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Abstract

Given any two positive integers j and k with j > k, an L(j, k)-
labeling of a graph G is an assignment of nonnegative integers to
V(G) such that the difference between labels of adjacent vertices is at
least j, and the difference between labels of vertices that are distance
two apart is at least k. The span of an L(j, k)-labeling of a graph
G is the difference between the maximum and minimum assigned
integers . The A; x-number of G is the minimum span taken over all
L(j, k)-labelings of G. This paper investigates the \; x-numbers of
the Cartesian products of three complete graphs.
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1 Introduction

For any two positive integers j and k with j > k, an L(j, k)-labeling f of G
is an assignment of integers to the vertices of G such that | f(u) — f(v)| > j
if uv € E(G), and |f(u) — f(v)| > k if dg(u,v) = 2, where dg(u,v) is the
length (number of edges) of a shortest path between v and v in G. Given a
graph G, for an L(j, k)-labeling f of G, elements of the image of f are called

labels, and we define the span of f, span(f), to be the absolute difference
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between the maximum and minimum vertex labels of f of f. Without loss
of generality we shall assume that the minimum label of L(j, k)-labelings of
G is 0. Then the span of f is the maximum vertex label. The A; x-number
of G, denoted by A;x(G), is the minimum span over all L(j, k)-labelings of
G.

Motivated by a special kind of channel assignment problem, Griggs and
Yeh [8] first proposed and studied the L(2, 1)-labeling of a graph. Since then
the Ag,1-numbers of graphs have been studied extensively, see [1,4,6-8,10,
12,14]. And L(j, k)-labelings were also investigated in many papers, see
(3-6).

Given two graphs G and H, the Cartesian product of G and H is the
graph G x H with vertex set V(G) x V(H) in which two vertices (z,y) and
(z',y’) are adjacent if z = z’ and yy’ € E(H) or y = y' and 2z’ € E(G).
Let G* denote the Cartesian product of k copies of G. Let K, denote the
complete graph on n vertices. Then K2 =K, x K, and K,31 =K, x K, x
K.

Products of graphs have been considered in the attempt of gaining
global information from the factors.

The L(2,1)-labeling of the Cartesian product of n paths, especially of
the Cartesian product of n copies of P, (the n-cube Qy), was investigated by
Whittlesey, Georges, and Mauro [14]. In the same paper, they completely
determined the Ay ;-numbers of Cartesian products of two paths. Jha et

al. [10] studied the L(2, 1)-labeling of the Cartesian product of a cycle and
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a path. The Az j-numbers of the Cartesian product of a cycle and a path
were completely computed by Klavzar and Vesel in [11]. Partial results
for the Az 1-numbers of the Cartesian products of two cycles were obtained
in (11]. These partial results are completed in [13]. Georges, Mauro, and
Whittlesey [7] determined L(2,1)-labeling numbers of Cartesian products
of two complete graphs. This result was then extended by Georges, Mauro,
and Stein [6] who determined the L(j, k)-labeling numbers of Cartesian

products of two complete graphs.

Theorem 1.1 [6] Let j, k, n, and m be integers where n > m > 2 and
j=>k. Then
(i) Ajk(En X Km) = (n = 1)j + (m = 1)k, if j/k > m;

(i) Ak (n X Kim) = (nm — 1)k, if j/k < m.

Theorem 1.2 [6] Let j, k, and n be integers wheren > 2 and j > k. Then
(i) Mik(KZ) = (n—1)j + (2n - 2)k, if j/k >n—1;

(ii) X k(K2) = (n® - 1)k, if j/k <n—1.

Georges, and Mauro [4] also obtained other results on L(j, k)-labelling
numbers of Cartesian products of complete graphs. In particular, they

investigated the A; x-number of K3.

Theorem 1.3 [4] The A; x-number of Q3 = K3 is equal to 35 if j/k < 5/2;

and j 4+ 5k if j/k > 5/2.

Theorem 1.4 [4/ Suppose n is an odd integer, n > 3. Then



(1) Aje(K3) = (n—1)(G + 3k), if j/k > 3n—4;
(i) Ajk(K3) = (n? - 1)k, if j/k <n—2;

(iii) Ajx(K3) < (n—1)(G +3k), if n—2 < j/k < 3n—4.

Theorem 1.5 [4] Suppose n is an even integer. Then
(i) Aj(K3) = (n® = D)k, if j/k < n/2;
(n? + 2n)k, if n/2<j/k<n-2,

(i) M u(K3) < n(J + 3k), if n—2<j/k<2n(n-2),
(n—1)j + n(2n — )k, if j/k>2n(n—2)).

In [2], the Ajx-number of the Cartesian product f[ K,, is exactly de-
termined for n > 3 and relatively prime t;,¢2, - ,t,.,i:vlhere 2<t1 <ta <
e < .

In this paper, we extend the previous work on the A; x-numbers of the
Cartesian products of three complete graphs. In Section 3, for n > m > {
and n > 2m, we show that we don’t need more labels to label K, x K, X K;
than to label K, x K,, in this case . And we give \;jx(Kn x K x K)) =
(nm—1)k if j/k < m, and that A\jx(Kn X Km x Kj) = (n—=1)j+(m - 1)k
if j/k > m. In Section 4 of this paper, for n > m > ! and n = 2m,
we show Ajix(Kn X Km x Ki) = (nm — 1)k if j/k < m — 1, and that
XNjie(Kn x Km x K1) < (n—1)(j + k) + (m— 1)k if j/k 2 m — 1. We study

Xjk(Kn x Km x Ki) for I <m < n < 2m in Section 5 and Section 6 .
2 Preliminaries

For two positive integers a and b with @ < b, denote by [a, b] the set of

integers a,a + 1,...,b. A set of integers is called k-separated if and only
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if any two distinct elements of the set differ by at least k. Given a graph
G(V,E), a subset S of V is called 2-independent if any two vertices of it are
at distance at least 3. The 2-independence number of G is the maximum
size taken over 2-independent subsets of V(G).

Throughout this paper, j, k, n ,m and ! will be positive integers with
n>2m2>12>2and j>k.

We shall view the vertices of the graph K, x K,, x K; as points in
the three-dimensional Euclidean space. Each vertex of K, x Kn x K
will be represented by its coordinate (a, b, ¢), where a, b, ¢ are nonnegative
integers with 0 <a<n-1,0<b<m-1,and0< ¢c<!{-1. For
v = (a,b,c) € V(K, x K x K|), we say that v is a vertex in the at*
row, b** column and the c** level of K, x K x K;. It is not difficult to
see that two vertices are at distance k if their coordinates are different in
exactly k components. In other words, any two vertices on a line parallel
to some coordinate axis are adjacent; any two vertices on a plane parallel
to some coordinate plane but not on any line parallel to some coordinate
axis are at distance 2; and any two vertices not on any plane parallel to
some coordinate plane are at distance 3. The diameter of K, x K x K
is 3. The 2-independence number of K, x K,,, x K, is I. Thus each label
can be used at most ! times by any L(j, k)-labeling of K, x Km x K.

Suppose n > m. Let

to =min{l <t < nm |2t mod n =0,t mod m = 0}. (2.1)
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Then there exist two positive integers p and g such that 2ty = pn and
to = gm. It is easy to see that m < ¢ £ z"—’:ﬁ and tolt"ﬁ;’n—iy where (n, m)
is a greatest common denominator of the two integers n and m. Let ro be
the integer such that nm = rotg. From the definition of o, we can show

that the following two properties holds.

(P1) : if Tn—nﬂ—ﬁ is even, then p = (n’r'm), q= 2(n’tm)’ ro = 2(n,m) and

to = =2M_:
0 = 2(n,m)?

n

(P2) : if iy is odd, then p = F?'—"%;, 9= Gy 70 = (n,m) and

nm
n,m)"’

o = {

Thus to is well defined. By the properties above, it is easy to see
that: (1) if n > 2m then ¢ > p and to > m; (2) if n = 2m then ¢ = p,
o = 2(n,m) = 2m and tp = 2’:’,‘" =m=3%; (3)if m <n < 2m and

n,m) < Z theng<pandip>n>m.
p)

Lemma 2.1 For 0 < t;,ts <to—1and0 <7y, <ro—1, if (t1,71) #

(t2,72), then ((2t1 +71) modn, t; mod m) # ((2tz +72) modn, t; modm).

Proof. Suppose to the contrary that ((2¢t; + r1) modn, ¢, modm) =
((2t2 + r2) modn, t2 modm) for some (t;,r1) # (t2,72). Without loss
of generality, we may assume that ¢; > t. Then we obtain that (2(t; —
t2) + (r1 — r2)) modn = 0 and (t; — t2) modm = 0. Thus there are
two integers z and y such that ¢, — ¢t = zm, z € {1,2,---¢ — 1} and
2(t — t2) + (11 —r2) = 2zm + (11 —m2) = yn.

Since n and m are multiples of (n,m), (r1 —72) must also be a multiple
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of (n,m). From the properties (P1) and (P2), we know that 7y < 2(n,m).
Since 0 < [ry ~ 72| < 79 € 2(n,m), |r ~ 72| must be 0 or (n,m). If
[ry = 72| = 0, then r; = rp and 2(t; — t2) = yn, (t; — t2) = zm. Since
(t1,71) # (t2,72), t1 # to. This is a contradiction of the minimality of ¢q
since t; — tz < tg. Therefore, we conclude that |r, — ry] = (n,m).

If aamy 18 odd, then by (P2), ro = (n,m). This is a contradiction since
|ry — 72| < 1o = (n,m). If G%T is even, then 2zm + (r; — r;) = yn cannot
hold since |ry — 3| = (n,m) and both 2zm and yn are even multiples of

(n,m), another contradiction. | |

Suppose n > m > l. We define a function g from V(K,, x K, x K}) to
[0,nm — 1] as follows.

g(((2t+7) modn, tmodm,0)) =rtg+t, 0<t<tg—1,0<r<ry—1; 2.2)
g ({a,b,¢c)) = g(((a + c) modn,(b+c) modm,0)) for 0 <e<!-1. ’

Remark 1: By Lemma 2.1, we know that if (¢;,71) # (t2,72) then ((2t; +
r1) modn, t) modm) # ((2t2 +72) modn, t; mod m). Therefore, since the
number of vertices at level 0 is tyry = nm, each vertex of V(Knx Km x Kj)
is assigned an integer in {0, nm — 1|. Furthermore, it is easy to see that the
restriction of g to any fixed arbitrary level c is a bijection from the vertices
at level c to the integers in [0,nm — 1].

The following two lemmas are useful in our proofs. The second one is

straight-forward.

Lemma 2.2 (3] Let j and k be two positive integers with j > k. For any
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graph G and any positive integer c, we have A ck(G) = cAjk(G).

Lemma 2.3 Let j', j and k be positive integers with j' > j > k. Then for

any graph G, we have Aj: k(G) 2 A x(G).
3 )jx-numbers of K, x Kn X K, for n > 2m

In this section, we study the A; x-number of K, X Ky, x K, for the case
n > 2m, and we shall demonstrate that we don’t need more labels to label
K, x Km x K than to label K, x K, in this case .

We first show that if n > 2m then the mapping g defined in the previous

section is an L(m, 1)-labeling of K, X Km X Ki.

Lemma 3.1 Suppose n > 2m. Let h and s be two integers in [0,nm —1].
And let x and y be two vertices in level ¢(> 0) such that g(x) = h and
gy) = s. If0 < |h—s| < m then x and y are different in the first

component.

Proof. We first consider ¢ = 0. Let h = mito +t1 and s = rofo + to.
Suppose to the contrary that z and y are equal in the first component.
Then 2t; + 71 = 2ts + r2 + in for some integer i. That is 2(t; — t2) =
in — (r, —2). Since h # s, z and y are different in the second component.
Thus ¢ # ta. If Jry —r2| > 1 then |h —s| = |(r1 — ro)to + (t1 — t2)| 2
[[r1 =r2lto—[t1—ta|] = |r1—T2lto—|t1 —t2] > to = m. This is a contradiction

of our assumption that 0 < |h — s| < m. Therefore |ry — 3| < 1. Since

104



pr—=1>2(to—1) 2 2Jt; ~to| = [in— (11 —12)| 2| i|n—|r; ~ 72| 2| ijn—1,
we clearly have |i| < p.

If |ry — 72| = O then since ¢, # t we have i # 0. So we have |2(h—s)| =
|2(21 — t2)| = |in| > n > 2m. This is a contradiction of 0 < |h — s| < m. If
Iry — 72| =1 then |2(h — s)| = |2t0 + 2(t1 — t2)| = |2t + in — (r; — r3)| >
200 = liln = 1] = (p—|i)n —1 > n—1 > 2m — 1. This is again a
contradiction of 0 < |h — s| < m. It follows that = and y are different in
the first component for ¢ = 0.

For ¢ > 0, let = = (az,bz,c) and y = (ay,by,c). Then h = g(z) =
9(((az+c) modn, (bz+c) modm,0)) and s = g(y) = g(((ay+c) mod n, (b, +
c¢) modm,0)) by the definition of g. Thus we have (a; + ¢) modn #
(ay + ¢) modn by the result above for ¢ = 0. Furthermore, a, # ay, i.e, z

and y are different in the first component for ¢ > 0. [ |

Lemma 3.2 Suppose n > m. Let h and s be two integers in [0,nm - 1].
And let z and y be two vertices in level ¢(> 0) such that g(z) = h and
9(y) = s. If0 < |h—s| < m then x and y are different in the second

component.

Proof. We first consider ¢ = 0. Let h = r1to+t; and s = rotg+to. Suppose
to the contrary that = and y are equal in the second component. Then
t1 — 2 = im for some integer i. Since gm —1=1to~1 > |t; —t2| = |i|m, we
clearly have |i| < ¢. If |r; — 3| > 1 then we can get the same contradiction

as in the proof of Lemma 3.1. Therefore |r) —rp] < 1.
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If |ry — ro| = 0 then ¢ # 0. So we have |h — s| = |t} — 2| = [{{m > m.
This is a contradiction of 0 < |h — s| < m.

If |ry — 2| = 1 then |h — s| = |to + (t1 — t2)| = |to +im| 2| to — [i|m| =
|(g—1i])m| = m. This is again a contradiction of 0 < |h—s| < m. It follows
that = and y are different in the second component for ¢ = 0.

With proof similar to that of Lemma 3.1, we can obtain that z and y

are different in the first component for ¢ > 0. |

Lemma 3.3 Suppose n > 2m. Let h and s be two integers in [0,nm — 1].
And let z and y be two vertices of Kn x Km x K such that g(z) = h and

g(y)=s. If0 < |h—s| <m then d(z,y) > 2.

Proof. If z and y are equal in the third component then, by Lemmas 3.1
and 3.2, we have d(z,y) = 2. Thus we assume that z and y are different
in the third component. If the lemma is not true then d(z,y) = 1. This
implies that z and y are equal in the first and second components. Let
z = (a,b,¢;) and y = (a,b,c2). And let h = 71t0 +¢1 and s = 7rato + 2.

Then

a +c¢; = 2t; + 1, modn,
b+ ¢y = t; modm;
a + ¢y = 2ty + 19 modn,
b+ ¢y =ty modm.

Therefore, there exist two integers i; and iy such that ¢; —co = 2(t; - ta) +
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(m—re)+imand ¢; —co = (¢ — t2) + iam. It follows that

¢ —Cy = 2i2m i iln - (7‘1 - 7‘2), (3.1)

t1 —ta = itom—in-— (7‘1 - 7‘2). (32)

If |1y — 73] > 1 then we can get the same contradiction as in the proof of
Lemma 3.1. Thus we suppose |r; — 5| < 1. Without loss of generality, we

assume 0 < ¢; — ¢z < m. By (3.1) and (3.2), we have

—2igm+(r1—rg) <—-iin<  (1-2i)ym+(r; —r2), (3.3)

—igm <t1—t2< (1—iy)m. (34)

If [ry — 72| = 0 then |h — 5| = [t; — t3] = |[igm — 41n|. If i3 = O then
11 # 0 since otherwise ¢; — ¢z = 0. Since n > 2m, if is = 0 or 1 then
|h — s| = |[igm — i1n| > m, a contradiction. If iy # 0,1 then, by (3.4),
|h — s| = [t1 = t2| > m, a contradiction. Thus we assume |r, — r5| = 1.

Suppose 7} =73 =1. Ifip = qthen ~pn+ 1 < —ijn < —pn +m + 1.
This is impossible since n > 2m and 4, is an integer. If i = g + 1 then
—-pn—-2m+1 < —ijn < —pn — m + 1. This is again impossible. Thus
i27#¢,q+1 Since (g—i2)ym<h—s=tg+t; -t < (g+1—1i2)m, it
follows that |h — s| > m, a contradiction.

Suppose 73 —rg = —1. If iy = —g+1thenpn —2m — 1 < —i1n <
pn—m~—1. This is impossible. If i = —g thenpn~1 < —i1jn < pn+m—1.
Therefore i; must be —p. By (3.2), t; —ts = —gm + pn+ 1 = to + 1. This

is a contradiction since 0 < t;,¢; < to — 1. Thus i3 # —¢, —q + 1. Since
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(—q — ’iz)m <h—s=—tg+t)—ta < (—qg+1- i2)m, it follows that

|h — s| > m, a contradiction. And the lemma follows. |

Remark 1 and Lemma 3.3 imply that g is actually an L(m, 1)-labeling
of K, x K» x K;. By Lemmas 2.2 and 2.3 together with Theorem 1.1, the

following theorem holds.
Theorem 3.4 Ifn > 2m and j/k < m, then
Aje(Kn x Km x K1) = (nm = 1)k.
Next we deal with the case n > 2m > 4 and j/k > m.
Theorem 3.5 Ifn > 2m and j/k > m, then
Ajk(Kn x Km x Ki) = (n—1)j + (m - 1)k.

Proof. By Theorem 1.1, Ajx(Kn X Km X Ki) 2 Xjr(Kn X Km) = (n —
1)j + (m - 1)k.

Let (a,b,c) be any vertex of K, x Kmm x Ki. There are two integers r
and t such that g({a,b,c)) =rm+twith0<t<m-land0<r<n-1
Then we define a mapping L from V (K, x K X K;) to nonnegative integers
as: L((a,b,c)) = rj + tk. Clearly, the span of L is (n —1)j + (m — 1)k.
Next we show that L is an L(j, k)-labeling of Kp x K % Kj.

Let v; and vy be any two vertices and suppose g(v1) = rim + ¢, and
g(v2) = rom + tz, where 0 < 71,72 < n -1 and 1 < t3,t20 < m—-1.

Without loss of generality, assume g(v;) < g(vz). If v; and v, are adjacent
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then, by Lemma 3.3 and Remark 1, (rom + t2) — (rim +1t1) > m and so
ta —t1 2 m — (ry —r;)m. Note that j > mk, we have

L(vg) — L(vy) (roj + tak) — (r1J + t1k)
(re—m1)j+ (ta —t1)k
(7‘2 - Tl)j -+ [m - (7’2 — 'rl)m]k
(7‘2 -_ Tl)j - (T2 -7 — l)mk Z ]

v

If v; and v are distance two apart then, by Remark 1, (ram + t2) —

(rym +1t;) > 1. Note that j > mk, we have

L(vq) — L(vy) (roj +t2k) — (117 + t1k)
(re—r1)i+ (t2a—t1)k
(re—r1)j+ {1 —(ro —r1)mlk
(re=r1)j = (ra—r1)mk + k > k.

IRV

4 )jr-numbers of K, x K,, x K for n = 2m

In this section, we study the Aj x-numbers of K, x K,,, x K; for n = 2m.

For n = 2m, we show that gis an L(m—1, 1)-labeling of K, x K, x K.

Lemma 4.1 Suppose n =2m. Let h and s be two integers in [0,nm —1].
And let  and y be two vertices of K, x K, X K, such that g{z) = h and

9(y)=s. IfO< |h—s| <m—1 then d(z,y) > 2.

Proof. The proof of this lemma is the same as that of Lemma 3.3 except
for 7y — 72 = —1 and i3 = —g + 1. In this case, we still have pm—2m—-1<
—i1n < pn—m—1. This implies that iy = —p-+1. It follows from (3.2) that
t1i—tz =to—m+1. Thus |h—s| = [(r1—ra)to+t1 —t2| = |-m+1| =m—1.

|
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Remark 1 and Lemma 4.1 imply that g is actually an L(m — 1,1)-
labeling of K, x K, x K;. By Lemmas 2.2 and 2.3 together with Theorem

1.1, the following theorem holds.
Theorem 4.2 Ifn=2m and j/k <m—1, then
’\j,k(Kn X Ky % Kl) = (nm - l)k

For n = 2m and j/k > m — 1, we use the mapping g to construct an
L(j, k)-labeling of K,, x Km x K; with span (n —1)j +(n+m—2)k .

Let (a, b, c) be any vertex of Kn x K X Ki. Suppose g((a, b,c)) = rm+t
with0<t<m-—1and 0 <r <n— 1. Then we define a mapping L from
V(Kn x Km x Ki) to nonnegative integers as: L((a,b,¢)) =rj+ (r +1)k .
Clearly, the span of L is (n—1)j+(n+m—2)k. With a proof similar to that
of Theorem 3.5, we can show that L is an L(j, k)-labeling of K, x Km x Ki.

Thus we have the following theorem.
Theorem 4.3 If n = 2m and j/k > m —1, then
Ajk(Kn x Km x K1) < (n = 1)j + (n+ m = 2)k.
5 \jr-numbers of K, x Kn x K; for m <n <2m

In this section, we study the A; x-numbers of Kp X K X K;form < n < 2m.
Let d = n — m — 1. We show that the mapping g is an L(d, 1)-labeling

of K, x K;n x K; when m < n < 2m.
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Lemma 5.1 Supposem < n < 2m. Let h and s be two integers in [0,nm—~
1). And let z and y be two vertices in level c(> 0) such that g(z) = h and

9(y) = s. If0 < [h—s| < d then z andy are different in the first component.

Proof. Let h = r1tg+t, and s = ratg +¢3. Suppose to the contrary that =
and y are equal in the first component. From the proof of Lemma 3.1, we

know that |h — s| > 251, This contradicts 0 < |h—s|<d=n—-m—1. §
The following lemma is an immediate corollary of Lemma 3.2.

Lemma 5.2 Supposem < n < 2m. Let h and s be two integers in [0,nm~—
1). Andlet z and y be two vertices in level ¢(> 0) such that g(z) = h and
9(y) = s. If0 < |h—s| < d then = and y are different in the second

component.

With a proof similar to that of Lemma 3.3, we can show the following

lemma. We omit the proof here.

Lemma 5.3 Supposem < n < 2m. Let h and s be two integers in [0,nm—
1. And let z and y be two vertices of Kn x Ky, x K; such that g(z) = h

and g(y) = s. If0 < |h — s| < d then d(z,y) > 2.

Remark 1 and Lemma 5.3 imply that g is actually an L(d, 1)-labeling
of Kp, X K;n x K;. By Lemmas 2.2 and 2.3 together with Theorem 1.1, the

following theorem holds.
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Theorem 5.4 [fm <n<2m and j/k<d=n—m—1, then
Aj,k(Kn X Km X K[) = (nm - 1)k.

By defining an L(j, k)-labeling L as: L((a,b,c)) =7j+[(m ~d)r +t)]k
if g((a,b,c)) =rm+t with0<r<n-land0<t<m-1forj/k=>d
where the integers j > k , with a proof similar to that of Theorem 3.5, one

can show the following theorem.
Theorem 5.5 Ifm <n < 2m and j/k >d , then

Mp(Kn X Km x K1) < (n—=1)j + [(m —d)(n = 1) + (m — 1)]%.
6 Another method for m <n <2m

In this section, we study the Aj;x-number of K, x K., x K; by another
method for m < n < 2m.

Suppose n > m. Let
to =min{l <t < nm |t mod n = 0,2t mod m = 0}. (6.1)

Then there exist two positive integers p and g such that to = pn and

%o = gm. It is easy to see that {p < (1?.7::1)

and tOlGE,En:T Let rg be the
integer such that nm = rgtg. From the definition of ¢, we can show that
the following two properties holds.

n

(Q1) : if (Tmm is even, then p = ﬂ;"";;, 9= Gy 70 = 2(n, m) and

t —_— nm_ .,
0 = 3(n,m)?
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(Q2) : if 77y is odd, then p = 25, ¢ = sy 1o = (n,m) and

nm

to = m)

By the properties above, it is easy to see that (1) if n > 2m then ¢ > 4p
and to > n; (2) if n = 2m then ¢ = 4p and ry = (n,m) = m and ¢y = n;
(3)ifm<n < 2m and (n,m) < m/2theng < dpandtyp >n >m. We
next suppose that m < n < 2m.

Let ¢ be a mapping from V(K, x K, x K;) to {0,1,2,...nm — 1}

defined as:

#((t modn, (2t +7) modm,0)) =rtp +1,0<t <tg—1,0<r<ro— 1 (6.2)

{ #((a,b,¢)) = h(({a +c) modn, (b+ c) modm,0)) for 0< c< I~ 1.
Remark 2: With a proof similar to that of Remark 1, it is easy to see
that each vertex of V(K x K x K1) is assigned an integer in [0, nm — 1].
Furthermore, it is easy to see that the restriction of ¢ to any fixed arbitrary
level c is a bijection from the vertices at level c to the integers in [0, nm —1].
Let d = [(m +1)/2]. With a proof similar to that of Lemmas 3.1, 3.2

and 3.3, we can show the following three lemmas.

Lemma 6.1 Supposem < n < 2m. Let h and s be two integers in [0,nm~—
1]. And let z and y be two vertices in level ¢(> 0) such that g(z) = h and

9(y) = s. If0 < |h—s| < d then z and y are different in the first component.

Lemma 6.2 Supposem < n < 2m. Let h and s be two integers in [0, nm—
1. And let x and y be two vertices in level c(> 0) such that g(x) = h and

9(y) =s. If0 < |h—s| < d then = and y are different in the second
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component.

Lemma 6.3 Suppose m < n < 2m. Let h and s be two integers in [0,nm—
1). And let z and y be two vertices of Kn x Km % Ki such that g(z) = h

and g(y) = s. If0 < |h —s| < d then d(z,y) > 2.

By Remark 2 and Lemma 6.3, ¢ is an L(d, 1)-labeling of K, x K X K|

when m < n < 2m.

Theorem 6.4 Ifm < n < 2m and j/k <d=|(m+1)/2], then
’\j,k(Kn X Km % Kl) = (nm - l)k

suppose m < n < 2m, m is odd and j/k > d = |(m + 1)/2]. With a

proof similar to that of Theorem 3.5, we can show the following theorem.

Theorem 6.5 If m < n < 2m, m is odd and j/k > d , then
Ajje(Kn X Km x Ki) £ (n=1)j +[(m=d)(n—1) + (m = 1)]k.

By Theorem 5.4 and 6.4, we have the following theorem.

Theorem 6.6 Ifm < n < 2m and j/k < d = max{n—-m-1, |(m+1)/2]},

then
/\j,k(Kn X Km X K[) = (nm - 1)k.
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