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Abstract

Given a tournament T = (V, A), a subset X of V is an interval of T
provided that for any e,b € X and z € V' \ X, (a,z) € A if and only if
(b,z) € A. For example, 0, {z} (z € V) and V are intervals of T, called
trivial intervals. A two-element interval of T is called a duo of T. The
tournaments which do not admit any duo, are called duo-free tournaments.
A vertex z of a duo-free tournament is d-critical if T — z has at least one
duo. In 2005, J.F. Culus and B. Jouve [5] characterized the duo-free tour-
naments, all the vertices of which are d-critical, called tournaments without
acyclic interval. In this paper, we characterize the duo-free tournaments
which admit exactly one non-d-critical vertex, called (—1)-critically duo-
free tournaments.
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1 Basic definitions

A graph (or digraph) G := (V(G), A(G)), more simply (V, A), consists of a
finite verter set V with an arc set A of ordered pairs of distinct vertices of
G. The order (or the cardinality) of G, denoted by |V(G)), is that of V(G).

The notion of isomorphism, subgraph and embedding are defined in the
following manner. First, let G := (V, A) and G’ := (V’, A’) be two graphs.
A one-to-one correspondence f from V onto V' is an isomorphism from G
onto G’ provided that for z,y € V, (z,y) € A if and only if (f(z), f(¥)) €
A’. The graphs G and G’ are then said to be isomorphic, which is denoted
by G ~ G'. Second, given a graph G := (V, A), with each subset X of
V is associated the subgraph G[X] := (X, AN (X x X)) of G induced by
X. For each subset X of V (resp. z € V), the subgraph G[V \ X} (resp.
G|V \ {z}]) is denoted by G — X (resp. G — z). For two graphs G and G’,
if G' is isomorphic to a subgraph of G, then we say that G’ embeds into G.

A symmetric graph is a graph G satisfying: for z # y in V(G), if
(z,y) € A(G), then (y,z) € A(G). For example for every integer n > 2,
the path P, is the symmetric graph defined on {0, 1,...,n — 1} as follows:
for all 4,5 € {0,1,...,n— 1}, (i,5) is an arc of P, if and only if | — j| = 1.
Besides, for each integer n > 3 the cycle C, of length n is the symmetric
graph obtained from the path P, by adding arcs (0,7 — 1) and (n — 1,0).
A cycle is a graph which is isomorphic to C,, for some n > 3. Given
a symmetric graph G and two vertices z,y € V(G), the vertex y is said
to be a neighbor of z (in G) if (z,y) € A(G). We denote by Ng(z) the
set of neighbors of z in G. The degree of z is dg(z) := |Ng(z)|. When
Ng(z) = 0, the vertex z is said to be an isolated vertex of G. An empty
graph is a symmetric graph which all the vertices are isolated.

Let G be a symmetric graph, an equivalence relation R is defined on
V(G) as follows: for all z # y in V(G), Ry if there is a sequence zo :=
Z,+++,Tpn =y of vertices of G such that foralli € {0,--,n—1}, (z;, Ti41) €
A(G). The equivalence classes of R are called connected components of G.
A non trivial connected component of G is a connected component of G
which is not reduced to a singleton. We say that G is a connected graph if
it admits a unique connected component.

A graph T := (V, A) is said to be a tournament if for z # y in V,
(z,y) € A if and only if (y,z) € A. For two distinct vertices  and y of a
tournament T, £ — y means that (z,y) € A(T). A transitive tournament
or a total order is a tournament T such that for z,y,2 € V(T), ifz — y
and y — 2, then £ — z. If £ and y are two distinct vertices of a total
order, the notation £ < y means that z — y. Let T be a tournament. For
all z,y,2 € V(T) we say that = separatesy and zify — z — zorz —
z—y. Forze V(T)and Y Cc V(T), z — Y (resp. Y — z) means
that for any y € Y, £ — y (resp. y — z). Let X and Y be two disjoint
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subsets of V(T'), X — Y means that for any (z,y) € X xY, z — y. The
dual of a tournament T = (V, A) is the tournament obtained from T by
reversing all its arcs. This tournament is denoted by T* := (V, A*), where

A* = {(z,y) : (y,z) € A}.

2 Indecomposable tournaments

Let T be a tournament. We introduce an equivalence relation on the ordered
pairs of distinct vertices of T', denoted by =r (or =) and defined as follows:
for z # y in V(T) and v # v in V(T), (2,y) =1 (»,v) (or (z,%) = (u,v))
if (z,y) = (u,v) or |{(z,¥),(u,v)} N A| # 1. Given X a subset of V(T)
and z € V(T) \ X, the notation z ~ X means that for all y,2z € X,
(z,y) = (=, 2), otherwise we notate z # X. The notation X ~ Y means
that for all 7,2’ € X and y,y € Y, (z,y) = (z',v), otherwise we notate
X #4Y. A subset I of V(T) is an interval (7, 9, 10] (or a clan [6], or an
homogenous subset (8]) of T provided that for all a,b € I and z € V' \ I,
(a,z) = (b,z). For example @, {z} where z € V(T), and V(T') are intervals
of T', called trivial intervals. A tournament is then said to be indecomposable
([9, 10]) (or primitive [6)) if all its intervals are trivial, otherwise it is said
to be decomposable. Given a tournament T, a partition of V(T), all the
elements of which are intervals of T, is called an interval partition of T.

Now we introduce some notations and recall some results on indecom-
posable tournaments.

Definition 2.1 (/6/) Given a tournament T := (V, A), with each subset
X of V, such that | X| > 3 and T[X] is indecomposable, are associated the
following subsets of V' \ X :

o [X]:={zeV\X :z~ X}.

o X(u):={r e V\X: {u,z} is an interval of T[X U {z}]} for every
u€ X.

o Ext(X):={z e V\ X :T[X U/{z}] is indecomposable}.

Lemma 2.2 ([6]) Let T := (V, A) be a tournament and X be a subset of
V such that |X| > 3 and T[X] is indecomposable.

o The family {X(u) : v € X} U {Ezxt(X),[X]} constitutes a partition
of V\X.

e Givenu € X, for all z € X(u) and for ally € V \ (X U X(u)), if
T[X U {z,y}] is decomposable, then {u,z} is an interval of T[X U {z,y}].

e For every z € [X] and for everyy € V\ (X U [X]), f T[X U {z,y}]
is decomposable, then X U {y} is an interval of T[X U {z,y}].

e Given z,y € Ezt(X), with z # vy, if T[X U {z,y}] is decomposable,
then {x,y} is an interval of T[X U {z,y}].

393



Lemma 2.3 ([10)) If T := (V, A) is an indecomposable tournament such
that |V| > 7, then there are distinct z,y € V such that T — {z,y} is
indecomposable.

Given a tournament T', a duo [1] of T is a two-element interval of 7. The
tournaments which do not admit any duo are called duo-free tournaments.

3 The critical vertices of an indecomposable
tournament

Let T be an indecomposable tournament. A vertex z of T is critical if T —z
is decomposable. The tournament T is said to be critical if all its vertices
are critical. In order to present our main result and the characterization of
the critical tournaments due to J.H. Schmerl and W.T. Trotter [10], we in-
troduce the tournaments Top41, Uop+1 and Vopy defined on {0,1,...,2h},
with h > 1, as follows :

[ T2h+1[{0,1,...,h.}] = U2h+1[{0,1,...,h}] =0<1<---<h,
Tonsr[{h+1,...,2h}] = (Uans1)*[{h+1,...,2h}} = h+1< .- < 2h.
Foranyie€ {0,1,...,h—1},ifj € {i+1,...,h} and k € {0,1,...,4},
then (j,i+h+1) and (i+h+1,k) belong to A(Ton41) and A(Uzpy1).

o Vor41[{0,...,2h—1}] =0 < --- < 2h—1and forany i € {0,...,h—-1},
(2¢ + 1,2h) and (2h, 2¢) belong to A(Vant1).

/—“/——’

h+l -+« —— - ith+l -

N NG 7N\

i —— i+l

N .

Figure 1: Top41.
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Theorem 3.1 ([10/) Up to isomorphism, the critical tournaments of car-
dinality > 5 are the tournaments Tont1, Uspy and Vopyy, where h > 2.

A tournament T of order > 5 is said to be (—1)-critical when it ad-
mits exactly one non-critical vertex [2]. The (-1)-critical tournaments were
characterized by H. Belkhechine, I. Boudabbous and J. Dammak [2]. In
particular, we have the following lemma.

Lemma 3.2 (/2]) The order of any (—1)-critical tournament is odd and
>T.

4 The d-critical vertices of a duo-free tour-
nament

A vertex = of a duo-free tournament T is d-critical if T — = admits at
least one duo. A duo-free tournament, of order > 3, is critically duo-free
(or critically without duo) if all its vertices are d-critical. We generalize
this definition by saying that a duo-free tournament of order > 4 is (—k)-
critically duo-free, or (—k)-critically without duo, when it admits exactly k
non-d-critical vertices.

The following theorem due to J. F. Culus and B. Jouve [5] characterizes
the critically duo-free tournaments.

Theorem 4.1 ([5]) A tournament T is critically duo-free if and only if T
admits an interval partition P such that for every X € P, T[X] is isomor-
phic to some Top 4.

A diamond is a tournament on 4 vertices admitting only one interval
of cardinality 3. The center of a diamond § is the unique vertex a € V(4)
satisfying a ~ (V(8) — {a}). Up to isomorphism, there are exactly two
diamonds é* and §— = (6%)*, where é* is the tournament defined on
{0,1,2,3} by 6+({0,1,2}) = T3 and {0,1,2} — 3. A tournament isomor-
phic to 4% (resp. isomorphic to §7) is said to be a positive diamond (resp.
negative diamond).

A double-diamond is a tournament A on 7 vertices admitting an interval
partition P = {X,Y} such that A(X) ~ T3, A(Y) is a positive diamond
and Y — X. The center of a double-diamond A is the unique vertex
a € V(A) satisfying: for all z # y in V(A)\ {a}, A[{a,z,y}] is a total
order.

In the present paper, we characterize the (—1)-critically duo-free tourna-
ments. When a vertex a is the only non d-critical vertex of a (—1)-critically
duo-free tournament, we say that this tournament is (—1)-critically duo-
free at a, or (—1)-critically without duo at a. The following theorem is the
main result.
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Theorem 4.2 A tournament T, of order > 4, is (—1)-critically duo-free
at a if and only if T admits an interval partition P such that there is a
unique X € P satisfying : X = {a}, or T[X] is a diamond of cenler a,
or T[X] is a double-diamond of center a and for any Y € P\{X}, T[Y] is
isomorphic to some Top1.

5 The d-indecomposability graph of a duo-
free tournament

By analogy with the indecomposability graph of an indecomposable graph
[3], the notion of d-indecomposability graph was introduced by Y. Boudab-
bous and A. Salhi [4] in the following manner. With each duo-free tourna-
ment T := (V, A) is associated its d-indecomposability graph D(T') defined
on V as follows: For all z # y in V, (z,y) is an arc of D(T) if T — {z,y}
has no duo. Notice that D(T) is a symmetric graph and D(T) = D(T™).
This graph is an important tool in the present study concerning the (—1)-
critically duo-free tournaments. We recall the following result.

Lemma 5.1 ([4]) Let T be a critically duo-free tournament and K be a
connected component of D(T), then D(T)[K] is a cycle of odd length. More-
over K is an interval of T and T[K] is isomorphic to some Top41.

We begin with establishing the following Lemma.

Lemma 5.2 Let T := (V, A) be a duo-free tournament of order > 4 and x
be a d-critical vertez of T. If z is non-isolated in D(T), then dp(T)(z) = 2
and Npt)(x) is the unique duo of T — z.

Proof. Let = € V be a d-critical vertex of T. Assume that z is non-isolated
in D(T). Let I, := {iz,jz} be a duo of T — z. For all t € V\(I; U {z}),
I, is a duo of T — {:B,t}, then t ¢ ND(T)(m)- So, ND(T)(x) CI,. As
T - {17,1:_.,} ~T— {:z:,j,} and dD(T)(x) -'/-' 0, then ND(T)(JZ) = Ix. In
particular, Np(r)(z) is the unique duo of T — z. m}

Remark 5.3 Let T := (V, A) be a duo-free tournament of order > 4 and
z be a d-critical vertex of T. The vertez = is isolated in D(T') if and only
if T — x admits at least two duos.

Indeed, let x be a d-critical vertex of T. If x is non-isolated in D(T)
then, by Lemma 5.2, Np(T)(z) is the unique duo of T — z. Conversely,
assume that T — = admits a unique duo I := {iz, jz}, then T — {z,i;} and
T — {z,jz} are isomorphic and duo-free tournaments, so z is non-isolated

in D(T).
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From the previous Lemma we obtain:

Corollary 5.4 LetT be a (—1)-critically duo-free tournament ata. If K is
a non trivial connected component of D(T') not containing a, then D(T)[K]
is a cycle.

Lemma 5.5 Let T be a (—1)-critically duo-free tournament. If a cycle C
embeds into D(T), then this cycle is of odd length. Moreover, if X is a
subset of V(T) satisfying: D(T)[X] =~ C}, then X is an interval of T

Proof. We suppose that a cycle C; embeds into D(T’), ! > 3. Up to isomor-
phism, we can assume that C; = D(T)[{0,1,---,I —1}] and all elements of
{1,-++,1 — 1} are d-critical vertices of T'. Since Np(y(l - 1) = {I - 2,0},
then according to Lemma 5.2, {0, — 2} is a duo of T — {l — 1}. It follows
that [ is odd, otherwise, again by Lemma 5.2, (I — 1,0) = (I — 1, 21), for
i € {0,..., 52}. In particular, ({ —1,0) = (! — 1,{ — 2) so that {{— 2,0} isa
duo of T, contradiction. Let { = 2n+ 1, n > 1. If V(T)\{0,...,2n} #
0, then V(Cony1) = {0,..,2n} is a non-trivial interval of T Indeed,
let z € V(T)\{0,...,2n}. Again by Lemma 5.2, (z,1) = (z,2i + 1) for
i € {0,..,n — 1} and (z,0) = (z,2i) for i € {0,...,n}. Moreover, since
Np(1y(2n) = {2n—1,0}, then according to Lemma 5.2, (z,0) = (z,2n—1).
Then, V(Can+1) = {0, ...,2n} is an interval of T m]

Lemma 5.6 Let T be a (—1)-critically duo-free tournament at a, then
dD(T) (a) =0.

Proof. Assume by contradiction that dp(r)(a) > 1. Let K be the con-
nected component of D(T') containing a. From Lemma 5.2, for all z €
K\{a}, dp(1)(x) = 2. So, dp(7)(a) is even, then for all z € K, dp(r)(z) is
even and non-zero, then a cycle C,,, embeds into D(T')[K]. Set X a subset
of V(T') such that D(T)[X] =~ Cy,. If a € X, since D(T)[K] is connected,
thereis z € Cy, and y € K\Cy, such that y € Np(r)(x), this contradicts the
fact that dp(1)(z) = 2, so a € X. From Lemma 5.5, the cycle Cy, is of odd
length and X is an interval of T'. Let n > 1 such that D(T')[X] =~ C2,41. Up
to isomorphism, we can assume that X = {0,1,---,2n}, D(T)[X] = Capn41
and @ = 0. Up to duality, we can assume that 0 — 1 in T. Since for
i€{l,.,2n—1}, {i - 1,i+ 1} is a duo of T — i and not a duo of T, then
0—1-— ... — 2n in T. Moreover, since {2n — 1,0} is a duo of T — 2n
and not a duo of T, then 2n — 0 in T. Necessarily n > 2, otherwise, since
{0,1,2} is an interval of T', then {1,2} is a duo of T'—0 and this contradicts
the fact that 0 is a non d-critical vertex of T

For all ¢ € {0,---,n — 1}, {2¢,2 + 2} is a duo of T" — (2i + 1). Since
2n — 0 then 2n — 2i for all i € {0,---,n — 1}. On the other hand,
since 1 — 2 then 1 — 2i for all ¢ € {1,---,n}. So {1,2n} — 2i for all
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ie{l,---,n—1}

For alli € {0,---,n — 2}, {20 +1,2{ + 3} is a duo of T — (2¢ + 2). Since
2n—1 — 2n, then 20 + 1 — 2n for all i € {0,---,n — 1}. On the
other hand, Np(ry(2n) = {2n — 1,0} and 0 — 1 then, from Lemma 5.2,
{2n — 1,0} — 1; consequently 2i +1 — 1 for all i € {1,---,n —1}. So
2i+1— {1,2n} foralli € {1,---,n—1}.

We deduce that {1,2n} is a duo of T[X] — 0. Since X is an interval of T,
then {1,2n} is a duo of T — 0. This contradicts the fact that 0 is a non
d-critical vertex of T'. a

The result bellow follows from Corollary 5.4, Lemmas 5.5 and 5.6.

Corollary 5.7 Let T be a (—1)-critically duo-free tournament and K be a
non-trivial connected component of D(T), then D(T)[K] is a cycle of odd
length and K is an interval of T'.

Remark 5.8 Every (—1)-critically duo-free tournament is decomposable.

Proof. Let T be a (—1)-critically duo-free tournament at a. Assume by
contradiction that T is indecomposable. The tournaments with 4 vertices
are all decomposable. Moreover T, Us and V5 are the only indecomposable
tournaments of order 5 and are not (—1)-critically duo-free. So, T has order
> 6. Furthermore, T is critical or (—1)-critical depending on whether T —a
is decomposable or not. Then, from Theorem 3.1 and Lemma 3.2, T has
odd order. It follows that |V(T')| =2 7. By Lemma 5.6, a is an isolated
vertex of D(T'). If D(T) is not an empty graph then, from Corollary 5.4,
a cycle embeds into D(T). From Lemma 5.5, this cycle is a non-trivial
interval of T, this contradicts the fact that T is indecomposable. Then
D(T) is an empty graph. It follows that for all z # y in V(T), T — {z,y}
admits a duo, this contradicts Lemma 2.3. D

6 Proof of Theorem 4.2

The sufficient condition of Theorem 4.2 follows from the following two re-
marks and Lemma:

Remark 6.1 A diamond (resp. a double-diamond) is (—1)-critically duo-
free tournaments at its center.

Remark 6.2 For any integer h > 1, the tournament Top; is both inde-
composable and critically duo-free.

Lemma 6.3 Let T be a tournament, of order > 4, having an interval par-
tition P such that there is a unique X € P satisfying: X = {a}, or T[X]
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is a diamond of center a, or T|X] is a double-diamond of center a and for
allY € P\{X}, T[Y] is isomorphic to some Top11. Then T —a and T are
duo-free.

Proof. First, we verify that T — a is duo-free. If X = {a}, we notice that
P\{X} is an interval partition of T — a and we deduce, by Theorem 4.1,
that T — a is critically duo-free. Now we assume that |X| > 1, then either
T[X \ {a}] = T3 or T[X \ {a}] admits an interval partition {Y;,Y>} such
that T'[Y;] ~ T'[Y2] ~ T3, depending on whether T'[X] is a diamond or T[X]
is a double-diamond. Putting P’ := (P\{X}) U {X\{a}} in the first case
and P’ := (P\{X}) U {Y1,Y2} in the second case, we see that P’ is an
interval partition of T'—a such that for all Z € P, (T —a)[Z] is isomorphic
to some Tpp4y with h > 1. It follows, from Theorem 4.1, that T' — a is
critically duo-free. In particular T — a is duo-free.

At present we show that T is duo-free. Assume by contradiction that T"
admits a duo {a,8}. Since T — a is duo-free, then necessarily a € {a, 3}.
We suppose that a = 8. Since, by Remark 6.1, T[X] is either of order 1
or (—1)-critically duo-free at a, we deduce that there is Y € P\{X} such
that « € Y. So, a € Y(a). Moreover, as X ~ Y, a € [Y] which contradicts
Lemma 2.2. |

To prove the converse, we first prove the following results.

Lemma 6.4 Let T be a (—1)-critically duo-free tournament at a. Then
T — a is a critically duo-free tournament.

Proof. Since a is a non d-critical vertex of T', then T — a is a duo-free
tournament. From Lemma 5.6, dp(7)(a) = 0, then for all z € V(T)\{a},
T —{a,z} admits at least one duo. So, for all z € V(T)\{a}, z is a d-critical
vertex of T' — a. Consequently T — a is a critically duo-free tournament. O

Proposition 6.5 Let T be a (—1)-critically duo-free tournament at a and
K be o non-trivial connected component of D(T), then K is a connected
component of D(T — a). Moreover TK)] is isomorphic to some Top, .

Proof. It is sufficient to show that for all non isolated vertex = of D(T),
Np(r-a)(z) = Np(1(z). Let = € V(T) be a non-isolated vertex of D(T),
then according to Lemma 5.6, = is a d-critical vertex of T. From Lemma 5.2,
Np(r)(z) is the unique duo of T — x. Since a ¢ Np(t)(z), then Np(7)(z)
is a duo of T — {a,z}. Furthermore, from Lemma 6.4, T — a is critically
duo-free then, by Lemma 5.1, all vertices of T — a are non isolated in
D(T - a). Finally, by Lemma 5.2, Np(r)(z) is the unique duo of T — {a, z}
and Np(r-q)(z) = Np1)(z).
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From what precedes, K is a connected component of D(T — a). More-
over, since T — a is critically duo-free, we deduce by Lemma 5.1 that T'[K]
is isomorphic to some Top41. 0

Lemma 6.6 Let T be a (—1)-critically duo-free tournament at a and K be
a connected component of D(T — a) formed by isolated vertices of D(T).
Then for every x € K, there is a € K such that {a,a} is a duo of T —z.

Proof. Let = € K, there exists a € V(T) \ {a} such that {a,c} is a duo
of T — z, otherwise, set J, a duo of T — z, then a € J, so J; is a duo
of T — {a,z}. Furthermore, as T — a is a critically duo-free tournament,
according to Lemma 5.1, dp(r-q)(z) = 2. Moreover from Lemma 5.2, J;
is the unique duo of T — {e,z} and Jz = Np(r_q)(x). It follows that
Np(r-q)(z) is the unique duo of T’ — z. Consequently, by Remark 5.3, z is
a non-isolated vertex of D(T), contradiction. We prove now that o € K.
Suppose the contrary. Let y € Np(r-q)(z). From what precedes, there
exists 8 € V(T) \ {a} such that {a,(} is a duo of T' — y. Necessarily,
a # B because  separates a and a. Set K’ be the connected component of
D(T — a) containing a. We have 8 € K’, otherwise {c, 8} will be a duo of
T|K'] which is indecomposable. Furthermore, since {a,3} is a duo of T'—y
and {a,a} is a duo of T — z, for all z € K'\ {a}, (2,0) = (2,0) = (2,0).
It follows that 8 € K'(a), impossible because 8 € [K’]. (]

Proposition 6.7 Let T be a (—1)-critically duo-free tournament at a and
K be a connected component of D(T — a) formed by isolated vertices of
D(T). Then the following assertions are verified.

1. T[K] is isomorphic to Ts.
2. T[K U {a}] is a diamond of center a.
3. KU {a} is an interval of T.

Proof. Since T — a is critically duo-free then, from Lemma 5.1, there exists
h > 1 such that T[K] =~ Ton41. Moreover, up to isomorphism, we may
assume that T[K] = Top4+1. Assume by contradiction that h > 2. Since 0
is an isolated vertex of D(T'), then T'— {0, 2 + 1} admits at least a duo.
First, we show that a duo of T—{0, h+1} is a duo of T[KU{a}]-{0, h+1}
containing a. Since T[K] — {0,h + 1} ~ T, then by Theorem 4.1,
(T — a) — {0,h + 1} is a critically duo free tournament. In particular,
(T — a) — {0,h + 1} does not admit any duo. It follows that every duo of
T —{0,h + 1} contains a. Let 8 € V(T)\ {0, a} such that {a, B} is a duo of
T —{0,h + 1}. We have to prove that § € K. Suppose the contrary. Since
K is an interval of T — a, then 8 ~ K. It follows that a ~ K \ {0,k + 1}.
From Lemma 6.6, there exists & € K such that {a, a} is a duo of T'—0. So,



a = h+1, otherwise 8 € (K \ {0,/ + 1})(c) and this contradicts Lemma
2.2. We obtain h+1 € [K'\ {0, h + 1}, which is impossible because k > 2.
Throughout the following 8 € K such that {a, 8} is a duo of T — {0, h + 1}.

Second, we show that T'[K U {a}] is indecomposable. Since a € (K \
{0, + 1})(B) then, by lemma 2.2, a & [K]. So, it is enough to show that
forallie K, a & K(i).

Assume that there is ¢ € K such that a € K(i), then {4,a} is a duo of
T[K U {a}]. Without loss of generality, we can assume that i = h. Since
a € K(h) and {a, 8} is a duo of T — {0, h + 1}, then a € (K \ {0, A+ 1})(h)
and a € (K'\{0,h+1})(B). It follows by Lemma 2.2 that 8 = k. So, {a, h}
is both a duo of T — {0,~ + 1} and a duo of T[K U {e}]. Then {a,h} is a
duo of T, which is impossible because T is duo-free.

Moreover, from Lemma. 6.6, for all i € K, there is a duo of T'—i included
in KU {a}. It follows that T[K U {a}] is a (-1)-critical tournament, but
this contradicts lemma 3.2 because |K U {a}| is even.

In conclusion k =1 and T[K] is isomorphic to T3.

We will show now that T{K U {a}] is a diamond. By contradiction, we
assume that a € K(i), where i € K. Then T[(K U {a}) \ {i}] ~ T5. It
follows that for all j € K \ {i}, {a,j} is not a duo of T — 4, but this
contradicts Lemma 6.6. Finally, since all tournaments on 4 vertices are
decomposables, we deduce by Lemma 2.2 that a € [K], thus T[K U {a}] is
a diamond.

To finish the proof, we will show that KU{a} is an interval of T. Since K
is an interval of T'—a, it is sufficient to verify that for all z € V(T)\(KU{a})
and y € K, (z,y) = (z,a). Let y € K and 2 € K such that {a,z} is a duo
of T —y. For all z € V(T) \ (K U {a}), (z,a) = (z, 2) = (z,y). m]

Proposition 6.8 Let T' be a (—1)-critically duo-free tournament at a. Set
W(T) the set of isolated vertices of D(T). If W(T) # {a}, then T[W(T)
is a diamond of center a, or a double-diamond of center a.

Proof. From Lemma 5.6, dp(r)(a) = 0, then a € W(T). From Propo-
sition 6.7, T[W(T)] is either of order 1 or admits an interval partition
{{a}, K1, K2,...,K,}, where n > 1 such that for all i € {1,2,...,n},
T(K;) ~ T3 and both K; and K; U {a} are intervals of T. In particular
|W(T)| is of the form 1 + 3p, where p is a positive integer.

Assume that |W(T)| > 7, then n > 3. We have T'[K;U{a}] is a diamond
for i € {1,2,3}. Up to isomorphism, we can assume that a — K; and
a — K,. Since K1U{a} is an interval of T and a — Kj, then K; — K.
Besides, K2 U {a} is an interval of T and a — K, then K — Kj, ab-
surd. The form of T[W(T')] follows immediately using Proposition 6.7. O

Now we complete the proof of Theorem 4.2. Given a (—1)-critically
duo-free tournament T at a. Let K be a non-trivial connected component
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of D(T) then K does not contain a. From Corollary 5.7, D(T)[K] is a cycle
and K is an interval of T. Proposition 6.5 states that T[K] is isomorphic
to some Top41.

Proposition 6.8 ensures that W(T) = {a}, or T[W(T)] is a diamond of
center a, or T[W(T')) is a double-diamond of center a. Assume that W(T') #
{a}. It follows that T[W (T')] admits an interval partition {{a}, K1,...,Kn}
with n = 1 or 2 and T'[K;) ~ T[K,) ~ T3. Since K, and K, are connected
components of D(T — a) formed by isolated vertices of D(T) then, from
Proposition 6.7, K; U {a} and K, U {a} are intervals of T, thus their union
W(T) is an interval of T
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