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Abstract

Consider the following one-person game: let S = {F, F»,..., F.}
be a family of forbidden graphs. The edges of a complete graph are
randomly shown to the Painter one by one, and he must color each
edge with one of r colors when it is presented, without creating some
fixed monochromatic forbidden graph F; in the i-th color. The case
of all graphs F; being cycles is studied in this paper. We give a
lower bound on the threshold function for online S-avoidance game,
which generalizes the results of Marciniszyn, Spohel and Steger for
the symmetric case. [Combinatorics, Probability and Computing,
Vol. 18, 2009: 271-300.)

Keywords: Rendom graph; Cycle; Online Ramsey game; Ramsey
property

1. Introduction

Consider the following online Ramsey game. The edges of a complete graph
of order n are shown to the Painter one by one in a random order, and the
Painter must color the edge as soon as it is present, using one of r available
colors. The Painter’s goal is to color as many edges as possible, without cre-
ating any monochromatic copy of some fixed graph F. This online Ramsey
game was introduced by Friedgut, Kohayakawa, R6dl, Rucinski and Tetali
[4] for the case F = K3 and r = 2 . The question we are interested in
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is that how long the Painter can ’survive’ in such an online game, i.e.,
how many random edges can be colored without creating a monochromatic
copy of F. The word ’online’ is used to emphasize the fact that in each
step the Painter has to decide how to color the new edge before seeing
any further edges that appear later in the game. The term ’asymptotically
almost surely’ (a.a.s.) means 'with probability tending to 1 as n — oo,
Let Ny = No(F,r,n) be a threshold function for this game, meaning that
there exists a strategy for the Painter such that he a.a.s. survives with
this strategy for N <« Ny edges, and moreover the Painter a.a.s. loses the
game for N >> N edges, regardless of his strategy. Marciniszyn, Spohel
and Steger [8] proved the existence of such a threshold function.

Let G(n, N) denote the uniform model of random graphs on n vertices
and N edges. Let v(G) = [V(G)|, e(G) = |E(G)|. For S C V(G), G[S]
denotes the subgraph induced by S, and G\ S = G[V(G)\ S]. P is a
path on k vertices, and Cy is a cycle of length k. For online Kj-avoidance
game with two colors, Marciniszyn et al. showed that the threshold is
n2- 20+ i) [6]. They also gave a general upper bound for online
F-avoidance game in the case of two colors [7]. Further more, for gen-

eral r > 2, they proved that a lower hound for online F-avoidance game
2

is n?~ "7 | where lim h(F,r) = max f,(H =2 [8]. Belfrage, Miitze and
ro00 HCF

Spohel [2] presented techniques for deriving upper bounds on the threshold
using a deterministic two-player game, and showed that the best bound de-
rived in this way is the threshold of the game for F being a forest. Balogh
and Butterfield [1] studied the online K3-avoidance game, by a direct ap-
plication of the techniques in [2], they proved that the upper bound on the
threshold with r colors is n¥=°" (c, is a constant related to r), which is
the first result that separates the online threshold function from the offline
bound for r > 3. Using a high performance computing network, Gordinow-
icz and Pralat [5) studied the triangle avoidance game on a small number
of vertices.

In this paper we study the asymmetric version of the online Ramsey
game for cycle avoidance. Let S = {Fy, F3,..., F,.} be a family of forbidden
graphs such that if the Painter plays the online game with 7 > 2 available
colors, his objective is to color as many edges as possible without creating
a monochromatic copy of F; in the i-th color. We refer to it as the online
S-avoidance game, denoted its threshold function by Ny(S,r,n). We call
the number of properly colored edges N its duration.

Theorem 1 characterizes a threshold function for the offline version of
the asymmetric game involving cycles. Since Painter has more information
available when choosing colors in offline games, it will yield higher upper
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bounds than that of online games, as in Theorem 2.

Theorem 1. (9] Letr > 2, ky 2 k2 > ... 2 k, > 3, and P = ’every r-
edge-coloring of G' contains a monochromatic copy of Cy, in the i-th color
Jor some i, then there exist positive constants ¢ and C such that

1 if m>Cn?Y/ma(Cr1.Cn)
0 ifmc< en2~Yma(Ce Ci,).

re1?

Jim P[G(n,m) € P] = {

where my(Ck,._,,Ck,) 1= kf+(k,-.-2)/(kr- gy o

Theorem 2 is the main result of this paper, which gives lower bounds
on online games.

Theorem 2. If S = {Ck,,Ck,,...,Ck,} for ky > ky > ... > ki, then the
online S-avoidance game has a threshold No(S,r,n) that satisfies

N()(S, T, n) > ,',"2-'1/d(ck1 ,Ck,'---.ck,-)’

ks
where d(Cy,, Cr,,...,Ck,) := g,zl(klzl-'sll'l;;{ kj+2°

In order to prove this theorem, we first present some useful notation and
preliminaries in Section 2. In Section 3, the lower bound on No(S,r,n) for
T =2 is proved, and it is generalized to the case of r colors in Section 4.

2. Notation and Preliminaries

For a graph F', we give the following definitions which aressimilar to [8]. The.
standard density measure for graphs is d(F) = e(F)/v(F) which is exactly
half of the average degree, the maximum density measures m motivated by
Theorem 3 and mg are as follows:

_ e(H) ) — e(H )—-1
m(F) := HEF o(H) ma(F) : HEx v(H) -2
We call F' a 1-balanced graph if m(F) = e(F)/v(F), and 2-balanced if
ma(F) = (e(F) — 1)/(v(F) — 2). For example, the cycles are both 1-
balanced and 2-balanced. For graphs F) and F3, analogously to (8], we
define the density measures of asymmetric version as follows:

e(Fy)
‘U(Fg) + 1/m(F1) -2

e(H)
HER v(H) +1/m(F) -2’

d(Fy, Fy) := , and

m(Fl’ FZ)

131



that is, m(Fy, F3) = max d(F1,H). We set d(Fy,F;) =0 if F) or Fy is
=52
empty.

Then we consider the asymmetric {F}, F3}-avoidance game with two
colors, say red and blue, and assume that Painter uses one color, say red,
in every move if this does not create a red copy of F». Clearly, the game will
end with a blue copy of F}, which is forced by a surrounding red structure.
More precisely, when the game is over, the so far colored G(n, N) contains
a blue copy of Fi, each edge of which changed to red would comnplete a
red copy of F;. We will show that this greedy strategy yields the claimed
lower bounds of Theorem 2 in the case r = 2. Similar to [8], for nonempty
graphs Fy and F,, we define the family F(F), F2) whose graphs have an
'inner’ (blue) copy of Fj, each edge of which completes an 'outer’ (red)
copy of F». Here the colors should only provide the intuitive connection to
the greedy strategy, the members of the family F(F;, Fz) are not associate
with a coloring. The family of graphs F(F1, F3) are formally defined as
follows: .

Definition 1. For graphs Fy = (V, E) and F3, let

F(Fy,F,) := {F' : F' = (VUU, EUD), where F' is a minimal graph such
that for all f € E there are sets U(f) € VUU and D(f) C D with
(fUU(f), {FYUD(f)) = F2}.

In the definition, we take F’ as any minimal graph with respect to sub-
graph inclusion, i.e., F’ does not have a subgraph which satisfies the same
properties. This ensures in particular that F(F}, Fy) is finite. We will call
V and E the sets of inner vertices and inner edges respectively, while
U(f) and D(f) the sets of outer vertices and outer edges related to f € E
respectively, where each edge f € E with its endvertices together with U(f)
and D(f) forms a copy of F3.

To illustrate the definition, we take a graph F' € F(Cs,Cy4) as an
example, shown in Figure 1. We can see that the inner vertices set V' =
{v1, v2,vs,v4,vs5}, and the inner edges set E = {v1v2, v2v3, v3v4,v4Vs, Usv1 }
whose elements are drawn dashed. Let f; be the inner edges, f; = v;vi41
for 1 < i< 4, and fs = vsv;. Then, for each inner edge of E, the outer
vertices U(ft) = {u2i—lt u2i}’ 1<i< 43 and U(f5) = {uga ulO}, the
outer edges D(f;) = {viugi_1,Ugi—1u2i, U2s¥i1}, 1 < 4 < 4, and D(f5) =
{vsuo, ugttr0, u10v1 }. Note that inner vertices v € V may also serve as outer
vertices U(f) for a nonincident inner edge f. For example, v; is an inner
vertex, and it is also an outer vertex in the outer copy associated with edge
f4, as shown in Figure 2. Hence, every outer copies contains exactly one
inner edge and two or more inner vertices. '
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Figure 1: A graph F’ € F(Cs,C,). Note that it is also a distinguished
graph.

Among the graphs F' € F(F}, F3), there are some distinguished ones
F* in which no outer copies overlap. The graph shown in Figure 1 is a
distinguished one in F(Cs,Cy). For F* € F(F,, F,), we have |U(f)| =
v(F2) — 2 and |D(f)| = e(F2) — 1. Hence, F* has exactly e(F;)(v(F;) —
2) + v(F1) vertices and e(Fy)(e(F2) — 1) + e(Fy) = e(F1)e(F;) edges. If Fy
is 1-balanced graph, then d(F;) = m(F1), and this yields

d(Ft) = e(Fl)e(FZ) = e(F2)
e(F)(v(F2) - 2)+v(F) v(F)+1/m(F) -2
= d(F, F). 21)

The following Theorem obtained by Bollobés will be used in the proof of
lower bounds on Ny(S,r,n).

Theorem 3. (3] If F is a nonempty graph and P ='G contains a copy of
F’, then

1 ifm> n2—1/m(F),

nangoIP’[G(n,m) €eP]= { 0 ifm < n2-VmP),

In our proofs we will frequently use the following easy to check proposition.

Proposition 1. For a,c € R and b > d > 0, we have

@ §e5eiTistor f25eiTi2t
a c a+c_a
® 3<3=53a23

3. Proof of the lower bounds for Ny(S, 2,n)
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In this section, the special case of Theorem 2 will use mostly F; = Cj and
F, =C, for £ > | > 3. First we say that the standard density measure of
F™* is also the maximum one.

Lemmal. If f =Ci and F =Cj, k> 1> 3, then
m(F*) = d(F*) = d(Ck, C}).
Proof. Note that C; is a 1-balanced graph and m(C;) = 1. By (2.1),

e(C) _ !
v(C) +1/m(Cy) — 2 -1

Let H C F*, we will prove that d(H) < d(F*) as follows. If H ¢ F*[V(H)],
then d(H) < d(F*[V(H)]), so it leaves the case H = F*[V(H))], that
is, H is a subgraph of F* by removing some vertices from F™. Suppose
that H is obtained by removing the outer vertices set AV,,; in z outer
copies of Ci, and inner vertices set AV;, of the inner copy of Ck, that is
H = F*\ (AVoy U AV;,), where [|AVouwe|/(v(C1) — 2)] £ = < €(Ck).

If we remove p; vertices in the i-th outer copy of C}, then at least p; + 1
edges are deleted. So at least ) ;_;(p; + 1) = |AV,ue| + z outer edges in
total are deleted. Note that each inner vertex is incident to two edges in
the inner copy of Cj. and two edges in the outer copy of C;. If we remove
|AV;,| inner vertices, at least |AV;,| inner edges are deleted. If there are
just |AV,,| edges are deleted (that is, all inner vertices are removed), then
H is the set of some paths and d(H) < 1 < d(F*). Hence we only consider
that at least |AV;,| + 1 edges are deleted, there are two subcases.

Case 1. |AVip| < z, that is [AV;,|/z < 1. We have

e(H) _ e(F*) = (|AVour U AVin| + 2 +1)
WH) ST o) - [AVer UAVM]

d(F") = d(Cx,C1) =

d(H) =

Note that |AVin| < z and = > |AVpye|/(l — 2), which implies that [ —2 >
lAv:)utl/xr then

|AVour UAVin| +2 41 _ 1+1/x
[AVoue U AV, | [AVoyel/z + |AVin|/z
1+1/z 1 e(F*)
> —_—
It Ty avals =T T uEy
that is,

|AVput UAVin| +z+1 _ e(F*)
AVous UAVi] = o(F*)
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By Proposition 1(a), we have

e(F*) — (|AVu UAV, |+ 2+ 1) < e(F*)
V(F*) = |AVpue UAV,,| = u(F*)’
Case 2.. |AV;,| > z. Note that there are at least |AV;,| — = + 1 inner
vertices in AV;, incident to the outer edges which do not belong to these z

outer C;. So at least |AV;,| — z + 1 outer edges are deleted after removing
|AVous UAV;p| + z + 1 edges as in Case 1. Thus we have

e(H) _ e(F*) — (|AVout UAVin| + 2+ 1+ (|AVin| —z +1)
o(H) = V(F*) — [AVpuz U AVin] :

Note that |[AV;,| > z and z > |AV,y:|/({ — 2), which implies that { — 2 >
|AVoue|/z, and hence we have

[AVout UAVin| + 2+ 1+ (JAVin| =z + 1) 14 AVl +2
|Avout U Avml IA‘,outI + |AVzn'
|AV;nl/z + 2/
(1-2)+|AVin|/z
14 (|AVip| —z +2)/z
(1-1)+ (JAVin| = 2)/=

(3.1)

d(H) =

>1+

sog (AVin| =z +2)/2

Since 1/(I-1) <1 > 1, by Proposition 1(b),

(I1AVin| —2)/z
14+ (|AVin| =z +2)/x 1 e(F")
> =
T F BVl —os 2 ST T W
that is, 12VeutVAVial ot LAV -241) > oE). By Proposition 1(a),
e(F*) — (|AVout UAVin| + z+1 + (|AVin| — 2+ 1)) < 8F) (3.2)

V(F*) — |AVoy U AV = w(F*)’ )
By (3.1) and (3.2), d(H) < d(F*). Hence m(F*) = d(F*), and the lemma
follows. O

For a graph F € F(Ci,C)), k > | > 3, we will show that if its outer
copies are overlapped, then it is at least as dense as F™.

Lemma 2. For F € F(Cy,Ci), k 21 > 3, we have
d(F) > m(F*).

Proof. Since d(F*) = m(F*) by Lemma 1, it is sufficient to prove
d(F) 2 d(F*). Some auxiliary notation is introduced as follows. For each
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inner edge of F', we can find the only outer copy of C; corresponding to it,
and we can assume that the inner edges are f; = v;_jv; for 2 <7 < k and
f1 = vv;. Denote the outer C; corresponding to f; by C',’ (1 £ i < k). Take
the graph shown in Figure 2 as an example, C"} = VgUsUq¥y, C,f = VU U2V?,
C3 = vauavsvs, Cf = vauavivg, C§ = vqusuqvs and C§ = vsuqusvs.

Figure 2: A graph in F(Cs,Cy). Note that the inner vertex v; also serves
as an outer vertex in the outer copy associated with edge fy4.

Recall that D(f;) is the edge set of the outer edges of Cf, and U(f:)
is its outer vertex set. Note that each outer copy of C; contains two inner
vertices. For each f;, we define

8 =p(n (U, 05).
Al =U(f)N (UJ.(iU(fj) U {vy,.. -,Ui—z:”k})’
'i,, :=U(f,') N ({vi+1, ey Uk—l} \ Uj<iU(fj)) .

Intuitively, A% contains the edges overlapped when outer C} is merged with
the preceding outer copies C’,j (j < i), and A}, UAL, contains all the vertices
overlapped in this merge operation. A}, contains the vertices overlapped
by the preceding vertices of Clj (7 < %), some of which are possibly inner
vertices. The vertex set A}, is used to record the inner vertex of C} which
are overlapped by an outer vertex of C} for j > ¢ at the first time. In the
graph shown in Figure 2, the nonempty edge (vertex) sets are as follows:
A} = {vous}, A% = {veus, usug, uqus}; A} = {uz}, A} = {n},Ay =
{us}, A} = {us, us}; Ay = {va}, A} = {vs}.

We call an outer copy of C} full if |AL| =1—1 and |[A}|=1-2, that
is, it is merged entirely with the preceding outer copies. And we call an
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outer copy of C} trivial if |AL| = 0 and |A}/| = 0, that is, it is independent
from the precedlng outer copies. Otherwise, we call them non-trivial. In
the graph shown in Figure 2, C} and C? are trivial, C3,C} and C§ are
non-trivial, and C¥ is full. If an outer C} is non-trivial, we can easily prove
that |A%| < |AL |,andthen0<|A‘|<l— 1< Ay <1—-2. Let X;
and A; denote |A%| and |A},| respectively when Cj is full. Let Y; and B;
denote |A%| and |A},| respectively when Cj is not full Hence

d(F)= e(F‘)—IA l_'A |_ 'A I
v(F*) — (|Ay] + [AL]) = (1A% I+IA2'I)—- — (1A% +1AY.])
_ e(F*) ~ |AL| | A}l - ...~ |Ak|
u(F*) — |AY| - |A] - ... - Ay | Zi:l AL
= e(F*) — Z.-=1 Xi — Zi:l Y; (3.3)

v(F*) — Z:';l Ai - Z?=1 B; - Zf=1 IA{/J.

Case 1. Suppose that there does not exist any full C. Since |A%L|/|A}] <
1 < d(F*) (or |A%| = |A}| =0) and (3.3), we have

e(F*) =3t Y,

T S I S e
_ -3k 8
v(F*) - Z._l 1AV - Ei:l 1AV
, eF) = 3 1A
(P - T, A
> eg::; (by Proposition 1(a))

Hence we have d(F) > d(F*).
Case 2. Suppose that there exists a full C;. We will prove
Zf:l Xi + Ef=1 Y; e(F*) _ !
& ® k — < © . (3.4)
Zi:l Ai + Zi:l B; + 2;‘:1 |A§/'| U(F ) !
Assume that there exists a full C’," forl<ic< k Since all the outer edges
of C} are common, then v; must be in some A}, where j < i, hence
|AL < -1 1-1
|Ag,|+|AJ',|"l—2+1 -1

=1

Assuine that CF is full. Note that the edges of the first full C; are merged
with at least two preceding outer Cj, and thus at least one of the outer Cj,
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say CF, is non-trivial. If |AK| = 0, then |A¥| = 1, thus

ALl +|AE] 1-1+0 1-1
AL+ A% 1-2+1 7 1-1

=1.

If |A% .| > 1, then |AY| > |A% '| > 1, and by Proposition 1(a) we have

IA"I+IA'I (jakl+1) + (IA’°'I—1)<(1—1+1)_ !
AL+ [AE] T (A [+ D)+ (A1)~ (—2+1) I-

Hence we have
TiaXi+yia Y
Sie1 Ai+ Sisy B+ i 1AV
_ Dy it Xi + i i Yo+ A%+ |a%|
TSl At it Bt Tica 1AL+ 18] + 1A
Zz.—l ke Xi+ E._ Ligk Yit (Ia%] +1AED

(3.5)
(Zz—l.t#k’A + Zz-—l AL ) + 2.—1,;¢k' B; + (|A%] + |AY ')
Note that
k—1
i=1,igk!
El—l Sk A + Zt"‘ IA
Ek 1 , k-1
:—,t#k 1<101' Z Y, = Z B =0,
Et—l RE2 B i=1,i#k’ i=1,i#k’
1A% + 1A% | !
A5 +1A%] SToT
By Proposition 1(b), we have
i ean X+ Ty, s;ék'Yi'*'(lA | +1A%]) < !

(Ea— 1,5k’ A; + Ec— IA' 'I) + Z;—l RE2 4 B‘i + (IA I + lA I) =T

and together with (3.5), this implies (3.4). Hence by Proposition 1(a), (3.3)
and (3.4), we have

e(F* rx -y e(F* .
d(F) = — ( k)_1 2is o Z._l > EF'; = d(F*).
v(F*) - Zi:l Ai-X B Zi:l Ay v
Thus the lemma holds. o
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We conclude this section by giving the two colors version of Theorem
2.

Theorem 4. If S = {Ck, Ci} for k > I, then the online S-avoidance game
has a threshold Nyo(S,2,n) that satisfies

No(S,2,n) > nltt,

Proof. By Lemma 2, we have m(F) > d(F) > m(F*), thus n2~1/m(F*) <
n2-1/mE) 1f N « n2-1/™(F) then G(n,N) will a.a.s contain no copy of
F by Theorem 3. Hence G(n, N) contains no graph F' € F(Cy,C;) when
N « n2-V/m(F*) < n2-1/m(F) That is, Painter can color the graph for N
steps with a proper strategy in the S-avoidance game. Hence, by Lemma
1, we have No(8,2,n) > n2~V/mF") = nl+t where § = {Cy, C}. (u}

4. Proof of Theorem 2 for r Colors

First, we focus our attention on the asymmetric online game with three
colors, say yellow, red and blue, that is, the Painter avoids first F3 in
yellow, then F; in red, and eventually F} in blue. We call this strategy the
greedy (F3, F3, Fy)-avoidance strategy. By the same argument as before,
when the game is over, the board contains a red-blue copy of a member of
the family F(F}, F3), each edge of which completes an entirely yellow copy
of F3.

Let F(Fy, F3, F3) denote the class of all graphs that have an inner (blue-
red) copy of a graph of F(F}, Fz), each edge of which also completes an
outer (yellow) copy of F3. Similarly as in the case of two colors, the mem-
bers of the family F(Fy, F3, F3) are not associated with a coloring. For
example, a graph of F(Cs, Cy4, C3) is shown in Figure 3.

Figure 3: A graph in F(Cs,Cy, C3).

This motivates the following inductive definitions F(Fy,...,F,) and
d(Fy, F,. .., F,) for general .
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Definition 2. For any graphs F;, 1 <i <r, define F(Fy, F,,...,F,)

Fy r=1,
= ]:(FI’FZ) r=2,
{Fre F(F"~\,F,): F~le F(R”,F,,...,F,1)} r>3.

By the same argument as the case of three colors, if Painter uses the greedy
{F,...,F1)-avoidance strategy in the game with r colors, at the end of the
game the board will contain a copy of a graph in F(Fy, Fs...,F,.).

Definition 3. For any graphs F;, 1 <1i < r, define
e(Fy)
d(F1, Py, ..., Fy) = { V(Fr) o(F))
v(Fr)+1/m(Fy, Fs, ..., Fr ) -2

where m(Fl,Fz,. .. ,F,-._l) = H'c_?t?ix_, d(Fl,Fz,. .. ,Fr_z,H).

We briefly call m(F, Fs, ..., F;) the mazimum density of graphs in F(Fy,
F,...,F.).

Analogously to the distinguished graph F™* for two colors, let (F7)* be a
graph in F(Fi,..., F}) in which no outer copies overlap, and the inner copy
is (FT—1)*, its structure is shown in Figure 4. By a similar argument as in
the case of two colors, these graphs have exactly e((F™!)*)(v(F;) — 2) +
v((FT=1)*) vertices and e((F™~')*)(e(F;) — 1) +e((F™~")") = e((F™")")
e(F;) edges. Hence we have

o () e((F™1)*)e(F,)
UEY) = (@) ~(E ) ) - 2) + o(F1))
e(Fr)

Tu(F) + Ld((FrT)) — 2

In the following lemma, we state that the maximum density of graphs
in F(Ck,,Ck,,...,Ck,) are no more than my(Cx, ), where the outer cycle
Cl, is the smallest one.

Lemma 3. m(Cy,,Chk,,...,Ck,.) < mo(Ck,) forky 2 ks 2 ... 2 ky.

Proof. We prove the lemma by induction.

(1) For r = 2, since cycles are 1-balanced graphs, we have

_ ks _ ke
- k2 + m(C,) — 2 T ky—1

m(Ckl ’ Ckz) = d(Ckl ’ Ckz)
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by equality (2.1). Hence

k ko —1
< —_—
l—kz 2

m(Ckx ’ Ckz) = = mz(Ck,).

(2) Suppose that m(Cx,, Ck,,...,Ck,_,) £ m2(Ck,_,) for r > 3. We will
show that m(Cy,,Ck,,...,Ck,.) < ma(Ck,). Let H C Cj,_, by Definition 3,

e(H)
max 7 1 '
HeCw v(H) + o o2

m(Ckl, Ckyy.oeyCk,) =

. e(H)-1 e(H)
Q)= <
Since my(Ck,) > WH) =2’ we have Hnéaéaf, W+ = 2
e(H) . By the hypothesis
HCCI‘,. 1:;2” kl +m c"l kg kep—1 y yp '
e(H) < e(H)

max ax .
HCC,, e(H)-1 1 HCC,, e(H)=1 1
= m2(Ck,.) + mMm(Cry,CrgreresChy1) " m3(Ck, mzick,_lj

Since cycles are 1-balanced graphs and k._; > k.,

kr1—1 k-1
<
kr1—2 7 k-2

ma(Cy,_,) = = m2(C,)

and

e e(H)

max nax = mz(Ck ),
HCCk, e(H —l + =~ HCC.. £ H)-1 + 1 r
b 7—5 - ™

r—1 m3(Ch,. m3(Ck,)

that is, m(Ck,, Ck,, ..., Ck,) < ma(Ck,). This complete the induction step,
and the proof is complete. a

With Lemma 3 at hand, it is easy to prove the following equality, whlch
will be used in the proof of Lemma 5 and Theorem 2.

Lemma "1. m(C’k, ,Ckz, ey Ck,) = d(Ck‘ s Ckz? ooy Ck.-)~
Proof. Let H C Cj,, then
e(Ck,) — e(H)
(v(C )+ 1 - 2) - (U(H) + 1 - z)
ke) T m{Cry CrgriiCrry) ™{Cr;CrgroiChrq)

_ &Cx) —e(H) _ (e(Ch,)—1) = (e(H) = 1) 4.1)
v(Cr.) —v(H)  (v(Ck.)-2) - (v(H) -2) '
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Since cycles are 2-balanced graphs,
e(Ck,) -1
v(Ck,) — 2

By Proposition 1(a),
(e(Cr) —1) —(e(H) —1) _ €(C,) 1
(v(Ck,) —2) — (v(H) —2) ~ v(Ck,) — 2

By Lemma 3, m(Ck,, Ck,,-..,Ck,.) < ma(Ck,). Then by (4.1),

e(Ck,) —e(H)

(”(Ckr) + =ey, ,c,,:,...,c,,,_,) - 2) - (”(H )+ m(ck,,c.,: G 2)

&(Ck,)
1 ]
v(Ck') + m(ckl 'Ckz v"-yck,._l) - 2

e(H)-1

= mz(Ck,) 2 wH) =3

= mz(Ck,).

2 m2(Ck,-) Z m(ckn Ckza oo ,Ck,-) =

hence
e(Ck,) > e(H)
= 1 y
v(Ck,) + m(Ck,,Cx 1,...,c,‘ I 2 " u(H)+ mM(Cry,Chyse-sChk,._,) -2
1 2 r—1 1 2 r=1

that is, d(Ck,,Ckyy--+,Ck,_;,Ck,) 2 d(Cky»Ckyy -+, Ck,_y» H). By Defi-
nition 3, we have m(Ck,,Ck,,...,Ck,) = d(Ck;,Ckyy . . ., Ck,)- O

The following lemma is a generalization of Lemma 1.

Lemma 5. If F;, = Ci, for 1 <i <randky > kp > ... 2 ky, then
m((Fr)‘) = d((F")’) = d(Ckanz’ (R ,Ck,-)~

Proof. We prove it by induction.

(1) For r = 2, by Lemma 1, we have m({F?)*) = d((F2)*) = d(Ck,,Ck, ).
(2) Suppose that m((F™=1)*) = d((F™1)*) = d(Ciky)Cks»--++Ck..,) for
r > 3. We will show that m((F")*) = d((F")*) = d(Ciy,Chy- - -» C. ).

First we will prove that d((F7)*) = d(Ck,,Ck,,.-.,Ck,). Note that
e((F7)*) = e(Ck,)e((Fr1)*) and v((F")*) = e((F™~1)*)(v(Ck,) — 2) +
v((Fr=1)*). Hence

e(Cr)e((FT1)*)

e((Fr=1)*)(v(Ck,) — 2) + v((Fr-1)*)’
By the hypothesis and Lemma 4, we have d((F™~!)*) = d(Ck,,Ck;,---,
Ckr—l) = m(Ck,,Ck,, ceny Cqu)’ thus

(T e(Cr.)

AE)) =G+ 1/(d((F'-1)*) =2
_ e(Cx,)
_’U(Ck,,) +1/m(Ck,,Cryy. .., Ck,_,) — 2’

d((F7)*) =
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and by Definition 3, we have
d((F")*) =d(Ck,,Chky,- - - Ck,)- (4.2)

Now, we will prove that m((F")*) = d((F)*). Let AVyy (AEou:)
denote the vertex (edge) set that is removed from the outer Ci_ of (F7)*,
and AV, (AE;,) denote the vertex (edge) set that is removed V((Fr-1)*)
of (F7)*. Note that (F"=1)* is the graph obtained by removing all the
outer vertices and edges from (F")*. We define the graphs as follows,

Hous = (V((F")") \ AVoue, E(F)") \ AEout),
H := (V((F7)*)\ (AVout U AVin), E((F7)*) \ (AEout U AE;)).

The structures of (F")*, HZ,, and H” are shown in Figure 4. We approach

{w} fui} \ AVous )\ AVou

(p--l). I::

e ~

........

Figure 4: The structures of (F")* H},, and H".

(Fr)* and HJ,, similarly as F* and H in the proof of Lemma 1. By
arguments similar to the proof of Lemma 1, we can prove that d((F")*) >
d(H;,,) and d(H},,) > d(H"). Hence d((F")*) > d(H"), which implies
that m((F")*) = d((F7)*). Together with (4.2), the proof is complete. O

The following lemma is a generalization of Lemma 2, and the techniques
used in the proof is similar to that of Lemma 2.

Lemma 6. For each F™ € F(Ck,,Ck;,...,Ck,), whereky > ko > ... > ky,
we have d(F") > m((FT)*).

Proof. We will prove the lemma by induction.

(1) For r = 2, by Lemma 2, we have d(F?) > m((F?)*).

(2) Suppose that d(F™!) > m((F™"!)*). We will show that d(F") >
m((FT)*).

Let Fy,, € F(Ck,,Cky,...,Ck,) be the graph to which no outer edges
of C, are merged, and F™~! € F(Ck,,Ch;,...,Ck,_,) be the inner copy
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of F},,. We first prove that d(F7,,) > m((F")*). Note that

d(FT.) = e(Fr=1) + (k, — 1)e(F™1) _ k,
outl ™ o(Fr=1) + (k. — 2)e(F™=1) ~ k, +1/d(F™-1) -2

and

(4.3)

e((Fr=1)*) + (ky = De((Fr=1)*) _ kr
o(FT1)) + (ks — 2)e((FT-1)7) ~ kr + 1/d((F 1)) — 2

By induction, we have d(F™=1) > m((F™1)*) > d((F™1)*), hence d(FT,,)
> d((FT)*). Since d((F7)*) = m((F)*) by Lemma 5, it follows that
d(Fz,.) 2 m((F")*).

Next, we will prove d(F") > d(F7,,). Note that F" and F,, have the
same inner subgraph F7—!. It is different that F* maybe has the outer Cy,
whose vertices and edges are overlapped. We divide the edges of F™~! into
several sets as follows. First, we consider the edge set of the inner Cj, of

F2, then we consider the outer edges of F* for 2 < i < r — 1. Denote

E' = E(F') = E(Ck,),
E'=E(F)\E(F"'), 2<i<r-1,

d((F7)") =

then U1<,<r_1 Ei = E(Fr1). Analogously to Lemma 2, we will assign
a partial order on the edges of E* (if an edge is common, we only record
it at the first time). We define A}/, A}’ and A} for each outer C’"’
corresponding to E' for 1 < j < |E'|, smula.rly to AL, A} and A}, in
Lemma 2. Then the inequality

1E:l | Adsd
SEIAY &

AT &) < -1

, 1<i<r-1 (44)

holds. Let F{ i} denote a graph in which the outer Cg, corresponding to
E* do not overlap, then FT, (E1,B2,... Er-1) = F7,,. We obtain

e(Figy) — sialay
UFlgy) — Zhl(1AV | + [A4)
e(Fipnn) = T2 18K - T3 1AF|
 W(FTp gy — She (1A + 1AV - ThE (8% ]+ 1a%)

d(F") =

j=1

e(F e, p2,. JEe-1}) — Z.—-l EE‘I AZ])
W, ..5mm) = Dici (Lye (87| +1A321)
{
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__ elFr) - T (S AR
v(F;ua - YN EE AV + 1Ak’

by using a similar method as in Lemma 2. By (4.3), we have d(FJ,,) >
k. /(ky — 1). By Proposition 1(a) with (4.4) and (4.5), it follows

(4.5)

o elFr) - T 1A e(Fr,)
) - z I CENIAY + [AT)) = ) o
Hence d(F7) > d(F7,,) = m((F7)*). o

More generally, the statement of Lemma 6 is essentially that members
of the family F(Cx,,Ck,, . .., Ck,) that contain overlapped edges (vertices)
are at least as dense as (F7)*.

By Lemmas 4-6, we can finish the proof of Theorem 2.

Proof of Theorem 2. By Lemma 6, m(F") > d(F") > m((F")*),
thus n2-V/m(F)") < p2-1/m(F7) . If N & n?-1/m(F") then G(n,N)
a.a.s contains no copy of F* by Theorem 3. Hence G(n, N) a.a.s con-
tains no graph F" € F(Ci,,Ck,,...,Ck,) When N & n2-1/m((F7)) <

n2=1/m(F")  That is, Painter can color the graph within N steps with a
proper strategy in the S-avoidance game. Hence, by Lemma 5, we have
No(S,r,n) > n2—1/m((F7)%) = p2-1/d((F7)*) = p2-1/d(Ck,,Ci,,-. ,Ck,) where

S = {Cx,,Ck,,-..,Ck.}. Finally, we will show

r
i1 Ki
d(ck]7Ck27--o,Ckp) = z;‘ l(k HZ)II-Ii—l k +2

If r = 2, then the theorem follows directly by Theorem 4. If r > 3, then
by induction

kr
d(Ck,,Cryy...,Ck,.) =
(Cri:Cry k) kr + 1/m(Cik,,Chy,--+,Ch_,) — 2
LegA kr

kr +1/d(Cr,,Ciyy...,Ck,_,) — 2

Ind. ky
L= {CEDN =T

" ITiss ks
= H’i.=l k‘
ici(ki =2 [0 ki +2
This completes the proof. o
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