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Abstract

An L(2,1)-labeling of a graph G(V, E) is a function f from its
vertex set V to the set of nonnegative integers such that |f(z) —
f(W) >2ifzy € E and [f(z) — f(y)] > 1 if  and y are at distance
two apart. The span of an L(2, 1)-labeling f is the maximum value
of f(x) over all vertices z of G. The L(2,1)-labeling number of a
graph G, denoted as A(G), is the least integer k such that G has an
L(2,1)-labeling of span k. Chang and Kuo [1996, SIAM J. Discrete
Mathematics, Vol 9, No. 2, pp. 309 — 316] proved that A(G) <
2A(G) and conjectured that A(G) < A(G) + w(G), for a strongly
chordal graph G, where A(G) and w(G) are the maximum degree and
maximum clique size of G, respectively. In this paper, we propose an
algorithm for L(2, 1)-labeling a block graph G with A(G) +w(G) +1
colors. As block graphs are strongly chordal graphs, our result proves
Chang and Kuo’s conjecture for block graphs. We also obtain better
bounds of A(G) for some special subclasses of block graphs. Finally,
we investigate to find the exact value of A(G) of a block graph G.

Keywords: L(2,1)-labeling, Radio Coloring, Block Graphs, Graph Algo-
rithms.
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1 Introduction

The radio frequency assignment problem is to assign frequencies to ra-
dio transmitters at different locations such that nearby transmitters are
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assigned frequencies without causing interference. This problem was intro-
duced by Hale [12] and can be modeled as graph coloring problem where
the vertices represent the transmitters and two vertices are adjacent if there
is possible interference between the corresponding two transmitters.

L(2,1)-labeling problem was introduced by Griggs and Yeh [11], initially
proposed by Roberts, as a variation of the frequency assignment problem.
An L(2,1)-labeling of a graph G(V, E) is a function f from its vertex set Vv
to the set of nonnegative integers such that |f(z) — f(y)| > 2 if zy € F and
|f(z)— f(v)| > 1if = and y are distance two apart. The span of an L(2,1)-
labeling f of G is max{f(v)[v € V(G)}. The L(2,1)-labeling number of G,
denoted by A(G), is the smallest k such that G has an L(2, 1)-labeling of
span k.

Griggs and Yeh [11] proved that A(G) < A%+ 2A for a graph G with
maximum degree A. Chang and Kuo [7] later improved this bound to
A2+ A. It was further improved to A%+ A —1 in [15] and the current best
bound that A(G) < A? + A — 2 is due to Goncalves [10].

Griggs and Yeh [11] have proposed the following conjecture.

Conjecture 1. [11] For any graph G with mazimum degree A > 2, A(G) <
A2,

Havet et al. [13] have proved this conjecture asymptotically. However,
the conjecture is still open in general and has been the motivating factor
for considerable research on L(2, 1)-labeling of graphs. This conjecture has
been proved to be true for several special classes of graphs such as paths,
cycles, wheels, complete k-partite graphs [11], trees [7, 11], cographs(7],
regular tiling of the plane [2, 6], graphs of maximum degree two, chordal
graphs, unit interval graphs [16], OSF-chordal, SF-chordal (7], outerplanar
[3, 6], split graphs, permutation graphs [3], co-comparability graphs [5],
and Hamiltonian cubic graphs [14]. For a comprehensive survey on this
problem we refer to [4].

It was shown in [11] that the problems of determining A(G) of a graph G
is NP-hard even for graphs with diameter two. It was further shown in [8]
that deciding whether A\(G) < k for any fixed integer k > 4 is NP-complete.

Chang and Kuo [7] proved that A(G) < 2A for an OSF-chordal graph
G (see Section 2 for definition). The class of OSF-chordal graphs properly
contains strongly chordal graphs, directed path graphs, interval graphs,
unit interval graphs, block graphs, and trees. They [7] conjectured that
MG) < w(G) + A(G) for a strongly chordal graph G, where w(G) is the
clique number of G. However, their conjecture is still open.

In this paper, we show that M(G) < w(G) + A(G) for a block graph
G. This proves that the conjecture that A(G) < w(G) + A(G) is true for a
block graph which is an OSF graph.
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The rest of the paper is organized as follows. Section 2 presents some
definition and preliminary results. Section 3 presents a linear time algo-
rithm to L(2, 1)-label a block graph G using at most A(G)+A(G)+1 colors.
This section also presents the complexity analysis of the algorithm and its
proof of correctness. Section 4 presents improved bound for A(G) for some
special subclasses of block graphs. Section 5 gives some properties of block
graphs having A = A + w. Section 6 presents k-L(2,1)-labeling of block
graphs. Finally, Section 7 concludes the paper with indication of some open
problems.

2 Preliminaries

For a graph G = (V,E), let Ng(v) = {u € V|uv € E} and Ng[v] =
N¢(v) U {v} denote the neighborhood and the closed neighborhood of the
vertex v, respectively. The degree of a vertex v is [Ng(v)| and is denoted by
dg(v). Let A(G) denote the maximum of the degrees of all vertices of G.
When the context is clear, we can omit the index G. A subset of pairwise
non-adjacent vertices is called an independent set, and a subset of pairwise
adjacent vertices is called a clique. The size of the maximum size clique in
G is known as the cliqgue number and is denoted as w(G). Let d(u, v) denote
the distance between the vertices u and v in V(G). Let n and m denote
the number of vertices, and number edges of G, respectively. Let Gl9],
§ C V(G), denote the subgraph induced by G on S. A proper k-coloring
of a graph G is an assignment of integers (colors) from the set {1,2,...,k}
to the vertices of G such that two vertices receive different colors whenever
they are adjacent. The minimum & such that G admits a proper k-coloring
is known as chromatic number of G and is denoted as x(G). A graph is
chordal if every cycle of length greater than three has a chord, i.e. an edge
joining two non-consecutive vertices of the cycle. A tree T is a connected
graph that has no cycles. A rooted tree T is a tree in which some vertex
is distinguished as the root. The vertices of a rooted tree are also called
nodes. Let = be a vertex in a rooted tree T with root 7. The level of z,
denoted by I(z), is the length of the unique path from r to z in T. Any
node y on the unique path from r to z is called an ancestor of z. If yisan
ancestor of z, then z is called a descendant of y. If y is a descendant of
and zy is an edge, then « is called the parent of y and y is called a child of
z. Clearly, root has no parent and leaf node has no child and all non-leaf
nodes are the internal nodes.

A k-sun is a graph with vertex set {vy,vo,..., v} U {z1,22,..., 7k}
such that {v1,v2,...,v;} forms a clique and {z;,5,...,z;} forms an in-
dependent set and z; is adjacent to v; and Vit1, for 1 <1< k—1and z
is adjacent to vy and v;. A k-sun is called an odd sun if k is odd. If k is
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even, then a k-sun is called an even sun. A chordal graph which contains
no k-sun with k > 3 as an induced subgraph is called as SF-chordal graph,
where SF stands for sun-free. SF-chordal graphs are also called strongly
chordal graphs. Odd-sun-free chordal graphs are called OSF-chordal. The
bounds on A(G) for OSF-chordal graphs and strongly chordal graphs are
due to Chang and Kuo [7] and are given below.

Theorem 2.1 ([7]). A(G) < 2A for any OSF-chordal graph G with maxi-
mum degree A.

Theorem 2.2 ([7]). M(G) £ A+ 2x(G) —2 for any strongly chordal graph
G with mazimum degree A.

Since every strongly chordal graph is OSF-chordal, the above two bounds
hold for strongly chordal graphs. However, the above two bounds are not
comparable. Chang and Kuo [7] have made the following conjecture.

Conjecture 2. For any strongly chordal graph G with mazimum degree
A(G), MG) £ A(G) + x(G).

A vertex z of a connected graph G is called a cut-verter of Gif G—=z
is disconnected. A maximal connected induced subgraph without a cut-
vertex is called a block of G. A graph G is called a block graph if each
block of G is a complete graph. The intersection of two distinct blocks
can contain at most one vertex. Two blocks are called adjacent blocks if
they have a common cut vertex of G. A block graph with one or more
cut-vertices contains at least two blocks, each of which contains exactly
one cut-vertex; we call such blocks end blocks [1]. The class of block graphs
includes all trees and is a subclass of strongly chordal graphs. Therefore,
by Theorems 2.1 and 2.2, A(G) < 2A(G) and A(G) < A(G) +2x(G) — 2
for a block graph G. Note that x(G) = w(G) for a block graph G. So,
AG) £ A(G) + 2w(G) — 2.

3 L(2,1)-labeling of block graphs

In this section, we present an L(2, 1)-labeling algorithm of block graphs
using at most A 4+ w + 1 colors.

Let a = vy,%s,...,V, be an ordering of V(G). The following algorithm,
known as Greedy-L(2, 1)-labeling, finds always an L(2, 1)-labeling f of G.
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Algorithm 1: Greedy-L(2,1)-labeling(a)

1 S=0

2 foreach i =1 to n do

3 Let j be the smallest non-negative integer such that

i ¢ ({f(v), f(v) = 1, f(v) + 1|v € Ng(v;) N S} U {f(w)|w € S and

d(v,-,w) = 2}),
4 f(vi)=3;
5  S=S85U{u};
6 end

If a is taken to be an arbitrary ordering of V(G) of a block graph G
of maximum degree A, then the above greedy algorithm takes at most
3A + A(A —1) = A%+ 2A + 1 colors. This gives A(G) < A2 + 2A. So
some special ordering needs to be considered to get better upper bound
of M(G). Let & = uy,uz,...,u, be an ordering of V(G) of a block graph
G having maximum clique size w such that u; is a non-cut vertex of G; =
Gl{ui,%i41,...,un}]. Note that u; lies in exactly one block of G;. Consider
the ordering 8 = v;,vs,...,v, such that v; = Uptl-iyl < 12 < n. For
this ordering, the number of forbidden colors for v; by the above greedy
algorithm is 3dg, (v;) + dg, (v:)(A — dg, (vi)) < 3w —-1)+ (w—1)(A-1) <
Alw —1) +2(w = 1). So, A(G) £ A(w—1) +2(w —1). If G is not a tree,
then w(G) > 3. So, A(w — 1) + 2(w — 1) > 2A 4 2w — 2. So, Greedy-
L(2,1)-labeling(8) cannot give us A(G) < A(G) + w(G) for an arbitrary
block graph G.

Note that the complexity of algorithm Greedy-L(2,1)-labeling(a) is
O(A(n+m)) assuming that o can be computed in this time bound. So, to
get an improved bound and a better time complexity, one needs to look for
a different algorithm.

We next propose a linear time algorithm to L(2, 1)-label a block graph
using A(G) + w(G) + 1 colors. The concept of cut-tree of a block graph,
which is introduced below, is essential for this purpose.

Let G = (V, E) be a block graph with h blocks, By, B,, ..., B and k
cut vertices, ¢1,¢2,...,cr. The cut-tree of G, denoted by T2 = (VB EB ),
is defined as V& = {By, B,,...,Bp,c1,¢2,...,c;} and EB = {Bicjlc; €
B;,1 <i < h,1 <j <k} The cut-tree TB of G can be made a rooted
tree by selecting any block or a cut vertex as the root. A vertex in T5B,
corresponding to a block of G, is called block vertez. The leaves of T2
are essentially the end blocks of G. Let r be a cut vertex of G having
maximum degree. Since one of the cut vertex in a block graph has the
maximum degree, d(r) = A(G). Let TB(r) be the rooted cut-tree of G
rooted at r. A Block graph G and its cut-tree T8 is given in Figure 3.

The set of all blocks of a given block graph can be found in O(n + m)
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(@) G (b) TB

Figure 1: (a) a block graph G with 3 cut-vertices a,b,c and 9 blocks, B; =
{a’dvenfag)h}’ By = {a,b,k}, B3 = {a’i)j}, By = {bal}a Bs = {b,m}
Bﬁ = {b)n}) B7 = {b) 0}1 BS = {b,P, q, C}, BQ = {C, sy, ’U},(b) cut-tree
TB of block graph G.

[9]. For each cut vertex v, the set of all blocks containing v can also be
found easily in O(n +m) time. Hence, the cut tree of a block graph can be
constructed in O(n + m) time.

Let T8 be the cut-tree, rooted at r, of a block graph G. Let B. denote
the set of all children of ¢ in TB. TZ is a tree rooted at 7 whose leaves are
exactly the end blocks of G.

Let Ll = {B*|B* = B\ {c}, B € B} and V(L[c]) = Ug-¢r(q B"-
Let Pg(c) = B\ {c}, where B is the parent block of c in T5. Let Pc(B)
denote the parent cut vertex of a block B. Let & = {0,1,2,...,A + w}.
Let &7(c) denote set of admissible labels for the vertices of child blocks of
a cut vertex ¢, f(c) denote label assigned to a vertex c of G. &(c) denote
set of labels assigned to the vertices of Pg(c).

Next, we present an algorithm to L(2,1)-label a block graph. Our al-
gorithm first constructs a rooted cut-tree rooted at a cut vertex r such
that dg(r) = A(G) of the given block graph G. It starts from the root
and traverses towards the leaves of the cut-tree, which are the end block
of G. Initially, all vertices of G are uncolored and &/(c) = & for each
cut vertex c. Breadth First Search (BFS) is performed on T8 to get an
ordering of the cut vertices and the blocks. Root is assigned color 0 and
after that at every step the vertices of child blocks of a cut vertex ¢ in L
are labeled with a minimum admissible color from &/(c). Before assigning
a label to the vertices of B., the labels which are forbidden due to distance
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constraint with c and the colored neighbors of ¢, in Pg(c) are removed from
#(c). Once a label is assigned to a child vertex of ¢, it is removed from
& (c) so that it is never repeated for the other child vertices. For any cut
vertex c, its child blocks are first ordered in non increasing order of their
cardinalities. First all blocks with cardinality at least w/2 are selected. At
each step g vertices are selected for coloring one from each such block and
each is colored with minimum label in &/(c). These are then removed from
& (c). That is, if there are g such blocks then, vy, vs, . .. , Vg Will be selected
such that v; € B} and will be assigned first ¢ minimum labels from /(c)
at every iteration. This is repeated till all the vertices of the block Bj are
labeled, consequently B; is removed from L{c]. The remaining blocks are
then sorted again in the non increasing order of their cardinalities. Two
blocks of maximum cardinality among the uncolored blocks are selected
simultaneously for coloring. They are stored in temporary variables $; and
Sa. Their vertices are labeled consecutively, by selecting one at a time from
each block with the minimum label in &(c). Their labels are removed from
& (c). Iteratively continue till either all the blocks in L[v] are labeled or
there is some block B* € L[c] which still has some uncolored vertices. Fi-
nally, the vertices of B* are labeled with the least color (say t) in &/(c) and
the labels ¢ and ¢ + 1 are removed simultaneously from &/ (c).

The detail of the main algorithm, described as ColorBlockGraph(G),
is shown in Figure 2, whereas the steps for labeling child blocks are given
as a separate algorithm and is described as Color_Child_ Block(v, 2/ (v)),
shown in Figure 3. An L(2, 1)-Labeling of the block graph G of Figure 1(a)
generated by Algorithm ColorBlockGraph(G) is shown in Figure 4.

Next, we prove that Algorithm ColorBlockGraph(G) produces an L(2, 1)-
labeling and uses at most A + w + 1 colors.

Theorem 3.1. The labeling produced by Algorithm ColorBlockGraph(G) is
an L(2,1)-labeling of a block graph G and uses at most A(G) + w(G) + 1
colors. Furthermore, Algorithm ColorBlockGraph(G) takes O(n +m) time.

Proof. Let G = (V, E) be a block graph. Let us first prove that the coloring
f produced by the Algorithm ColorBlockGraph(G) is an L(2, 1)-labeling.

Algorithm ColorBlockGraph(G) selects a maximum degree cut vertex r
and computes cut tree T'Z rooted at r. It then performs BFS on T2 to get
an ordering of cut vertices and blocks in Line 2. Also, it computes Pg(c)
and Lc] for each cut vertex c in Line 3. In Line 5, labels of all vertices are
initialized to —1. Root r is colored first and hence is. assigned color 0 and
0,1 are removed from the admissible label set o7 (r) for the child blocks of
r in Line 8. In Lines 9 and 15, vertices of the child blocks of a cut vertex
v are labeled.

Let z,y € V(G) such that d(z,y) = 1, which implies  and y belong
to same block. Let us assume that z is colored before y. If z = r, then
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Algorithm 2: ColorBlockgraph(G)
1 Let r € V(G) be a cut vertex such that d(r) = A. Compute the
rooted cut-tree T8 of G rooted at r ;
2 compute the ordering r = ¢1,¢2. .., ¢k of the cut vertices of G using
BFS on T5,;
compute Pp(c) and L[c] for each cut vertex ¢ of G;
set & :={0,1,...,A +w};
foreach c € V(G) do
initialize f(v) := -1
end
initialize f(c1) := 0 and &(c;) := F\ {0,1};
Use Algorithm Color_Child_Block(e1, #(c1)) ;
10 foreach i :=2 to k do
0 dl(e) = F\{fle) -1, fle), fle) + 1} ;
12 foreach z € Pg(c;) do

© O 9O W

- O

13 o (ci) == o (c:) \ f(2);

14 end

15  Use Algorithm Color_Child_Block(c;, #(c;));
16 end

Figure 2: Algorithm for L(2,1)-labeling of a block graph

y € B* for some B* € L{z]. So, f(x) = 0 and y will be colored in Line
9. Since all the vertices of child block of = get labels from the set &/(z),
f(y) > f(z) + 1 as &/ (z) does not contain 0, 1. Thus, |f(z) — f(y)| = 2 for
this case.

So, let = s 7. If z is a cut vertex, then either y € B* such that B* € L[z}
or z,y € B, for some cut vertex z, as we have assumed that z is colored
before y. Let us first assume that y € B* such that B* € L[z]. Then
z will be labeled, before vertices of L[x] are labeled, so y will be labeled
in Line 15. But before that, {f(z) — 1, f(z), f(z) + 1} will be deleted
from admissible label set &/(z) in Line 11, so that |f(z) — f(y)| > 2. If
z,y € B* where B* € L|z] for some cut vertex z then z,y will be labeled by
Algorithm Color _Child_ Block(z, #/(2)) and since we are assuming that z
is colored before y, f(y) > f(z). Suppose, z is labeled in Lines 2 — 7 of
Algorithm Color_Child_Block(z, #(z)). Once z is colored in Line 4, f(z)
is deleted from the set 27(z) in Line 5 so that it is never assigned to any
other child vertex of z. Next minimum color of the &/(z) will be assigned
to some vertex of some other child block of z other then B* so that y will
be assigned any label afterwards. Next, assume that z is labeled in Lines
10 — 28. Note that z and y are not selected simultaneously and f(z) is
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Algorithm 3: Color_Child _Block(v, #7(v))

1 Compute an ordering By, ... » Bjpuy of L{v] such that [Bf| >| By,
1 < i <|L[v]| and let index j be such that [Bj|+1 > w/2 but
1Bl +1 <w/2;

2 if j > 2 then

3 while |B}| > 1 do select {v1,v2,...,v;}, v; € Bf and B} € L[v);

4 fori=1to j do Assign f(v;) :=t¢ such that ¢t := min o/ (v) ;

5

6

update &/(v) := o/ (v) \ {t} and B} := B} \ {v;};
if Bf =0 then L{v] :== Ljv]\ B;

7 end

8 if |L{v]| =1 then

9  set S:= B* such that B* € L{v];

10 else

11 reorder L[v], such that |[Bf| > |B},,|,1<j<s~-1,s=|L[;

12 initialize S) := By, Sy := B3, S := 0 and set 7 := 3;

13 while |L[v]| > 2 do select u € Sy, w € S, assign f(u) := ¢,
f(w) := t3 such that t;,t» € &/ (v) are minimum, update
A (v) := o (v) \ {t1.t2}, Sy := 81\ {u}, S2:= S5\ {w};

14 if S; =0 and Sy =0 then

15 \L{v]| := |L[v]| - 2;
16 if |L[v]| > 2 then update S, := B}, S, := B}, and
1:=1+2;

17 if |L[v]| := 1 then update S := BY;

18 else

19 if S; =0 then

20 |L[]| := |L{v]] - 1;

21 if |L[v]| =1 then remove f(w)+ 1 from &/ (v) and
update S := S,;

22 else S, :=Bfandi:=i+1;

23 if So =0 then

21 |Llo]| = [Lfol] - 1

25 if |L[v]| = 1 then remove f(u) + 1 from < (v) and update

=S

26 else S, := B} and i := i + 1;

27 end

28 end

29 if |L[v]| = 1 then

30  while S#0do select z from S and ¢ := min{&/(v)}, f(x):=t¢
and update &/ (v) := & (v) \ {t,t + 1}, S := 5\ {z} ;

31 end

Figure 3: Algorithm for labeling the vertices of child blocks of a cut vertex
v of a block graph
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Figure 4: An L(2, 1)-Labeling of block graph G of Figure 1(a) (A =9,w =
6) generated by Algorithm ColorBlockGraph with span=12.

deleted from the set &/(z) in Line 13 so that it is never assigned to any
other child vertex of z. Next min color of the &/(z) will be assigned to
some vertex of some other child block of z other then B* so that y will be
assigned any label afterwards. If |L(2)| becomes 1 before z is colored, z and
y will be colored in Lines 29 — 31 and after assigning any color to z in Line
30, f(z), f(z) + 1 will be deleted from #/(2). Therefore, |f(z) — f(y)| = 2.
Hence if d(z,y) = 1 then |f(z) — f(¥)| = 2.

Next, assume that d(z,y) = 2. So, the blocks containing z and y will
be have a common cut vertex, say z. Let us denote these blocks by Q.
and Q, respectively. Since z is colored before y, either Q; = Pp(z) or
Q:,Q, € L[z]. If Q; = Pp(z), then y will be assigned color from #(2)
in Line 15 of Algorithm ColorBlockgraph(G). But in Lines 12 — 14, f(w)
(and so f(z)) will be deleted for all w € Pp(2) = Q. So, f(y) # f(z).
If Q.,Q, € L[z], then both will be labeled in Line 15 by Algorithm
Color _Child_Block(z, #/(z)). Since we sort L{z] in Line 1 of Algorithm
Color _Child_Block(z, #(2)), |Qz| > |Qyl (since we are assuming z is col-
ored before y). If z and y are selected simultaneously in Line 3 of Algorithm
Color _Child_Block(z, #(z)), then f(x) will be deleted from &(2) in Line
5, before y is labeled in next loop. Therefore, f(y) # f(z). If z and y are
selected in Lines 10 — 28 of Algorithm Color_Child_Block(v, #/(v)) then
also, f(z) # f(y) since we are selecting two labels from &/(z) simultane-
ously. Therefore, f(y) # f(z). Hence if d(z,y) = 2 then |f(z) — f(y)| 2 L.

Next, we prove that the maximum color number used is A(G) + w(G).
Let z be a cut vertex. Then d(z) = |Pp(z)| + Lp-¢ri) |1B*| < A and
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Y.Bec L) [1B*| = A — |Pp(x)|. Since vertices of the child blocks of z are
labeled consecutively from the set &/(z), (which do not contain the labels
assigned to Pg(z) and f(z)-1, f(z), f(z)+1) i.e. all the labels from the set
& () are assigned to some vertex in B till there remains uncolored vertices
in a single block, say B’ € L[z]. Let B’ = maxp-¢L(z |B*|, uncolored
vertices of B’ will use at most 2(|B’|~1) colors. Thus the number of distinct
labels used by the neighbors of z is at most |Pg(z)| + Y B#BeLl) BTl +
2(1B'1-2) < A~|B'|+2|B'|-2 = A+|B'|-1. Since {f(z)-1, f(z), f(z)+1}
are not used by any neighbor of z, the number of colors required for =z and
its neighbors is A+|B’|—2+3. Hence, the maximum color number assigned
to z and its neighbors is at most A + w.

Next, we show how Algorithm ColorBlockGraph(G) can be implemented
in O(n + m) time. For each cut vertex v, the blocks containing v can be
sorted in non-increasing order of their sizes in O(d(v)) time using standard
bucket sort algorithms as the sizes of the blocks are all integers between
1 and w(G). Therefore, the total time taken for this for all cut vertices is
at most )_ . d(v) = O(n + m). It is easy to see that all other steps can
be implemented in O(n +m) time. Hence, Algorithm ColorBlockGraph(G)

takes O(n + m) time.
O

Theorem 3.2. A(G) +1 < AG) < A(G) + w(G) for a block graph G.
Furthermore, for every j,0 < j < w — 2, there is a block graph G with
AMG) = (A(G)+w(G)-1) —3j.

Proof. It is known that A(G) > A(G)+1 for any graph G [11]. By Theorem
3.1, M(G) < A(G) +w(G) for a block graph G. Hence, A(G) +1 < AG) <
A(G) + w(G) for a block graph G.

Let w > 2 be any integer. Consider the graph G; = G(w,7) = (V;E;),
where j is an integer such that 0 < j < w — 2, V; = {z1,22,...,2,} U
{y1,92,...,y;} and Ej = {z,ze|]l < s <t < w}U {z1%:,1 < i < j}. The
graph G4 = G(6,4) is illustrated in Figure 5.

It is easy to see that w(G;) = w and A(Gj) = w+j — 1. Let G =
Gjl{z1,z2,...,7,}]. It is easy to see that our algorithm uses 2w — 1 colors
when applied to G;. In fact, an L(2,1)-labeling f produced by our algo-
rithm when applied to Gj is as follows: f(z;) = 2(i — 1),1 < i < w and
f(ys) =2s+1)~1,1< s < j. So, M(G) S w-2 =w+(w+j-1)-1-j =
(w(G;)+A(G;)—1)—j. Next, we show that A(G;) > (A(G;)+w(G;)—1)—j.
Clearly, G is a complete graph on w vertices. So, 2w — 2 = A(G) > AG;j).
Hence, A(G;) = (A(G;) + w(G;) — 1) — 5.

O
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Figure 5: The graph G4 = G(6,4)

4 Special Block Graphs

We now give a class of block graphs achieving lower upper bounds for
X. A block graph G is called block-regular if all the blocks of G are of
same size. The block degree of a cut vertex v is denoted by dp(v) and is
the number of blocks containing v.

Theorem 4.1. The following are true for a block-regular graph G.
(3) If d(v) = 2 for each cut vertez v of G, then A(G) < A(G) +4.
(i) If dp(v) > 3 for some cut vertez v of G, then \(G) < A(G) +2.

Proof of (i) : Let G be a block-regular graph such that for any cut vertex
v € G,dp(v) = 2. We prove the theorem by presenting an L(2,1)-labeling
f of G with span at most A(G) + 4.

Consider the cut-tree T2 of G rooted at an end block, say B;. Let
r be the only cut vertex of G contained in B;. So d(r) = A(G). Let
Bi, B, ..., B be the ordering of the blocks of G obtained by performing
BFS on TB. Clearly, B is a child of r in TB. Assign color 0 to 7, i.e.
f(r) = 0, and color the vertices of Bf = By \ {r} and B = B\ {r}
alternatively with smallest even and odd admissible colors. Let |B;| =
s, Bt = {z1,%2,...,%s-1} and By = {v1,92,---,¥s-1}. So, f(z:) = 24
and f(y;) = 2+ 1,1 < i < s— 1. Assume that all the vertices of the
blocks By, Bs,...,Bi_1 have been colored. Consider the next block B;.
Let P(B;) = v, Pg(v;) = BJ', and P(BJ) = vj. Note that v;,v; € Bj. Note
that f(v;) and f(v;) are of different parity, i.e., if one is odd then the other is
even. If f(v;) is even, then color the vertices of B} with odd colors starting
with smallest admissible odd color. Suppose f(v;) = 2k and f(v;) = 2l +1.
So, the odd colors forbidden for the vertices of B} are 2k — 1, 2k + 1 and
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(b) G

Figure 6: (a) A block regular graph G, (b) block regular graph G’ con-
structed from G.

2l +1 as v;v; € E. Since there are r — 1 vertices in B}, the vertices of
B; can be colored with the colors from the set {2i +1,0 < < 2(r + 1)+
1}\ {2k — 1,2k + 1,20 + 1} which has exactly r — 1 odd colors. Similarly, if
f(vi) is odd and f(v;) is even, then color the vertices of B} with even colors
starting with smallest admissible even color. Suppose f(v;) = 2k + 1 and
f(vj) = 21, the even colors forbidden for the vertices of B} are 2k,2k + 2
and 21. Since there are r—1 vertices in B}, the vertices of B} can be colored
with the colors from the set {2i,1 < i < 2(r + 1)} \ {2k, 2k + 2, 2!} which
has exactly 7 — 1 even colors. Note that this coloring satisfies the property
that if v; and v; are cut vertices such that P;(Pg(v;)) = v; in T'B, then
f(v:) and f(v;) are of different parity. Also, if B is not the root block, then
the colors of all vertices except P,(B) will be of same parity. Repeating
this till all the vertices of all the blocks are colored. It is easy to see that
the coloring f is an L(2, 1)-labeling of G. The number of colors needed is
2(r+1)+1 = (2(r—1)+4)+1) = A(G)+4+1. Hence, A(G) < A(G)+4. O
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Proof of (ii) : Suppose G is a block regular such that dg(w) > 3 for some
cut vertex w € G. Let |B| = s for each block B of G. Let v be the cut
vertex contained in maximum number of blocks of G and dg(v) = r. Then,
r > 3. Let {c1,c2,...,ck} be the set of all cut vertices of G such that
2 < dp(¢;) < r—1. We construct the graph G’ from G as follows. For each
i,1 <14 < k, add r — dp(c;) blocks of size s each having the common cut
vertex ¢;. Figure 6 illustrates the construction of G’ from G.

Color G’ by Algorithm ColorBlockGraph(G). Since G is block regular,
at every iteration in Line 1 of Algorithm Color _Child_Block(u, &/ (u)) all
the child blocks of a cut vertex u will be selected i.e. j = |L[u]| for all
cut vertex u and Lines 14 — 35 will never be executed. Let |L[u]| = g.
Then, v1,v2,...,0, will be selected such that v; € B}, Bf € L[v] and
will be assigned first ¢ minimum label from #/(u) to each v; and this will
be repeated |L[v]| times. So, |#/(u)| = ¢(s — 1). Since s colors which are
assigned to the vertices of Pg(u) cannot be in & (u) and f(u)—1, f(u)+1 are
also cannot be in & (u) therefore &/(u) C {0,1...,(g+1)(s—1)+3}. Since
(g+1)(s—1)+3 = (A(G") +2)+ 1, MG') < A(G") +2. Furthermore, Gis
a subgraph of G’ implies A(G) < M(G') < A(G’) +2. Since A(G') = A(G),
hence A(G) < A(G) + 2. a

Theorem 4.2. Let G be a block graph withw < [4] then A(G) < A+%+1.

Proof. Let G be a block graph with w < [4£]. Let T2 be the cut-tree of
G rooted at a cut vertex u such that d(u) = A(G). Let v be a cut vertex
and L[v] = {B},B},...,B:} such that |B}| > |B;,,| for 1 < j < |L[]|
and let f be a labeling given by Algorithm ColorBlockGraph(G). Let index
j be such that |B} + 1| > w/2 but |Bj,, + 1] < w/2. Let j > 1. Then
the vertices of B}, B3, ..., B} will be labeled first, successively and will be
assigned consecutive labels from & (v), till all the vertices of B} are labeled.
The uncolored vertices of remaining blocks will be colored with the colors
from &/(v) by taking two blocks at a time. Finally, only one block, say
B, remains with some uncolored vertices. The uncolored vertices of By
will be assigned labels with a gap of at least 1 from &/(v). If ¢ < j, then
there will at least w/2 vertices in B} that are already colored. If ¢ > j
then |B}| < w/2. Thus, in any case there will at most % vertices that are
uncolored and v has at least A — |B*| > A — w/2 colored neighbors those
are colored before we label remaining uncolored vertices of B*. Hence the
number of labels required for v and its neighbors is at most A(G) —w/2+
3+1+2(%-2)<AG)+%+1.
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95 Extremal Block Graphs

We have already seen in Theorem 3.2 that A(G) < A(G) + w(G) for a
block graph. We call a block graph G extremal block graph if AMG) =
A(G) + w(G).

Consider the tree T = (V, E), where V(T) = {1,2...,n}, n = 3k +
2,k 21, and E(T) = {12,23} U {1z z € 51} U {2y|y € S2} U {3z]z € S5},
where S, US, US; =V — {1,2,3}, S; nSj =0, for i # 4, and ISll = lS3|
and |S| = |S; — 1]. It is known that A(T) +1 < A(T) < A(T) + 2 for
a tree [11]. Also it is known that N[v] contains at most two A(G)-degree
vertices for all v € V(G) for a graph G with A\(G) = A(G)+1 [11]. As N[2),
the closed neighborhood of vertex 2, contains three A(T)-degree vertices,
MT) = A(T) + 2 = A(T) + w(T). Hence, T is an extremal block graph.
However, w(T') = 2. Therefore, it is interesting to find extremal block
graphs of larger clique sizes.

Let minblock(G) denote the cardinality of the minimum size block of G.
The following two lemmas give upper bound on minblock(G) of an extremal
block graph.

Lemma 5.1. Let G be a block graph such that dg(v) = 2 for each cut
vertez v of G. If minblock(G) > 5, then A\(G) < A(G) + w(G) — 1.

Proof. Let G be a block graph such that minblock(G) > 5 and dg(v) = 2
for each cut vertex v of G. Add non-cut vertices to increase the size of each
block of G to w(G) to obtain the block graph G'. Now A(G’) < A(G) +
w(G)—5. By Theorem 4.1 (i), M(G') < A(G')+4. But, A(G) < A(G), since
G is a subgraph of G'. Therefore, A(G) < A(G')+4 < A(G)+w(G)-5+4 <
A(G) +w(G) - 1. 0

Lemma 5.2. Let G be a block graph such that dg(v) > 3 for some cut
vertez v of G. If minblock(G) > 3, then A(G) < A(G) + w(G) —1.

Proof. Let G be a block graph such that minblock(G) > 3 and dg (v) >3
for some cut vertex v of G. Add non-cut vertices to increase the size of each
block of G to w(G) to obtain the block graph G'. Now, A(G') < A(G) +
w(G) — 3 and by Theorem 4.1 (ii), A(G’) < A(G") + 2. But A(G) < MG)
since G is a subgraph of G'. Therefore, A(G) < A(G")+2 < A(G) +w(G) —
3+2<A(G)+w(G)-1. O

In view of the above two lemmas, an extremal block graph G must have
minblock(G) < 4. Furthermore, if dg(v) = 2 for every cut vertex v of an
extremal block graph G, then minblock(G) < 4. Similarly, if dg(v) > 2 for
some cut vertex v of an extremal block graph G then minblock(G) = 2.

A block B of a block graph G is called an internal block of type 1 if all
of its vertices are a cut vertex of G. A block is called an internal block of
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Figure 7: Block regular graph GI3,2}.

type i, i > 2 if all of its vertices are cut vertices of G and all of its adjacent
blocks are of type j, where j < i — 1. So, if a block B is an internal block
of type i, then it is an internal block of type j for each 7,1 < j <1i. The
block B* of the graph G[3,2] given in Figure 7 is an internal block of type
3.

Let f be any L(2, 1)-labeling of G. For a block B = {z1,z2, 23}, f(B) =
{f(z1), f(z2), f(z3)} denotes set of colors of its vertices assigned by f.

Next we give example of a class of extremal block graphs having block
size three.

Theorem 5.3. A(G[3,2]) = A(G[3,2]) + w(G[3,2)) for the graph G[3,2]
given in Figure 7.

Before proving this theorem we will prove some important lemmas.

Lemma 5.4. Let B and B’ be the blocks containing a cut vertez v of G[3,2]
and let f be any 6-L(2,1)-labeling of G[3,2)].

1. If f(w) = 1 then {£(B), f(B")} = {{1,3,5},{1,4,6}}.
2. If f(v) = 2 then {f(B), f(B")} = {{0,2,5},{2,4,6}}.

3. If f(v) = 3 then { f(B), f(B")} = {{0,3,5},{1,3,6}} or {f(B), f(B')} =

{{Os 3’6}’{]‘)3’5}}'
4. If f(v) = 4 then {f(B), f(B")} = {{0,2,4},{1,4,6}}.
5. If f(v) =5 then {f(B), f(B")} = {{0,2,5},{1,3,5}}.
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Proof. Let f be any 6-L(2,1)-labeling of G[3,2]. Let B and B’ be the
blocks containing a cut vertex v of G. If f(v) = 1 then {f(B), f(B")} =
{{1,3,5},{1,4,6}}. So, (1) is true. If f(v) = 2 then {f(B), f(B)} =
{{0,2,5},{2,4,6}}. So, (2) is true. The proofs of (3) to (5) are similar and
hence are omitted.

a

Lemma 5.5. Let f be a 6-L(2,1)-labeling of G[3, 2). If f(z1) = 0 and
f(z2) = 6 for an internal block B = {z), 3,73} of G[3,2], then f(z3) = 3.

Proof. Since f(z;) = 0 and f(z2) = 6, f(z3) € {2,3,4}. Since B is an
internal block, z3 is a cut vertex. So, by Lemma 5.4, f(z3) ¢ {2,4}.
Therefore, f(z3) = 3. O

Lemma 5.6. Let f be a 6-L(2,1)-labeling of G[3,2)]. If B = {z1,z2,z3} is
an internal block of G(3, 2], then f(B) ¢ {{0,2,4},{0,2,6}, {0,3,5},{1,3,6},
{0,4,6},{2,4,6}}

Proof. By Lemma 5.5 f(B) ¢ {{0,2,6},{0,4,6}}. If f(B) = {0, 2,4}, then
wlg assume that f(z;) = 2. Since B is an internal block, there is a block
B’ such that B’ = {x,y1,y2}. Since f(y:) ¢ {0,1,2,3,4},i = 1,2, the
admissible colors for y; and y; are 5 and 6. However, {f(y1), f(y2)} cannot
be {5,6}. So, f(B) ¢ {0,2,4}.

Next assume that f(B) = {0,3,5}. Wlg, f(z;) = 5. Since B is an
internal block, there is a block B’ such that B’ = {z;,y1,y2}. Now, f(v:) ¢
{0,3,4,5,6},i = 1,2. So, the admissible colors for y; and y, are 1 and 2.
However, {f(y1), f(y2)} cannot be {1,2}. So, f(B) ¢ {0,3,5}.

Next assume that f(B) = {1,3,6}. Wlg, f(z;) = 1. Since B is an
internal block, there is a block B’ such that B’ = {zy,y1,y2}. Now, f(w;) ¢
{0,1,2,3,6},i = 1,2. So, the admissible colors for y; and yo are 4 and 5.
However, {f(y1), f(y2)} cannot be {4,5}. So, f(B) ¢ {1,3,6}.

Next assume that f(B) = {2,4,6}. Wlg, f(z;) = 4. Since B is an
internal block, there is a block B’ such that B’ = {z1,y1,y2}. Now, f(y;) ¢
{2,3,4,5,6},i = 1,2. So, the admissible colors for v1 and y; are 0 and 1.
However, {f(1), f(y2)} cannot be {0,1}. So, f(B) ¢ {2,4,6}.

Therefore, f(B) € {{0,2,4},{0,2,6},{0,3,5}, {1,3,6}, {0, 4,6}, {2,4,6}}

O

Lemma 5.7. Let f be a 6-L(2,1)-labeling of G[3,2]. If B = {z1,%2,z3} is
an internal block of type 2 of G[3,2], then f(B) & {{0,2,5},{L,4,6}}.

Proof. If possible, suppose f(B) = {0,2,5}. Without loss of generality,
f(z1) = 2. Since, B is an internal block of type 2, there is an internal
block B’ = {x1,y1,y2} of G[3,2] such that B # B’. Thus, by Lemma 5.4,
f(B') = {2,4,6}. Since B’ is an internal block, by Lemma 5.6, f(B') #
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{2,4,6}. Therefore f(B) # {0,2,5}. If possible, suppose f(B) = {1,4,6}.
Without loss of generality, f(z1) = 4. Since, B is an internal block of
type 2, there is an internal block B’ = {z1,y1,y2} of G3[3,2] such that
B # B'. Thus, by Lemma 5.4, f(B’) = {0,2,4}. Since B’ is an internal
block, by Lemma 5.6, f(B’) # {0,2,4}. Therefore f(B) # {1,4,6}. Hence
f(B) ¢ {{0,2,5},{1,4,6}}. O

Lemma 5.8. Let f be a 6-L(2,1)-labeling of G[3,2). If B = {z1, 72,23} is
an internal block of type 3 of G[3,2], then f(B) & {{0,3,6},{1,3,5}}.

Proof. If possible, suppose f(B) = {0,3,6}. Without loss of generality,
f(z1) = 0. Since, B is an internal block of type 3, there is an internal block
B’ = {z1,y1,¥2} of type 2 of G[3,2] such that B # B’. Thus, by Lemma
5.4, f(B') € {{0,2,4},{0,2,5}}. Since B’ is an internal block of type 2,
by Lemma 5.6 and Lemma 5.7, f(B') € {{0,2,4},{0,2,5}}. Therefore
f(B) #{0,3,6} .
If possible, suppose f(B) = {1,3,5}. Without loss of generality, f(z:) =
5. Since, B is an internal block of type 3, there is an internal block B =
{z1,y1,2} of type 2 of G[3,2] such that B # B’. Thus, by Lemma 5.4,
f(B') = {0,2,5}. Since B’ is an internal block of type 2, by Lemma 5.7,
f(B') # {2,4,6}. So f(B) # {1,3,5}. Hence f(B) ¢ {{0,3,6},{1,3,5}}.
0

Proof of Theorem 5.3. Since A(G[3,2]) = 4and w(G[3,2]) = 3, A(G[3,2])
< A(G[3,2]) +w(G[3,2]) = 4+3 = 7. Now, we will prove that M\(G[3,2]) >
6. We will prove it by contradiction.

If possible, let f be any 6-L(2, 1)-coloring of G[3,2]. Consider B*, the in-
ternal block of type 3 of G. Since, B* is a block, f(B*) € {{0,2,4},{0,2,5},
{0,2,6},{0,3,5},{0,3,6},{0,4,6},{1,3,5}, {1,3,6},{1,4,6}, {2,4,6} }. Since
B* is an internal block of type 7 for each i € {1,2,3}, by Lemmas 5.6, 5.7
and 5.8, f(B*) ¢ {{0,2,4},{0,2,6}, {0,3,5},{1,3,6}, {1,4,6}, {0,4,6},
{2,4,6}, {0,2,5},{1,3,5},{0,3,6} }. This contradicts that f is a 6-L(2,1)-
labeling of G[3,2]. So, A(G[3,2]) > 7 and hence A(G[3,2])=A(G[3,2]) +
3. O

Since A(G) > A(H) if H is a subgraph of G, we have the following
corollary.

Corollary 5.9. If a block graph G with w(G) = 3 and A(G) = 4 contains
G[3,2] of Figure 7 as a subgraph, then A(G) = A(G) +w(G).
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6 k-Labeling of Block Graphs

In this section, we study the problem of L(2, 1)-labeling a block graph G
with a given number of colors. We show that it is related to finding certain
matching in a certain Hyper graph.

Let T2 be the cut-tree of the block graph G rooted at an end block
Q. We call Q, the root block and cut vertex u € Q (u is the child of
Q), the oot cut vertez of G, respectively. Every vertex w not belonging
to Q has a parent cut vertex denoted by P.(w) and has a parent block B
where B = Pg(P.(w)). Let TB(v) be the subgraph of T8 rooted at the cut
vertex v. Let #g(v) be the subgraph of G corresponding to T8(v). Let
the parent block of v be Pg(v) = B. The tree T2 (v, Pg(v)) is obtained by
adding a vertex to T2 (v) and joining it to v only. The subgraph £*¢(v)
of G corresponding to (v, Pg(v)) is obtained by attaching B to Be(v)
at v. Note that, B*¢(u) = G. T?(v) and TB(v, Pg(v)) for a cut tree T?
of a block graph G together with B¢ (v), B*¢(v) are depicted in Figure 8.

Let v be a cut vertex of G. Let By, B,,..., B, be the children of v in
T5. Let B = {wi|l < j < s;} where s; = |By, Pa(v) = {v1, 5., 05},
v, = Pe(v), and p = |Pg(v)|. So, v = v, = w} for 1 < i < 5. Define,

T[Bs(v)] = {(a1,0a2,...,80-1,b,a041 - .., ap)| there is a k-L(2, 1)-labeling
f of #*c(v) withf(v) = b and f(v]) = a;, V v} € Pp(v)}.

Then, MG) < k if and only if T8 (u)] # ¢.

Definition 6.1. An s-tuple (A){_, = (A1, As,...,A,) is called a system of
distinct representative (SDR) for a system of sets AL, = (A, ,...,4;)
ifAie.%’;for1SiSsa.ndA,-ﬂAj=@foreachiandj with i # 7.

The following theorem gives a recursive structure of & [Bs(v)].

Theorem 6.2. 7(B,(v)] = { (a1,as,.. ©18g-1,b,8041...,0,)|0 < @, <k,
0<b<k, laa —b| >2, lag — aglags > 2,1< e, < pand ()i, has an
SDR, where o = {Ai|A; = (¢}, c},...,cl), ¢ #0a,2<j<s8i;,1<a<p
and (b, c5,...,ci ) € T B (w})] for every cut vertex w; € B; }

Proof. Let  denote the set on the right hand side of the equality in the
theorem. Suppose (a;,a,...,0q-1,b, ag41-- 1ap) € T[Bs(v)]. So, there
is a k-L(2,1)-labeling f of Be(v) with f(v) = b and f(v]) = a; for all
1<i<p. Obviously,0< a, <k,0<b<k, |ag—b| > 2, |aa —aglaxs = 2,
1 £ «,B < p. Let f;; be the restriction of f on #*(w}). Then w;-i = w} for
j<£2<s;and 1<i<s. Now fijis a k-L(2, 1)-labeling of @*G(w;.) with
fis(w) = f(w)), fij(w}) = f(v) =b, f(w}) # 00, 1 Sa<plorall2<t<
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Figure 8: (a) a block graph G with 7 blocks, (b) the cut tree T2 of G
rooted at end block B;, (c) the subgraph TB(v;) of TB rooted at vy,
(d) the subgraph %g(v4) of G corresponding to TEB(v4),(e) the subgraph
T8 (vq, Pg(va)) of TB rooted at B; obtained from T2(v4) and (f) the sub-
graph @*c(v,) of G corresponding to T'8(v4, Pp(v4))
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siand 1 <i<sie, (b f(wh),..., f(wi_,), f(wi), fwi,y),..., f(wh,)) €
I [B(w;)) and (f(w}),..., f(wi)) € . Thus it is an SDR of (&)i_,.
This proves that (% (v)] C 7.

On the other hand, suppose (ay, a2, ..,8¢-1,b,8q41...,05) € F. Then
0<a, <k, 0<b<k |aa—b|>2 |a°—-aﬁ|a¢,g>2 1<qo,8<pand
(#)i=1 has an SDR. Let f;; be the k-L(2, 1)-labeling of B (w}) such that
fij(w) = ¢} where ¢ € A; for j <2< s;and 1 <i <s. Now, w,' = wi
andwi=vfor2<t<sandl<i<s= f,-j(w;i) = b, Consider the
labeling f of B (v). Now f(u}) = fij(w)) = fis(w)), f(z) = fij(z) for
z € Bg(w}) and f(v]) = a; such that v] € Pg(v), i # ¢ 1t is easy to see
that f is a k — L(2, 1)labeling of B¢ (v) with f(v;) = a;, v! € Pp(v) and
f(v) = b. Therefore, (a1,a2,...,89-1,b,6441...,0,) € T [.%G(v)] This
proves that J C I8 (v)).

a

Next, we propose an algorithm to decide whether a block graph G has
a k-L(2,1)-labeling. We calculate %¢(v) for all cut vertices v of the block
graph G. The algorithm first construct a cut tree T8 of G rooted at an
end block. It visits all cut vertices from leaf level and works towards the
root cut vertex, calculating the colors admissible for the vertices of each
block by the set F[#,(v)]. At any stage, if Be(z) = 0 for some cut vertex
z, then G does not admit an L(2,1)- labehng with k colors. For every end
block B* at the leaf level of cut-tree T2, we select the cut vertex w in B*
and calculate 7 (% (w)] as follows:

9[.@G(w)] = {(alvaZ)"' ;aq—l,b,aq+l e sa'p) :0 <a; < k! 0 < b < k)
Jo: = bl 2 2, la: ~ asliz; 2 2, 1<, <p}, where p=|B|.

For any cut vertex v, let By, B, ..., B; be its children. We use & (B (w;)]
to calculate J[B(v)] for every cut vertex wi € B;. Let h; denotes
the size of the child block B; ie., h; = |Bj for 1 <i < s For any
(a1,02,...,8q,b,a041 .. ,ap) with 0 La; <k 0<b<k,|a;—bl >2and
la; —aj|iz; > 2 for 1 <i,5 < p, we check if (al,ag, aq,b Qg41...,0p) €

g [.@G (v)] by the following method.
Construct a hyper graph graph J# = (X UY, &) such that

X={z}:1<j<h,1<i<s}, Y ={0,1,...,k},
and
{{:z:‘i,...a:;'l‘,cl,...,chich #00,1<a<pl<j<h,1<i<s,
and (b,c1,¢2,...,0n,) € f’][.@c(w;'.)]} -
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Theorem 6.3. Let By, Bs, ..., B, be the children of a cut vertex v in T
and h; = |B;| for 1 <i < s. Let o = (X UY, &) be the hyper graph graph
such that X {zi:1<j<h,1<i<s}, Y = {0,1,...,k}, and & =

{(xla ,C1, ach.-)lcj ?é aq, 1 £ a<p, 1<5< hi, 1<i<s, and

(b,c1,c, ... Ch,) € 9{@G(w;)]}. Then, (a1,a2,...,0q,b, 041 --.,0p) €
T|Bg(v)] if and only if there is @ matching A in H that covers all the
vertices of X.

Proof. Let .# be a maximum matching in J#. |X| = > _;_, h; and |Y]| =
k+1. The vertices in X corresponds to vertices of the children of v and ver-
tices of Y are the colors and every edge of the hyper graph J# will contain
equal number of vertices from X and from Y. By construction, a hyper edge
corresponds a coloring of a child block. Since . is a matching and for any
pair of hyper edges e, e2 € #, e; Nez = 0. If A covers X then the hyper
edges in . will correspond to a labeling of child blocks. Also, by construc-
tion¢cj # aa,1 <a<pl1<j< hi,1 < i < s, and (b,c1,c0,...,n,) €
T [Bo(wh)). Therefore, (a1,a2,...,0q,b,041.-.,8p) €T [.%G(v)]

Let (al,az, y8qyb,0g41...,8,) € .?[.@G(v)] So,,0<a, £k, 0<
b<k la. —b =2 Iao,—agla#; >2,1< o, <p. By Theorem 6.2 for
every cut vertex w € B; there is (b,c},...,ct,) € T[Bs(w})] such that
{(ch,ch,...,ck,)s & # @ay 2S5 < 85y 1<a< p} is an SDR of (#)L,.
Take A = {eile; = (xi,...2},, ¢, - ), 1 <i<s}. Since h; = s; — 1,
hence .# is a matching that covers X

]

For any (aj,az,.-.,8q,0,6q41...,8p) With0<a; <k, 0<b< K, |a; —
bl > 2 and |a; — a;liz; > 2 for 1 <i,j <p, (a1,02,...,8¢,b,aq+1...,8p) €
7% (v)] iff Theorem 6.3 holds for the cut vertex v.

Example: We illustrate the above algorithm with an example. Consider
the block graph G shown in Figure 9. G has only one cut vertex v and 3
blocks By, B, B3. We will check whether A(G) < 7.

For each i,1 < i < 4, T[Bs(wi)] = {(0,2,4), (0,2,5), (0,2,6), (0,2,7),

(0,3,5), (0,3,6), (0,3,7), (0,4,6), (0,4,7), (0,5, 7), (1,3,5), (1,3,6), (1,3,7),
1,4,6),(1,4,7),(1,5,7), (1,6,3), (1,6,4), (1,7,3),(1,7,5),(2,0,4), (2,0,5),
(2,0,6), (2,0,7), (2,4,0), (2,4,6), (2,4,7), (2,5,0), (2,5,7), (2,6,0), (2,6,4),
(2,7,0, (2,7,4), (2,7,5), (3,0,5), (3,0,6), (3,0,7), (3,1,0), (3,1,5), (3,1,6),
(3’ ll 7)’ (3) 5) 0)? (3) 5) 7)? (3’ 6’ 0), (33 63 1)’ (3'l 7, 0)’ (3’ 7’ 1)’ (3) 7? 5) (4 0’ 2)1
(4,0,6), (4,0,7), (4,1,6), (4,1,7), (4,2,0), (4,2,6),(4,2,7), (4,6,0), (4,6, 1),
(4,6,2), (4,7,0), (4,7,1),(4,7,2), (5,0,2), (5,0,3), (5,0, ) (5,1,3),(5,1,7),
(5,2,0), (5,2,7), (5,3,0), (5,3,1), (5,3,7), (5,7,0), (5,7,1), (5, 7,9), (5,7,3),
(6,0,2), (6,0,3), (6,0,4), (6,1,3), (6,1,4), (6,2,0), (6,2,4), (6,3,0), (6,3,1),
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By

B, B3
w9 w3

Figure 9: a) A block graph G with 3 blocks, b) the cut tree T8 of G rooted
at end block B;

(6,4,0), (6,4,1), (6,4,
(7,1,5), (7,2,0), (7,2, 4
(7,4,2)}.

The next step is to compute 7 [%B;(v)).

To check any color set (c1,cz,¢3) to be in F[B5(v)] construct hyper-
graph 5 = (X,Y, &) where X := {z},2},2?,23}, Y := {0,1,...,7}. For
example to check (4,0,6) € T (B (v)), take & := {(z},2},2,5), (z},21,2,7),
(z1,25,3,5), (z},23,3,7), (21,7},5,7), (22,2%,2,5), (z2, £3,2,7), (2%, 73,3,5),
(e3,23,3,7), (c4,23,5,7)}. M = {(},2},2,5), (a,3,3,7)} is & matching
that covers X. So, (4,0,6) € I([B(v)).

To check (0,2,6) € J(B;(v)], take & = {(z},2},4,7), (z},21,5,7),
(z1,23,7,4), (22,23,4,7), (23,23,5,7), («2,22,7, 4)}. Clearly, in this case
there is no matching that covers X. Hence, (0,2,6) ¢ 7B, (v)).

In this manner we can compute other members of (B (v)].

The complexity of the above algorithm depends on the complexity of
the testing the conditions of Theorem 6.3. However, this complexity is not
known.

? ?4l

2)’ (77 07 2)’ (7’ 0’ 3)’ (7’ O) 4)? (7’ 0’ 5)’ (77 1’ 3)’ (7’ 17 4)?
), (7,2,5),(7,3,0), (7,3,1), (7,3,5), (7,4,0), (7,4,1),

7 Conclusion

In this paper, we proposed an L(2,1)-labeling of block graphs to es-
tablish that A(G) < A(G) + w(G) for a block graph G. We also es-
tablished lower upper bounds on A for some special block graphs. We
study the structure of extremal block graphs, i.e. block graphs for which
A(G) = A(G)+w(G). We also constructed a class of extremal block graphs.
Finally, we proposed an algorithm to find A(G) of a block graph G. The
complexity of this algorithm depends on the complexity of the problem of
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finding a certain matching in an appropriate hyper graph. Our study leaves
the following problems open.

e Characterize extremal block graphs.

e Find a polynomial time algorithm to compute A(G) for a block graph
G.
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