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Abstract

Employing q-commutive structures, we develop binomial analysis
and combinatorial applications induced by an important operator in
analogue Fourier analysis associated with well-known g-series of L.
J. Rogers.

1 Introduction

The g-analogue binomial analysis induced by the 8, operator,

1@'2) + f(-a7'e) ~ fl@R) 4 J(-an) =2 (7))
2(1-q)z ’

(originating in ¢-Fourier analysis c.f. [3], [4]) which we shall show is natu-

rally associated with two well-known g-identities of L. J. Rogers, formulas
m(m+1)

(94) and (99) in Slater’s famous list, [6], Y~ o G =

oo (1 - q10m—3)(1 - qIOm—’I)(l - q20m-4)(1 - q20m-16)(1 - qIOm)

0, f(2) =

"!':[l T v (2)
and z::o %")% =

oo 1- 10m—1 1- 10m-9 1-— 20m—8 1- 20m—-12 1- 10m

11 (1 =g )1 - ¢! =% . _qqm) ) -4 JA-g7") @)

m=1
requires some novel g-commutative constructions and yields interesting
variants of results of classical g-binomial and partition analysis.
The Binomial combinatorics induced by (1) appears to be difficult to
develop because the complexity of the associated Pascal formula does not
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allow standard commutative and g-commutative methods to be employed.
However, we will show that, in the appropriate algebraic context, fun-
damental results with natural combinatorial interpretations follow easily.
After presenting the relevant Binomial developments, applications will be
given to integer partition generating functions, commutative g-identities
and a Rogers-Ramanujan-type partition result.

We use the standard notation of q-analysis adopted from [2]. In par-

ticular, 0 < ¢ < 1, (&q)x = [[}2o(1 — ag’), (aiglo = 1, (3;0)00 =

limg—.o0(a; Q) thg q-derivative, D, f(z) = ﬁ.a_ﬂqﬁﬁl, lle=1l+g9+¢+
o+ ¢@f"1 = 122 and [fly! = [1g[2g...[le- |r) is the greatest inte-
ger < 7, [r] is the least integer > r. The parity operator on integers is

1 if k is odd,

(k) = e Note: w(nk) = n(n)mw(k).
Oif k is even .
Classically, the g-derivative is linked to g-binomial analysis by:
(2 9)n
ne,ny — = 2D d/n
Dq (z ) [n]Q' (1 — q)" * (4)

Computing the m-fold composition of 94 on z™ gives:

n _1\k—1p1 _ (1) "k
Hk:n—m+l( 1) (1 q )Zn_m, ISmSn,

a"'n(zn) = 1-gm™

and 37*(2") =0, m > n.
Thus the analogue of (4) for 9, is:

sy = [0 g0

(1-g
This leads us to define
n
{a;q}n = [J(-1F71(1 = (ag* 10" (5)
k=1
It is easy to check that :
{g:q}n = ¢ 2RI (g;q),. (6)

Using this construction, we see that the operator (1) is closely linked
to the g-identities of Rogers listed at the beginning of the paper. In fact,
combining (2) and (3) with (6), gives us:

Lemma 1.

1 11 (065000 + (0000w
~ {g:q}n  (6%59%0 (¢%9";¢"% (9.¢%,9",¢% 3%
n=0
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We discuss combinatorial interpretations of this formula in the last sec-
tion.

Define
—1Ye=1(1 _ H(—1)*"1k k=1 i .oy
{k} E( 1)*~1(1—q )= im0 ¢ if k is odd, @
! l-g¢ Efm__l g~V if k is even ,
J
{i}e! = [[{k}e, and {0}t =1.
k=1
These definitions give

. - . =t
lqlﬁl{n},, n, and qugl{n}q. n!
Recall the standard g-analogue binomial coefficient (corresponding to

the g-derivative D, )
n\ _ [n]g!
(&), = mb sy ©

Its q-analogue Pascal formula, (:)q = (n; 1), + gin=H) (Z: :)q,
follows easily from (8), and the subtraction formula:
[y — [Klg = ¢“n - Kl,.
In our case, the subtraction formula takes the form:
Lemma 2.
g =Tk A1) () _ (k) = grrnRI—k(=r (D) (),

Proof. For each possible combination of parities of n, k, n-k, the subtraction
formulas are easily computed using the definition of {n},. (We also use
w(nk) + w(k)(1 — w(n)) = w(k).) The resulting formulas combine to that

given above. O
Define:
n {r}q!
== 9
(i .= hHn— ©)
Using (6) it is easy to see that
Pl o grkn=Rng-215 11254 () (10)
klg k/q
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We get a g-analogue as q approaches 1:-

(- @) e

Applying the subtraction formula of Lemma (2) to 10, we obtain the
analogue of the Pascal formula for this setting:

Corollary 1.

{n} = q—mr(k)(l—rr(n))+k1r(n)(1—1r(k)) {n - 1}
k k
q

q

g HE(m) (1= (k) 2 () ~1) {n - 1} '
q

Despite the complexity of this Pascal formula, in the next sections, we
will prove a relevant Binomial theorem and commuative g-identitiy and
partition applications of these analogue Binomial coefficients.

2 Binomial Expansions

Recall the famous g-binomial formula presented in Schutzenberger, [5]:

Theorem 1. If £ and y are two elements in an associative algebra with 1
over a field F and if g # 0 in F is such that zy = qyz, then for any a,b in

o =3

k=0

n -
) GurHas) (1)
q

We want to find the appropriate analogue of this theorem for ’,;}q.

If z is an element in an associative algebra, A, with unit 1 over a field,
F, with 2271 = 271z = 1, and if u is any element in A, define

1 ifn=0
ule ={  (ulr-Us)y if nis odd : (12)
2z~ 1(ul*=1s)uz if nis even

Observe that whenever z commutes with u, then ul™: = u®,

Our next theorem includes an analogue of Theorem 1 for {’,:}q, and lets
us compare binomial expansions with varying amounts of q-commutivity.
In particular, it shows the effect of varying q-commutativity on binomial
coeflicients.
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Theorem 2. If z is an element in an associative algebra, A, with unit 1,
over a field F, with 227 = 2712 = 1, and q # 0 € F, then for a,b in F,
and z,y in A:

1)if z, y, z all commute,

n

(@ + by = 3 () )=,

k=0
2)if zy = qyz, z commutes with z and y,

n

@+ o) = Y (1) G He(ao),
q

k=0

3)if zy=qyz, zx=qxz, 2y=qyz,

n

(az +by)lls =3 { } (by)in—H= (gz)lk):

k=0

Proof. In cases 1) and 2), z commutes with x and y, so ul™* = u™ for u = z,
or y, or z + y. Thus 1) follows from the Binomial Theorem, and 2) from
Theorem 1.

We establish case 3). For notational simplicity, assume a = b = 1; the
extension to the general case is left to the reader. Rewriting 3), using defi-
nition (12), it is enough to show that: (z~1)l3J((z 4 y)22)l3(z + y)™™ =
Theo {1}, (2~ LT (122) L 072 y(n=8) (2=1) 3] (22) L) on(R),

This, in turn, follows from Theorem 1 together with the facts, proved by
induction, that if z=1 z,x,y satisfy the hypotheses, then (2~ 1)z = ¢~ 1z(271),
(z Y)y=qg7y(z7!),and for 0 < n € Z: z" = (z~12)L "
= g2+~ +2(l’.‘1)(z‘1)1¥1(m z)li’Ja:“(“) while for 0 < k < n € Z: y*z"* =
(2~ z)[ﬂmn-k k_ (z—lz)[T]xn-k(z—l )[,Jy = g2+4++2([25E))
(z_l)l. J(;p z)l.n_ij'"’(”"k)q2+ +2(|.§'J)(z‘1)l'§.] (y z)lijﬂ'(k).

O

Theorem 2 yields numerical g-identities involving {} } Using countably
infinite matrix realizations of the associative algebra, the theorem provides
an infinite matrix identity which gives numerical identities in corresponding
matrix entries. To illustrate the procedure, we establish:

Corollary 2.
n—-1
For p=0or 1: H [(q4(n—m);qz)zq—Zn-z(n—m+l)—1](q _ q—l)p = (13)
m=0
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1 n—j+pj k-1
2n+P} H ~2(n—-m)—1 2(m+1) 2(n—k)+1yj
D : [(g™2"=™1; )ag* ™ ](1 — g 70FTY
j=0 k=0 {2k+-7 9 m=0

(n—k)—1
x H [(q2((n—k)—m-j+pj);q)zq-2(m+1)](q2-p_1)p+3'-2m'.

m=0
Proof. The countably infinite matrices: X, Y, Z~!, Z, with i,j entries
Xij=(¢" = 18icrjy Yij=1=qoiro 25 =005 Zij=d8;

together with the identity matrix, generate an algebra which satisfies the
hypotheses of Theorem 2. Direct computation shows that e.g.

((Z—l)k(Yz)k(z—l)n—k(xz)n-—k)ij

k-1 n—k—1
= [T e~ "™ 0)2*™*?] ] Ue""**""i9)247 "™ 6i2m,s-
m=0 m=0
Developing all relevant formulas, Theorem 2 gives an infinite matrix
identity.
To obtain the p=0 formula, equate the (2n+1,1) entries in the infinite
matrix identity; for the p=1 formula, equate the (2n+1,0) entries. (W]

3 Generating Functions and a
Rogers-Ramanujan type result

Theorem 3. The generating function for partitions with m parts, the
largest | 2| of which are both not less than 2 and have minimal difference
2 with all other parts, is given by -{—}—

Proof. We adapt a classical argument, see e.g. [1]. Let 53 <

1'1 < rp £ -+ < ryz) be a partition satisfying the hypothals \?/nte
=81+ +s[m1+r1+r2+ Aty with2 <ry <r9—2,70 <1rg—2,etc..

Deﬁne 0 <n <ng < -+ < ny uniquely by 8; = ny, for j = 1,...,[Z].

and 7; = nrmye; + 25 for i =1,...,|%]. This defines a correspondence

between pa.rtltlons of n with m parts, the largwt %] of which are ‘2-

distinct’ parts, and partitions of n — 2(2:l _7) =n—-|2](|F]+1)into
m non-negative parts. Using this correspondence, we see that generating
function for partitions with m parts, the largest |%] of which are both
not less than 2 and have minimal difference 2 with all other parts, can be
written:

Z P S TR E A e £ A R

osnls...snm
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= Z g2+t Rttt

0<m S-S

= ql%.’(l%]‘l‘l) Z qn1+"’+"m

0<ny < Snm

=qlHz+y ¥ gm0

0<ny S Snmoy 1-g
— ql%](l%’]"‘l) Z q‘nl+“'+"m-2 qz(""‘_z) = cee = —————ql*J(l%J-’.l) N
(1-4q) (1-¢?) (3 9)m

0Sn1 < Snm-2

O

Theorem 3 and standard partition interpretations applied to Lemma 1
provide a Rogers-Ramanujan type partition result:

Corollary 3. The number of partitions of n into parts all equal to 1 or
9 modulo 10, or all equal to 3 or 7 modulo 10 is equal to the number of
partitions of n with m parts, the largest | 3] of which are both not less than
2 and have minimal difference 2 with all other parts.
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