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Abstract

Most of pooling designs are always constructed by the “contain-
ment matrix”. But we are interested in considering non-containment
relationship. In [J. Guo, K. Wang, Pooling designs with surprising-
ly high degree of error correction in a finite vector space, Discrete
Appl Math], Guo and Wang gave a construction by the use of non-
containment relationship. In this paper, we generalize Guo-Wang’s
designs and obtain a new family of pooling designs. Our designs
and Guo-Wang’s designs have the same numbers of items and pools,
but the error-tolerance property of our designs is better than that of
Guo-Wang’s designs.
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1 Introduction

A pooling design is usually represented by a binary matrix whose columns
are indexed with items and rows are indexed with pools. An entry at cell
(,7) is 1 if and only if the jth pool is contained by the ith item, and 0,
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otherwise. A mathematical model with error-correcting presented in (1] is
an s®-disjunct matrix. A binary matrix M is said to be s®-disjunct if given
any s+ 1 columns of M with one designated, there are s 4+ 1 rows with a 1
in the designate column and 0 in each of the other s columns (see (2]). An
sé-disjunct matrix can be employed to discern s defectives, detect e errors
and correct |e/2] errors (see [3]). The s®-disjunct matrix has become an
important tool for determining pooling design.

In 1996 and 1997 Macula gave constructions by containment relation of
subset in a finite set (see [4], (2]). And then the constructions of disjunct
matrices by means of the containment relation of subspaces in finite classical
spaces were given by many authors. Until 2011, Guo and Wang used the
method of cardinal number of the intersection of subsets being a constant
in finite set to obtain a construction with high degree of error correction
(see [5]).

Next, we'll give an introduction about some fundamental knowledge
used in this paper.

Let T, be a finite field with ¢ elements, where g is a prime power. Let
n be a positive integer, denote by Fg") the n-dimensional vector space over
F,. For positive integers m < n, let [[,’,"]]q be all of the m-dimensional

subspaces of F™.
Given integers m, n and prime power g. Then Gaussian coefficient
denoted by

n(n—lz--r-n!.n—m+12’ if q= 1;

[n] = . i +](<:"—1) £ g
miq =, if ¢g#1.
il;l‘(w'-l)

For convenience, we write ([.) to substitute [ ] . And we let [ ;]q =0
whenever m <0 or n < m.

In 2012, inspired by the concluding remark iv in [5], we have a new
family of pooling designs with a higher degree of error correction under
some conditions ([6]). Recently, they generalized the method of [5] in a
finite vector space ([7]).
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Lemma 1.1. ({7]) For max{0,r+m—n} <j<randm <n. Let P be a
given m-dimensional subspace of Ff,n) and Qo be a given j-dimensional with
Qo C P. Then the number of r-dimensional subspaces of lF.(,") intersecting
P at Qq is f(j,r,n;m) = qtr—N(m=3) [':‘_'J"] . Moreover, for the integer

0<a<n+j—m-—r, the function f(4,r,n;m + ) about a is decreasing.

Definition 1.2. ({7]) For positive integers 1 < d < k < n and max{0,d +
k—n} <i<d Let My(i;d, k,n) be the binary matriz with rows indexed
with [[Zl] and columns indezed with [[z]] such that Mg(A, B) =1 if and
only if dim(A N B) = i. !

Theorem 1.3. ({7]) Let i,d,k,n be positive integers with |(d + 1)/2] <
i<d<kandn—k-stk+d—2)>d—i fk—i>2and1<s<
q(g®=1 = 1)/(¢*~* — 1), then M,(i;d, k,n) is an s°-disjunct matriz, where

e = qld-Dlk+alkrd=2i)=i) [" ~k—s(k+d- 2i)]
q

d—1i
(@ [f: h ]q — (s = 1)k ['f :f]q) -1

In this paper, we take the method of [7] to study the corresponding
problems of {6] in a finite vector space and give a construction as follows.

Definition 1.4. For positive integers 1 < i < d <k < n, let I be a
nonempty subset of {i,i + 1,...,d}, and let My(I;d,k,n) be the binary
matriz with rows indezed with [[;]] and columns indexed with [[',;]] such
that M,(A, B) = 1 if and only if dim(AN B) € I. !

Remark 1.1. If I = {i}, then M,(I;d, k,n) = M,(i;d, k,n).

Theorem 1.5. Let i,d, k,n be positive integers with |(d+1)/2] <i<d <
k, and lete = k+(5-1) (k=2i+d), ngy = g+~ [£7}] —(-1)g-1[472] .

q q
Suppose I = {i,i+1,...,d}. If1<§< min{[qgi,__ql], [,’:;:_‘,ﬁj +1}, then
M,(I;d, k,n) is an §°'-disjunct matriz, where

— pagld=de [PTETE]
e1 = ng;)q [d—i . 1.
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2 Proof of Theorem 1.5

Proof. Let Cp,C), -+ ,Cs be any 5+ 1 distinct columns of M,(I;d, k,n).

To obtain the maximum numbers of subspaces [l?]] in
q

3

3
conlJci=JCncy),

j=1 J=1

we may assume that dim(CoNC;) =k —1 and dim(CoNC; NCy) =k -2,
for any j,l € [5] := {1,2,...,5} and j # l. So the number of i-dimensional
subspaces of Cp not contained in Cy,Cy,--- ,Cj is at least

w - Bl

JTk-1 1[k—2

k—1 - k—i—1

- (i), e[,
-1l —-1],

] 1

Let D be a d-dimensional subspaces of IF,(,"), such that dim(D N Cy) > 1,
Suppose dim(DNC;) >ifor j€ (5. By DnCy+DnCy C D, j' €
{2,3,---,8}, we have

dim(C;NCy) 2 dim(DNCiNCy)

dim(DNCy) +dim(DNCj) —dim(DNCy+ DNCy)
> 2i—d,

then

dim(Cy + Ca + - -- + Cs)

dim(C; + Cy + - -+ + Cs_1) + dim Cs — dim((C} + Ca + - - + C5-1) N Cs.
dim(Cy + Co + - -+ Cs—1) + k — (2i — d)

dimC; + (3 —-1)(k -2t + d)

k+ (5 —1)(k — 2i + d).

ININ

So we know that dim(C; +Ca+- - -+C5) < k+(3—1)(k+d—21). Briefly, we
denote € = k+(5—1)(k+d—2i). Let P, be a given i-dimensional subspaces
of Cy not contained in Cy, Cs, - - - , Cs. Clearly, dim(Po+Cy+Ca+- - -+C5) <
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i + €. Then the number of d-dimensional subspaces D in IF‘(,") satisfying
DnNn(Pp+Ci+Cy+--++Cs) = Po, by Lemma 1.1, is at least

f@,d,n;i+¢) = gld—9¢ [n"’t-.-e] -
d—1i .

It is easily to see that DNCy O Py and DN C; C P for each j €
(3]. Therefore, the number of d-dimensional subspaces D in IF,(,") satisfying
dim(D N Co) € I and dim(D N C;) < i for each j € [3] is at least

d—i)e | —1—€
(g @? [ dei ] .
q

Since e; = n(;)q(d—¢ [";i:e] —12>0, ngy > 0, which implies that
q

k

1_<_§§m1n{[ q] I_n d—k

k+d— 2z'|
This proofs Theorem 1.5. a

+1}.

3 Comparison of test efficiency

Theorem 3.1. For positive integers |(d +1)/2] < i < d < k < n, and
1< 5" <min{[ 75, | 25875 ). If k+d > 3, then ey > e.

Proof. Suppose k +d > 3i, then-"—'f;--i-l >%{— andn—i—k—
(s* —1)(k+d —2i) > n — k — s*(k +d — 2§). So

(= (5" = 1) (k=26+a)) [n —i—k—(s"-1)(k-2i + d)]
d—1
q

> d=Dk+s” (k=2ikd)—) |~ k- s*(k—2i+d)
d—1 q

Therefore e; > e as claimed. a

Example 1. Let us consider M({3,4,5};5,7,30) and M»(3;5,7,30). We

have
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s* 1 2 3
e1 +1 | 3.127290634 x 10'° | 2.754497577 x 10'° | 2.354854839 x 101°
e+1 | 3.127228003 x 10° | 2.750067678 x 10'° | 2.16397962 x 101°
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