

If n > 1, we obtain

i(ab —bi+a—i+1)ID)

i=1

(b+ 1)|ID)
2

> (ab—b+a-1)I+ —bZ(i_1)|1(i)|+2'
i=1
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Hence, we infer
~ ) b Ly
D (=i + 2O+ (=5 + D] > 2,
. 2 2
=2
a contradiction.

In conclusion, we have n = 0 and (a, ) = (2,2). Then the result follows
from the main result in [10] which determined that G is fractional 2-deleted
graph if ¢(G) > %

Case 2. o + ! = 0. In this case, (12) becomes

a—1 a
> (a—2)(a—3)i; + Y (ab—bi+a—i+ 1))
=1

j=1
a-—1
b+ DI
> > (bt —bj —a+35)i; + bt + £—+2)L—|
i=1
e .
—bY (=)D —bn-1. (13)
i=1

Subcase 2.1. |I;| = 0. In this subcase, (13) becomes

a—-1
D ((a—2)(a—j)— (bt —bj—a+3))i; +bn+1>0. (14)
j=1
Let
hi = (a—2)(a—7)~ (bt —bj—a+j)
= a’+(b—a+1)j—a—bt
< a2+(b—a+1)j—a—b-ab_b"";‘l"'b"
= a’+(b—a+1)j—ab—2a+b+1—bn.
Then max{h;} = hq—1 = —bn and the second largest value of hjis he_g =

—bn — b+ a — 1. Analysis the proof of Lemma 4 in [9), for each connected
component of Hz, choose a vertex with the smallest degree and add it to

I>. Hence, by the definition of Hj, we confirm that H is connected (only
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one connected component), each vertex in I has degree a —1in G - S

except one vertex has degree a — 2 in G — S, and b = a. This fact implies
|Ca| < (@ =2) + (|l2| =1 —1-1) = |I2(a - 2),
IT| <] Li(e—1),

and

1 — |15
a

|S|<|T|+1+bn
- a

<|L|+ +n.

If |I5| = 1, then |S| = 1+n, §(G) < |S|+ (a—1) = a+n, which contradicts
8(G) 2 2t(G) > a + n. Hence, |I2| > 2 and

I EE bl +hie-2)+n
w(G-U) = |Z2]

1 1 n
a—1—=)4 — 4 —,
( a) a|I2| |Iz|

where U = S U Cp U (Ng(I2) N W). This reveals n(1 — ) < g7 — 1,
which contradicts a@ > 2 and |[| > 2.
Subcase 2.2. |Iz| = 0. In this subcase, (13) becomes

: | m @ |
Z(ab—bi+a-i+1)|1('>|-bt|11|-(i+—12)'—1—|+bZ(i—1)|1<‘>}+:m+1 >0,

i=1 i=1

0= +n<HG) <

This implies

i(-—i + 219 + (-g + %)u(l)l +1>0.

i=2
Then we get Z 9| =0, [I®| < 1 and |[IV] < 2. Now, we consider
following three subcases
Subcase 2.2.1. |IV] = 1. In this subcase, we have i [I®} = 0. By
analyzing proof process of Lemma 2.2 in [9]: “for each :Izgtex z € I, and
dy, (z) = k — 1, there exists a vertex y € I, such that Ny _(z) N Npy_(y) #
¢”, we obtain |I;| > 2,

IT| < (@ = 1)+ (|h] - 1)(a - 1) = |L](a - 1),
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9] < IT|+1+bn _ |hle—1)+1+bn
—_— b b

= b
and
Ul < Sl+IC)+ ) (-1l
i=1
Li(a—1)+1+b

< Il z 2 +1hi@-1) - L] + (0] - 1)

= ez Vr1di ey -1,
Thus,

~ _ [hl(e—1)+1+bn —-1) -
ab—b+a 1+bn5t(G)5 |U| < 7 +lhle-1-1
b w(G—U) 'III

This implies bn(|I;| — 1) <1 — b, a contradiction.

Subcase 2.2.2. |I(V)| = 2. In this subcase, Z |[7()| = 0. We can get a
contradiction via the discussion similar as Subca.se 2.2.1.

Subcase 2.2.3. [I(M| = 0. In this subcase, we have 3°¢_, |[I()] = 0
and |I®| < 1. If [}] = 1, then |§] < @=DHntl Thys we infer

(e—1)+bn+1
b

A contradiction. Hence, |I}| > 2. Let Y = Ng(I,) N W.

If there is a vertex y € Y such that y only adjacent to one vertex in I.

2(ab—b+a—1+bn)
; .

+a-12 a—14]S] 2 §(G) 2 2(C) >

Reset
U=SuUC U(Ng(li)Nn(W - {y})).

Then, we have

L|ila—1)+1+b
U1 IS +1n)@-1) —1 < BRI gy,
and by || = 2,
—bta- [ila=1)+1+0n -
ab-bra=ltbn o0 WU _ L +lhle-1-1
b oG- A

This implies bn(|/;| — 1) < 1 — b, a contradiction.
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If each vertex in Y adjacent to at least two vertices in I). Let U =

SUCLU(Ng(fi)NW), we get,

I Llila-1)+1+b I
U1 <1 81+ 1@ -2 + Dl < M@ DAL gy g4 1,
and by || > 2,
ab—b+a—-1+bn Ul
< < —
5 < U0 s oEm
< B 2

|71

That is to say, bn(|| — 1) < 1— 21l which contradicts b > 2 and |I| > 2.
Subcase 2.3. lIl| # 0 and |I3| # 0. From what we have discussed in

Subcase 2.1, we get E (a —2)(a—3)i; < Zl(bt —bj—-a+j)i; +bn+1.

=
Then, we deduce

e . M o .
> (ab—bi+a—i+ )TV > bt + ﬁb—J%)u —-b) (-1
i=1 =1

This implies

S (4O + (-5 + Dy 20
i=2

Thus, we have 30, [I®] =0, |[I®)| < 1, |IM] < 2 and n = 0 by what we
have discussed in Subcase 1.2. We only to discuss the situation of [I(V)| = 0,
other two situations for |[I{¥| = 1 and |IV)| = 2 can be considered in a
similar way.

Under the condition of [I(Y)| = 0, we are sure that Za: HI®] = 0 and
|[I®| < 1. We infer that =

(T} <1 L@ = 1) + |Rzl(a — 1) = ( = (] + | ),
TI+1 _ (hl+1B)e-1D+1

S| <

5 = b
Since |11} + |[2]| = 2, we get
ab—b+a—1 Ul _ IS +Bl(a=2) + Il —1)
PoOYAT 26 ,
e TAFS
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where U = SU C, U (Ng(I;) "\W)U Cy U (Ng(I3) N W). Then, we get
(ab=b+a—=1)(|L|+152]) < (s |+al)(@=1)+1+(ab—25)([ s |+ | Ta])+ | ol
This implies } > |I3], a contradiction.

We complete the proof of the theorem. a
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