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etc. It is well known to compute the chromatic number of a graph is NP-
hard problem. In [1][2], the people have some results about it by combined
methods. At ICM2002, Noga Alon advanced a new theory that graph
coloring could studied by probability methods. For instance, some conclu-
sions have been gotten by probability methods, see [3-8]. In 2006, Zhang
Zhongfu present a new concept of the k-D()-vertex-distinguishing total-
coloring and conjecture, see [9]. In this paper, we study the upper bounds
for the D(f)-vertex-distinguishing total-chromatic numbers by probability
method.

All the graphs G = G(V, E) discussed in this paper are finite, undi-
rected, simple and connected. Let A(or A(G)) be the maximum degree of
G, é(or 6(G)) be the minimum degree of G, and if u € V(G), then d(u) is
the degree of v in G and C(u) = {f(v)} U {f(ut)|uu" € E(G)}.

Definition 1[9. Let G(V, E) be a connected graph with order at least
2. Suppose k, B are both positive integers and f is a mapping from
V(G)UE(G) to C = {1,2,--- k}. For all u € V(G), the set C — C(uw)
is denoted by C(u). If

(i) for any uv,vw € E(G),u # w, we have f(uv) # f(vw);

(ii) for any uv € E(G),u # v, we have f(u) # f(v), f(u) # f(uwv), f(v) #
F(uv), then f is called a k-proper-total-coloring. If f is a k-proper-total-
coloring, and

(iii) for any u,v € V(G),u # v,d(u,v) < B, where d(u,v) denotes
the distance between u and v, we have C(u) # C(v), i.e. C(u) # C(v),
then f is called a k-D(f)-vertex-distinguishing total-coloring of the graph
G(k-D(B)-VDTC of G in brief) and the number xg,q(G)=min{k|G has
a k-D(B)-VDTC} is called a D(8)-vertex-distinguishing total-chromatic
number of G.

For other terminologies and notations, the interested reader may refer
to [11].

Lemma 2 (The General Local Lemma)(!%. Consider a set £ = {4,, A,

-+, Ap} of (typically bad) events such that each A; is mutually independent



of £ — (D;|U{A;}), for some D; C £. If we have reals z;,z0,--- , 7, €

[0,1) such that for each 1 <i < n, Pr(4;) <z; [] (1- z;), then the
A;eD;
probability that none of the events in £ occur is at least [J[_,(1 —z;) > 0.

<

Theorem 1. Let A be the maximum degree of G, then

16AB+1)/(28+2) A >3 3> 4A + 3;

Xput(G) < { 13A(B+4)/4 A>4,8>5

10A2, A>3,2<8<4
Proof.We only give the proof for the case that A > 3,8 > 4A + 3, the
other cases can be proved similarly. The proof consists of five steps. We
assign to each edge and vertex of G a uniformly random coloring from
{1,2,--+,16AB+1)/(28+2)} 'named this new coloring f. We will use lemma
2 to show that the probability that f is a D(8)-vertex-distinguishing total-
coloring is positive.

Step 1. The following bad events are defined:

Type 1. For each pair of adjacent edges e, f, let Ae s be the event that
both e and f are colored with the same color;

Type 2. For each pair of adjacent vertices u,v, let B, , be the event
that both u and v are colored with the same color;

Type 3. For each pair of incident vertex w and edge e, let E,, . be the
event that both w and e are colored with the same color;

Type 4. For each edge e = uv,, such that d(u) = d(v;) > §(G), let C.
be the color set of vertices u,v; and all edges which are incident u or v,
then E¢, be the event that the coloring of u,v; and all edges which are
incident to u or v, satisfy proper total coloring, and C(u) = C(v);

Type 5. For each path whose length is 2, P,,, = uev; fvs, such that
d(u) = d(va2) > 8(G), let P,,, be the set of vertices u, v, and all edges which
are incident u or vy, then E‘pw2 be the event that the coloring of u, v, and
all edges which are incident to u or vy satisfy proper total coloring, and
C(u) = C(v2);
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Type (B+3). For each path whose length is 8, Pyy, = uevi fva---vg,
such that d(u) = d(vg) > 6(G), let P,,, be the set of vertices u, vg and all
edges which are incident u or vg, then Ep,,, be the event that the coloring
of u, vg and all edges which are incident to u or vg satisfy proper total

coloring, and C(u) = C(vg).

It remains to show that with positive probability none of these events
happen, then f is a D(8)—VDTC of G. Let us construct a dependency
graph H whose nodes are all the events of these 8 + 3 types, in which two
nodes Ex and Ey (where each of X and Y is either a pair of adjacent edges,
a pair of adjacent vertices, a pair of incident vertex and edge, or a set of
two vertices and all edges which are incident to any vertex of these two
vertices) are adjacent if and only if X and Y contain one common edge
or vertex. Since the occurrence of each event Ex(or Ey) depends only on
the edges and vertices of X(or Y'), H is dependency graph for our events.
In order to apply The General Local Lemma, we need to estimate for the
probability of each event and the number of nodes of each type in H which
are adjacent to any given node. These estimates are given in the two steps
below.

Step 2. Estimates the probability of each event:
P’I"(Ae,f) = PT(Bu‘v) = PT(Ew,e) = T.S_A—(F—""lﬂzm;

- 1
PT(EC,,) - (164(ﬂ+l:/(2A+2))+(1GA(B+I;/(2A+2))+ . +(15A(B+1A)/_(23+2))
< AI6AFIIEETD
PT(EPuug) = PT(EPqu) == PT(EPu 1)) = PT(EPuUp)
= mz'(mvlrmﬁrym' ‘ ﬁ?&mﬁm= Wﬂﬂ%m .
Step 3. Estimate the dependency events number :
In Type 1, Type 2, - - -, Type (8+3), the most dependency events num-

ber with event A, ; of Type 1 are 4A—5 which constitute a set Dj3, 0 which

(vg—

constitute a set D;s, 4 which constitute a set D;3, 2A — 2 which constitute
a set D14, 2A(A —1) —1 which constitute a set Dy5, 2A(A ~1)? which con-
stitute a set Dyg, --- , 2A(A — 1)P~! which constitute a set Dy(g43); the



most dependency events number with event B, ,, of Type 2 are 0 which con-
stitute a set Dg;, 2A — 1 which constitute a set Dy, 2A which constitute a
set Dgz, 2A — 2 which constitute a set Doz, 2A(A — 1) which constitute a
set Daq, 2A(A —1)? which constitute a set Dag, -+ , 2A(A —1)~1 which
constitute a set Dy(g,3); the most dependency events number with event
E,, . of Type 3 are 2(A — 1) which constitute a set D3;, A which constitute
a set D3z, A + 1 which constitute a set D33, A — 1 which constitute a set
D34, A(A — 1) which constitute a set D35, A(A — 1)? which constitute a
set Dag, -+ , A(A —1)#~! which constitute a set D3(g.3); the most de-
pendency events number with event Ec, of Type 4 are2(A — 1)2 which
constitute a set Dy, 2(A — 1) + 1 which constitute a set Dya, 2(A —
1) which constitute a set Dy3, 2(A — 1)2 4+ 2(A — 1) + 1 which consti-
tute a set Dyq, 2A(A —1)%2+ A(A —1) which constitute a set Dys, 242(A —
1) which constitute a set Dyg, --+,2A%(A — 1)#-1 which constitute a set
Dy(g43); the most dependency events number with event Epw2 of Type
5 are 2(A — 1)2 4+ 2(A — 2) which constitute a set Ds;, 2A which con-
stitute a set Ds2, 2A which constitute a set Dsz, 2A(A — 1) 4+ 2A which
constitute a set Dsg, 2A(A — 1)% + 2A(A — 1) — 2 which constitute a set
Dsgs, 2A%(A — 1)2 + 2(A — 1)2 which constitute a set Dsg, --- , 2A2(A —
1)#-1 +2(A — 1)#-! which constitute a set Ds(343); the most dependency
events number with each event of Ep,, . of Type k are 2A(A — 1)which
constitute a set Dy, 2A which constitute a set Do, 2A which constitute
a set D3, 2A(A — 1) + 2A which constitute a set Dyg, 2A(A —1)2 4+ (3A +
2)(A — 1) which constitute a set Dgs, 2A(A — 1)3 + 4A(A — 1)? which
constitute a set Dig, ++- , 2A(A — 1)# 4+ 4A(A — 1)8~! which constitute a
set Dyg43)(k =6,7,---,8+3).

We only give the statement for one of these, and the other can be stated
similarly. For each event A, ; of Type 1, let e = ujuq, f = ugus(u; # ua),
at most 2A — 2 edges are adjacent to e(or f), so each event of Type 1 is
incident to at most (24 — 2) + (2A —2) —1 = 4A — 5 events of Type 1. We
can easily see that each event of Type 1 is incident to 0 event of Type 2. At
most 2 vertices are incident to e(or f), so each event of Type 1 is incident



to at most 4 events of Type 3. At most A — 1 vertices are adjacent to u; (or
u3), so each event of Type 1 is incident to at most 2A — 2 events of Type
4. At most A(A — 1) vertices which the distance of u)(oru3) and these
vertices is 2, and Type 5 don’t include the event Ep, .., so each event of
Type 1 is incident to at most 2A(A — 1) — 1 events of Type 5. At most
A(A -1)* vertices which the distance of u(orus) and these vertices is k+1,
so each event of Type 1 is incident to at most 2A(A — 1)* events of Type
(k+4) (k=2,3,---,8-1).
Step 4. Find the real constant z;(0 < z; < 1) for applying lemma 2.

Let 2 2 2 2
16ABT/(28+2) ' TeABTN/(28+2) » 16AB+1Y/(28+7) » A16AB+1)/(2A+ ’

(16A(9+1)/(224+3))2A+2 y T Wﬂ%ﬁrfm be the constants associ-
ated with events of Type 1, Type 2,---, Type (8 + 3).

Step 5. Conclude that with positive probability no events of Type 1,
Type 2,-- -, Type (8 + 3) provided that :
Let m = 16AA+1)/(24+2) |

% < %(1 _ %)4A—1 - _2_)2A—2 (1 — 2 )2A(A-1)-1_
(1- 2 )2A(A—1)’ c e (1= )2A(A 1)8-1
mIsF2
S % : (nAe.!eDll(l - 1_2:1-)) HB‘, veDu(l (HE.‘, eEDlS(l ))
(HECGGDIC(I - ﬁ)) : (I-‘[EPuv2€D15(1 W))
(l-.[Epu.‘,2 GDI(B+3)(1 - m%n)); (1)
_r1'_l < _1%(1 - ,72;)4A—1 . (1 __2 )ZA -2 (1 _ )2A(A 1),
(1- ;!%T!)M(A-l)’ v (1= )2A(A 1)8-1
2
< m’ (HAe.]eD21(1 ) (HBu oEDn(l ) (HEw ¢€D23(1 ))
(Iec, e, (1 = Am)) (I &p,,, eus (1 — 728w2)) -
(HEpuvzeDg(ﬂ.H,)(l_;!%F!)); (2)
# < l( _ 2 )4A—1 (1 - K%)A_l'(l - = 2+ )A(A—l).
(1 - )A(A n2, .. .(1 _ %’!%’«F!)A(A_l)a_]

<. (HAGJeD:“ = 2)) (s..eps(t = &) - ([Ig, ceps(l = 2))-
(Mo, eps (1 — 7)) (Hspmengs (1—sae))- -
(HEPW,GD:4<13+3)(1_W%'“)); (3)
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— 2 — —
< (1 _ %)Z(A 1)* | (1 _ %)2(A 1)+1 | (1 _ _'%)2(A 1),

1 2
Am =Am
(1- 32;)2(A——1)’+2(A—1)+1, (1- — 2 )2(A-1)’+A(A-n)_
(1- — 2 )2A2(A-1)2 C e (1= = 2 )2A2(A—1)"-‘
2

< 55 (la. ;epy 1= 2)) (. epe(l = 2)(lE, .epe (1 - 2))-
(HEC¢GD44(1 - 32;)) : (l_[li‘pw2 GD“,(I - m%‘-«‘-'!)) ot
(HEPuog GD4(B-|-:i)(]' - 1-713%:!)); (4)
b < (1 - %)2(A—1)2+2(A—2) (1 2)28.(1- 2)2,
2
(1- 2 )2A@-1428, (] _ 2 y2A(A-1) 428(A-1)-2,

2 —1)2 —1)2 - -1 _1\8-
(l_mz 2A%A-N* A2, '(1‘m2 )2A"'(A 1)8-142(A-1)2-1

< _b%'-F! ) (HAe,feDm (1 - 52{)) ' (HB‘,_‘,eDu(l - 3,%))
(HE.,,,,eDSS(l - %)) : (nEc,eDu(l - ﬁ))
(nf;pw2 epu(l - ;!%'-F!)) o (Hspuuzens(,,+3)(1 - ;!%Tf)): (5)
ke S bwa(l = 244D (1 278 (1 2y,
(1- %)2A(A—l)+2A, 1- m%_w)zA(A-l)’+(3A+2)(A-1),
(1- m_.f%__r,‘,)2A(A—1)3+4A(A—1)’. s (1= m%_w)zA(A-l)"er(A-l)B-l

< wrgrr  (Ta, yeDigray (1= ) (s, uenipren(l — 2))
(15, .eDprap (I = 2)) * T Ee, eDiprny (1 = 2))°

(HEP,..,,GD(9+3)5(1 — maFr)) (HEsz eD@smiosn (1~ m1573))-
(6), ... ,(6+3)

Now, since (1 - %)’ > 1 for all real z > 2, we can prove that the
inequalities (1), (2),---,(8 + 3) are true, when A > 3,8 > 4A + 3. Using
lemma 2, G has a (16A(A+1)/(24+2)) _ D(8)—VDTC, when A > 3,3 >
4A +3.

This completes the proof.
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