A NOTE ON THE Q-LUCAS THEOREM

XIANG GAO

ABSTRACT. In this note we present an application of ¢g-Lucas theo-
rem, from which the g-binomial rational root theorem obtained by
K. R. Slavin can be deduced as a special case.

1. INTRODUCTION
The g-binomial coefficient is defined by

L | :
n n —f-:q7—, 0<k<n 1
k =13 =1 (1)
9 0, otherwise

In [1], the following g-Lucas theorem was proved and used to derive other
new product theorems.

Theorem 1 (g-Lucas). Let n,k,d be positive integers, and write n =ad+
bandk=rd+s, where 0 < b,s <d -1, Let w be a primitive d-th root of

unity. Then
HEOIH g

In this note we will use the g-Lucas theorem to prove an interesting the-
orem and from which the g-binomial rational root theorem can be deduced
as a special case.

2. THE MAIN REsuLT

In this section, we will prove the following interesting theorem by using
the ¢g-Lucas theorem.

Theorem 2. Let n,k,d be positive integers, n > 0 and 0 < k < n. Then

[n] _ ((Zﬁ), n |km 3)
k Jessiom/n '?), otherwise
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[Z] +2inm/( k)= % (5)
€ ' ( Kiononk ), otherwise

n,

where i2 = —1 and (a,b) denotes the greatest common divisor of a and b.

Remark 1. Note that (3) is the g-binomial rational root theorem already
proved by Slavin in [2] and Ying-Jie Lin in [3].

Proof. Our proof of result (3) is only repeated from [3] and the proofs of
results (4) and (5) follow a similar approach.

Let wy = e*2"m/n_Suppose that w is a primitive d-th root of unity. Thend =
'(W:—nY’ By the g-Lucas theorem, we have

n| _(5 0
HEOIN ®
w W
where k=rd+sand 0 <s<d-1.

If n|km, then n|k(m,n) and d = x|k, sor = = mmk o —
0. Otherwise, d { k and s > 0. Since

HRE

this completes the proof of (3).
To prove (4), we consider wy = e£2"™/% which is a primitive d-th root
of unity. Then one can get d = (mi,fcf By the g-Lucas theorem, we have

[£].-(5)[s ), ®

where n=ad+band 0<b<d-1.
If k|mn, then k|(m,k)n and d = i in, s0a = § = AR p =
0. Otherwise, d{n and b > 0. Since

b] _f Lb=
0], 0,5 >
this completes the proof of (4).
To prove (5), we consider w = e/ (") which is a primitive d-th
root of unity. Then one gets
(n1 k)
= 8
By ®



By the ¢-Lucas theorem, we have
n n
HE¢
0
3]~

together with (8), we completes the proof of (5). O

Since
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