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Abstract

Let I be a d-bounded distance-regular graph with diameter d > 2.
In this paper, we give some counting formulas of subspaces in I" and
construct an authentication code with perfect secrecy.
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1 Introduction

In this section we first introduce the concepts of d-bounded distance-regular
graphs, and then introduce our main results.

All graphs considered in throughout paper are finite undirected graphs
without loops or multiple edges. Let I' = (V(I'), E(T")) be a graph, with
vertex set V(I') and edge set E(T'). For a subset A C V(I'), we identify A
with the induced subgraph on A and write A = (V(A), E(A)).
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For two vertices u,v € V(I'), let 8r(u,v) denote the distance between
w and v in T, i.e., the length of a shortest path connecting u and v. We
also write 8(u, v) when no confusion occurs. Let d(I') = max{8(x, v)|u,v €
V(T')} and call d(T') the diameter of I'. We also write d = d(I') when no
confusion occurs. Similarly, the diameter of a subgraph A is written as
d(A).

For u € V(I'), set

Ti(w) = {veV(D)or(x,v) =1}, T(u) = ().
For vertices u,v € V(I') with 0(u,v) = i, set

Ci(u,v) = Tia(u)NT(v),
Ai(u,v) = Ti(u)NT(v),
Bi(u,v) = Tip(u)NT(v).

For the cardinalities of these sets we use lower case letters, i.e.,
¢i(u,v) = |Ci(u, )|, ai(u,v) = |A;(y,v)| and b;(u,v) = |Bi(u, v)|.

We say ¢; eists if ¢; = ¢;(z,y) does not depend on the choice of z and
y under the condition 8(z,y) = . Similarly, we say a; ezists, or b; exists.

A connected graph I is said to be distance-regular if c;, a; and b;—, exist
for all 1 < i <d(I).

All graphs considered in this paper are distance-regular graphs. The
reader is referred to [1, 2, 3, 7} for general theory of distance-regular graphs.

Recall that a subgraph A of T' is said to be strongly closed if C(u,v) U
A(u,v) C A for every pair of vertices u,v € A ([10]). Properties of strongly
closed subgraphs of distance-regular graphs are discussed first by H. Suzuki
in [10]. The term weak-geodetically closed is used for strongly closed by
Weng in [13, 14]). A subspace of T' is a regular strongly closed subgraph of
T ([13]). It is obvious that strongly closed subgraphs are connected and for
all u,v € A, 8r(u,v) = da(u,v).

Let T be a distance-regular graph with diameter d. T is said to be
d-bounded, if the following (i) and (ii) hold:
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(i) Every strongly closed subgraph of I is regular.

(ii) For all z,y € V(T'), z and y are contained in a common strongly
closed subgraph of diameter 8(z, y).

By [14, Theorem 4.3] and [11}, all the following graphs are d-bounded
distance-regular graphs: Hamming graph H(d, q) (d > 3,q 2 2); When
¢z 2 1and a; # 0, Hermitian forms graph Her_;(d) (d > 3) with geometric
parameter (d, b, ) = (d, ~r, —1—r), where r is a prime power; When ey > 1
and a; # 0, dual polar graph 24541 (—b) (d > 3) with geometric parameter
(d,b,@) = (d,—r,7(1 +1)/1 — ), where r is a prime power; When a; =0,
the dual polar graph Dg4(b) (d > 4) with classical parameters (d, b, a, B) =
(d,b,0,1), where b is a prime power; When ¢; > 1 and a, # 0, all distance-
regular graphs with geometric parameter (d,b,a) = (d, —r, —(1 + 7)/2),
where 7 is an odd prime power; The ordinary 5-gon; Complete bipartite
graphs Ky (t > 2).

It is clear that every strongly closed subgraph in d-bounded distance-
regular graphs is a subspace.

For any two subspaces A; and A, of T, the intersection of all subspaces
that contain A; and A is called the join of A; and A,, and denoted by
Ay + A,

Let T' be a d-bounded distance-regular graph with diameter d > 2. In
this present paper, we give some counting formulas of subspaces in I and
construct an authentication code with perfect secrecy. The following are

our main results.

Theorem 1.1. Let T be a d-bounded distance-regular graph with diameter
d > 3. Suppose that 0 < t < i+t,j+t < i+j+t<d <d and
suppose that A and A* are subspaces with diameter i + t and diameter
di in T, respectively. Suppose A C A*. Then the number of subspaces
A" with diameter j +t and A’ C A* in T such that d(ANA’) = t and
d(A+ A') =i+ j+t, denoted by M'(t,i +t,5 + t;dy), is determined by
1, J,t and d1, independent of the choice of A, A*; it is
(bist — bay )(bite+1 = bay) - (bigjae—1 = ba;)

(be = bjae)(bea1 — bjae) -+ (Bjre—1 — bjue)

N'(t,i+1t)
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where N'(t,i + t) is given by Proposition 2.4.

Theorem 1.2. The construction in Section 3 yields an authentication code

with perfect secrecy. Its size parameters are
|S| = N'(d1,d2), |€| = N'(d2,d), IM| = N'(dy,d),

where N'(d;,dp), N'(d2,d) and N'(d1,d) are given by Proposition 2.4.
Moreover, if the encoding rules of the authentication code have a uniform
probability distribution, then the largest probabilities Py is optimal and

_ N(d1,dz;d)

P _ maxg, +1<1<da N(, d2; d)
I= 7 -

N (dl, d2; d) ’
where N(ds,dp;d) and N'(dz,d) are given by Proposition 2.2 and Proposi-

tion 2.4, respectively.

2 Proof of formulas of subspaces

We begin with four useful propositions.

Proposition 2.1. ([13, Lemmas 4.2, 4.5]) Let T = (V(I'),E(T)) be a
d-bounded distance-regular graph. Then the following (i) and (ii) hold:

(i) Let A be a subspace of T'. Then A is distance-regular with intersection

numbers
ci(B) = ¢, ai(A) = ai, bi(A) = b; — baa), 0 < i < d(A).

(ii) For any z,y € V(T'), the subspace of diameter d(z,y) containing z,y
s unique.

Proposition 2.2. ([5, Lemma 2.1]) Let T be a d-bounded distance-regular
graph. Suppose that 1 <i+1<i+s<i+s+t<d, and suppose that A
and A’ are subspaces with diameter i and i + s + t, respectively, and with
A C A'. Then the number of the subspaces A with diameter i+ s satisfying
A C A C A, denoted by N(i,i + s;i + s +t), is determined by i,s and t,
independent of the choice of A and A'; it is

(Bi — bigsst)(Bit1 = bigsre) - (bits—1 = bitstt)
(bi = bits)(Bis1 — bits) *** (Bigs—1 — bits)
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Proposition 2.3. (/6, Theorem 1.1]) Let T be a d-bounded distance-regular
graph with diameter d > 3. For each x € V(T'), let P(z) be a set of
all subspaces containing = in I'. Suppose that 0 < t < i + t,j+1t <
t+j+t < di < d, and suppose that A and A* are subspaces with diameter
i+t and diameter dy in P(z), respectively. Suppose A C A*. Then the
number of subspaces A’ with diameter j+t and A’ C A* in P(z) such that
dANA")=t and d(A + A’) =i+ j +¢, denoted by M(t,i+t,7+t;dy),
is determined by i,j,t and d,, independent of the choice of A, A*; it is

(bo = bie) - (beo1 = bive)(Bige — bay ) (birer1 — bay) -+ (bitjus—1 — ba,)
(bo = be) - -+ (br—1 = be)(be = bj4t) (b1 — bjge) -+~ (Bje—s — bjge)
Proposition 2.4. ({15, Lemma 38.4]) Let T be a d-bounded distance-regular
graph. Suppose that0 < i < i+s < d and suppose that A is a fized subspace
with diameter i + s in '. Then the number of the subspaces with diameter
tin A, denoted by N'(,i + s), is determined by i and s, independent of
the choice of A; it is

(Bo = bigs) -~ (biey — bivs)(1+ ZH'S (Bo—bits)(br—biys)---(bi_ l-bt-l-s))

€1C2::Cy

(bo = bi) -+ (bict = be)(1 + i, BIE=B)- Ty

c1c2--'Cp

Let s =d — 7. Then we have

Corollary 2.5. ({11, Theorem 3.4]) Let T be a d-bounded distance-regular
graph, and 0 < i < d. Then the number of the subspaces with diameter i

inT is
d  bob,---b
N’(i,d): bobl'“bi_l(l”-Zl 1 ?:11:2 ‘c(l) .
(Bo = bi)(br — i) -+~ (b1 = b:)(1 + Xy, Lo=bdbrmbid(bioy b

Proof of Theorem 1.1. For each z € V(A), by Proposition 2.3, the
number of subspaces A’ with diameter j+t containing z such that A’ C A*,
d(ANA’) =t and d(A + A’) = i+ j +t is determined by i,7,¢ and
dy, independent of the choice of A, A*; it is M(t,s +t,j + t; d;). Thus
there are in total [V/(A)[M(t,i +t,j + t;d;) such subspaces. But each of
these subspaces repeats a times, where a equals the number of vertices
in a subspace with diameter ¢. Therefore, the number of subspaces A’
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with diameter j + t and A’ € A* in I such that d(A N A’) = ¢ and
dA+A)=i+j+tis

|V(A)|M(taz +t,j+t dl)
«

By Proposition 2.1 (i),

t+t
— bige)(b1 = bige) -+ (bi—1 = bite)
A)|—1+E €162+ C . :

and

T UL il BHUSERLOY

Cc1C2--°C
So, by Proposition 2.4,
[V(A)M(t,i+t,5+tdi)
o'

) bist — ba, )(bire+1 — bay) - - - (bitjre—1 — bay)
= N’ ti+t ( +t — Ydy 1 J 1
( ) (bt = bjge)(bet1 — bjwe) - - (Bjae—1 — bjge)

as desired. a

3 Authentication code with perfect secrecy

In this section we first introduce the concept of authentication code with
perfect secrecy, and then introduce our construction.

Let S, £ and M be three non-empty finite sets and let f: Sx & — M
be a map. The four tuple (S,&, M; f) is called an authentication code
(4, 8, 12)), if

(i) The map f: S x &€ — M is surjective and

(ii) Given any m € M and e € £ such that there is an s € S satisfying
f(s,e) = m, then such an s is uniquely determined by the given m

and e.

Suppose that (S,&,M; f) is an authentication code. Then S,€ and
M are called the set of source states, the set of encoding rules, and the
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set of messages, respectively, and f is called the encoding map. If s € S,
e € £ and m € M are such that m = f(s,e), then we say that the source
state s is encoded into the message m under the encoding rule e, and
for convenience we say that the massage m contains the encoding rule e.
The cardinals |S], |€] and | M| are called the size parameters of the code.
Moreover, if the authentication code satisfies the further requirement that
given any message m there is a unique source state s such that m = f (s,€)
for any encoding rule contained in m, then the code is called a Cartesian
authentication code.

Authentication codes are used in communication channels where hesides
the transmitter and the receiver there is an opponent who may play either
the impersonation attack or the substitution attack. By an impersonation
attack we mean that the opponent sends a message through the channel
to the receiver and hopes the receiver will accept it as authentic, i.e., as a
message sent by the transmitter. By a substitution attack we mean that
after the opponent intercepts a message sent by the transmitter to the re-
ceiver, he sends another message instead and hopes the receiver will accept
it as authentic. To protect against these attacks the transmitter-receiver
may use an authentication code which is publicly known and choose a fixed
encoding rule e in secret. The set of information which the transmitter
would like to be able to transmit to the receiver should be identified with
the set of source states of the code. Suppose that the transmitter wants
to send a source state s to the receiver. He first encodes s into a message
m using the encoding rule e, i.e., m = f(s,e), and then sends m to the
receiver. Once the receiver receives a message m/, he first has to judge
whether m’ is authentic, i.e., whether the encoding rule e is contained in
m’. If e is contained in m’, then he regards m’ as authentic and decodes
m' by e to get a source state s’, where m’ = f(¢'ye). If e isn’t contained in
m/, then he regards m’ as a false message. The object of the opponent is
to choose a message and send it to the receiver so that the probability of
deceiving the receiver is as large as possible. We denote by P; and Pg, re-
spectively, the largest probabilities that he could deceive the receiver when
he plays an impersonation attack and a substitution attack and call them
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the probabilities of a successful impersonation attack and of a successful
substitution attack, respectively.

It is known ([9]) that in an authentication code (S,&, M;f ), Pr 2
|S|/IM| and Ps > (|S| - 1)/(IM| — 1). If Pr = |S|/| M|, we say that Py is
optimal, and if Ps = (|S| —1)/(JM|—1), we say that Ps is optimal. If both
P; and Ps are optimal, we say that this authentication code is optimal.

In the following, using the subspaces in a d-bounded distance-regular
graph with diameter d > 2, we give a new construction of an authentication

code with perfect secrecy and compute its size parameters.

A Construction: Let T be a d-bounded distance-regular graph with diam-
eter d > 2. Let dy, da be any natural numbers satisfying 0 < di < dy <d
and N’(d;,d) < N'(da,d). Take the set of subspaces with diameter ds in
T to be the set £ of encoding rules. Take the set of subspaces with diam-
eter d; in T to be the set M of messages. Construct a bipartite graph G,
having bipartition (£, M), where {E;, M;}, E; € £, M; € M, is an edge if
and only if M; is a subspace of E;. It is clear that every vertex in € has
degree o = N'(dy,dz) and every vertex in M has degree 8 = N(d1, do; d).
Since N'(d1,d) < N'(dz,d), we get a < B. Now, suppose that using B col-
ors Cy,Cs, - -- ,Cg, we can color the edges of G such that no two adjacent
edges are assigned the same color. Take a a-subset of {C1,Cy, -+ ,Cp} to
be the set S of source states. Without loss of generality, we can assume
that S = {C1,Cs,- - ,Cq}. Define the encoding map f as follows: For any
E; € € and any C; € S, if C; is used to color an edge incident with E;, say
{E;, M}, then we define
f(C;, E;) = M,.

Otherwise, suppose that there are p (> 0) colors C;,, - -+, C;, in S which
are not used to color the edges incident with E;, but {E;, M.} (1< v <p)
are colored by those not in S. Thus there exists a bijective map f; from
{Ci,,Cis- -+ ,Ci, } onto {M;,, My, -+, M;, }. In this case, we define

f(Ci,, Ei) = fi(Ci,), 1 <y <p.

For the above construction, in the following we show Theorem 1.2.



Proof of Theorem 1.2. We divide the proof into two steps:

Step 1: We show that the construction above yields an authentication
code with perfect secrecy.

It is clear that f is a map from Sx& to M. Let M € M, i.e., a subspace
with diameter d; in I". Let E; be a subspace with diameter da containing
M. If {E1, M} is colored by one in S, say C;, then f(Ci Eh) =M. If
{E1, M} is colored by one not in S, there exists an C;, € S such that
f1(C1,) = M, as f; is a bijective map. Then f(Cra, E1)= Hi(C1)=M
Thus f is surjective.

Next, for M € M and E € £, suppose there is an S € S such that
f(S,E) = M. Let S; be another source state such that f(S1,E) =
Assume also that E = Ey, then E; and M are adjacent in G. If {E1,M}is
colored by Cj € S, then S =S, = C;. If {E,, M } is colored by one not in
S, then f1(S) = f1(S1) = M. Since f; is a bijective map, we have S = Si.

Finally, for any massage M and any source state Cj, there exists E; € £
such that {E;, M} is colored by Cj, i.e., M = f(C;, E;). Therefore, the
construction above yields an authentication code with perfect secrecy.

Step 2: Compute the size parameters and P;, Ps.

By Proposition 2.4 and the construction, the size parameters of the

above authentication code are
|S| = N'(dy,d2), |E] = N'(da, d), M| = N'(dy, d).

Now, let us compute P and Ps. It is clear that an encoding rule E is
contained in a message M if and only if M is an subspace with diameter d;
of E. So, for any message M, the number of encoding rules contained in it
equals the number of subspaces with diameter d, containing the subspace
M. This number is N(d,, d2;d). Therefore,

N(d1,d2;d)

P = N(da, d)

Clearly, P; is optimal.

Let M; and M; be two messages containing an encoding rule in com-
mon. Then the number of encoding rules contained both in M, and in
M equals the number of subspaces with diameter dy containing both M;
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and M,, i.e., the number of subspaces with diameter d; containing minimal
subspace containing M; U M,. Let I be the diameter of minimal subspace
containing M;UM,. It follows from Proposition 2.1 (ii) that d1+1 < I < da.
Therefore, the number of encoding rules contained both in M, and in M,
is N(l,dz;d). Thus

maxd1+1szsdgN(l, dy; d)

Ps=——""N(a,,dx:d)

a

Corollary 3.1. Let d; = 0, do = 1 and N'(0,d) < N'(1,d). Then this

code has the size parameters

boby---b
b 1+ - 9091-"0t—1
Sl = Leboby, 6] = o (¥ Tim S ),IM|—1+Z boby - biy.

bo — b1 1+b0—b ci1c2°

If the encoding rules of the authentication code have a uniform probability
distribution, then

14+b—b; S_bo—bl
1+Zl- bgby-by_1’ bo :

1 cice-q

P =

Remark 3.2. Suppose that N'(d1,d) > N'(dz,d). Let £ be the set con-
sisting of subspaces with diameter d, in I' and let M be the set consist-
ing of subspaces with diameter dy in . Then a similar construction as
above gives an authentication code with perfect secrecy of the size parame-
ters |S| = N(d1,dz;d), |€| = N'(dy,d), IM| = N'(d2,d). The probabilities

’ 1 N'(drd
of successful attacks are P = Jifhia) | Py = ToUgsR (d1.1)
’ k)

4 Examples

In Section 1, we gave many examples of d-bounded distance-regular graphs.
Now we only consider complete bipartite graphs K (t > 2) and Hamming
graph H(d,q) (¢2>2,d2>3).

Example 4.1. Suppose t > 2. Then the complete bipartite graphs Kq.
is 2-bounded distance-regular graph with diameter 2 such that c; =2, c2 =
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t—1,bo =t, by = t—1. Take the set {g;|1 < i < t}U{hs|1 <i < t} of vertices
in Ky, to be the set M of messages. Take the set {{gih;}1 <4, 5 <t} of
edges in K. to be the set € of encoding rules. Let S = {C1,C2}. Define
the encoding map f as follows:

f(Cr,{gi, hs}) = {a:}, F(C2,{gi hi}) = {hj},1<4,j <t.
Then |S| =2, |€] =2, M| =2t, Py = 1/t and Ps = 1/t.

Let ' be the Hamming graph H(d,q), where ¢ > 2, d > 3. Then T
is the d-bounded distance-regular graph with diameter d and ¢; = i, b; =
(d—1)(g—1), where 0 < i < d. We change Hamming graph H (d,q) (g >2)
for T in Theorems 1.2 and suppose ( :1 ) gh~h < ( ddz). Then we have
Example 4.2.

Example 4.2. Let ' be the Hamming graph H(d, q), where g >2,d >3
and let ( ;‘ ) g%—d < ( :2 ) In the construction of Theorem 1.2, we have

— d2 d2—dy _ d d~ds — d d—d;
1= (i) a0 k1= (g ) et 1w = () goos,

and

d—d d—-1
(dz—d‘l) ma‘xd1+1S’Sdz (dz—l)
P=-2"07 poo .
d gd—dz d—d,
da da—dy

Corollary 4.3. Letdy =0, dp = 1 and g < d. Then the code in Ezample

4.2 has the size parameters
S| = g, |€] = dg*~?, |M| = ¢%.

If the encoding rules of the authentication code have a uniform probability
distribution, then

Sl

1
Pi=—— Ps=
qd—l
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