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Abstract

In this paper, we briefly survey Euler works on identities in con-
nection with his famous Pentagonal Number Theorem. We state a
partial generalization of his theorem for partitions with no part ex-
ceeding an identified value k, along with some.identities which link
total partitions to partitions with distinct parts under the above
constraint. We find both recurrence formulae and explicit forms for
An(m), where A, (m) is the number of partitions of m into an even
number of distinct parts not exceeding n, minus the number of par-
titions of » into an odd number of distinct parts not exceeding n. In
fact, Euler’s Pentagonal Number Theorem asserts that for m < n,
A, (m) equals to £1 if m is a Pentagonal Number and is zero other-
wise. Finally, we find two identities about the sum of bounded part
partitions and their connection to prime factors of the bound integer.

1 Notations

We denote by P(n) the number of partitions of n into summands where
the summand order is unimportant; Py(n) the number of partitions of n
into at most k parts, or by conjugation the number of partitions of = into
addends not exceeding k. Q(n) denotes the number of partitions of # into
distinct parts and Qi (n) the number of partitions of n into distinct addends
not exceeding k.
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2 Introduction

From a well known identity due to Euler, we know that

> P =] = - 1)
n=0

n=1

Euler empirically discovered that he could expand [];>, (1 — g") as a power

series:
o0 o0

[Ta-a= > (-1)rgrtr-vr2, (2)

n=l n=—00

Many years later he managed to provide a proof of this identity. This
formula is now known as Euler’s Pentagonal Number Theorem. Like Euler
did we could write that

i (_l)nqn(3n—l)/2ip(n)qn =1.

n=-—00 n=0

Comparing the coefficients of g™ on both sides of this last identity, we find
the following recurrence relation in P(n): P(0) =1, and

P(n) - P(n—1)=P(n—2)+P(n=5+P(n=T)—---=0,n>0. (3)

Up to now, several recurrence equations has been found for P(n); but
no one has ever found a more efficient algorithm for computing P(n). It
computes a full table of values of P(n) for n < N in time O(N%/2). The
interested reader is referred to study (Skiena (5], p.77) and (Berndt [2],
p.108) for the proofs of the two following recurrence equations in P(n). (In
the latter equation o,(n) is the divisor function.)

(- L= i
> (-pkp (n — 5hk(3k + 1)) =0,
k=[ - YEEELEL

n—1
P(n) = % S o1(n— k)P(K) .
k=0

The partition functions P(n) and Q(n) are closely connected together;

so they have entangled properties and studying one of them will result in
a better understanding of the other one. Among several equations which
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link P(n) to Q(n), we mention a few. A straight equation could be drawn
from equation (1). We could write that

ﬁl 1 [Ty (1+q™)

-q" B ?.o=1(1 —-q?")

which leads us to the following identity:

D P(r)g" =) P(K)¢™ ) Q(m)q™ .

n=0 k=0 m=0

Comparing the coefficients of q® at both sides, we acquire a recurrence
identity:
L]
P(n) =) _Q(n —2k)P(k),

. k=0
relating P(n) to Q(n).

There is another interesting equation which links partitions of an inte-
ger n into exactly k parts to partitions of n into exactly k distinct parts
(Comtet [4], p.116). Let P(n,k) and Q(n,k) denote the number of ways of
partitioning » into exactly k parts and exactly & distinct parts, respectively.
To each partition 1 + o + -+ -+ of n — (';), where z1 > 23 > -+ > Tk,
we could correspond the partition z; + (k—1)+z2+ (k—2)+---+zx of n
and vice versa. So there is a one to one correspondence between the sets of
partitions of n — (£) into exactly k parts, and partitions of n into exactly
k distinct parts and we find that

Q(n, k) = P(n— ('2“),1;) .

3 New equations and Euler’s Pentagonal Num-
ber Theorem for bounded part partitions

If we consider finite products in equation (1), by a similar argument we
could find the following recurrence identity:
L2l
Pi(n) = Qu(n — 20)Pe(i) .

i=0
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Now let us focus on the finite product case to find another identity which
gives us Qr(n) in terms of Pi(n). Using equation (1) we have

- 14 k = H;::l(l_q2k)
kl;Il( ¢¥) = =l 2

[Tk=a(1-¢%)
= > Pu(m)g™ [J(1-¢*) .
m=0 k=1

We write that

n

]
[T -¢*) =) An(m)¢®™, where 6 =

k=1 m=0

n(n+1)
2

to rewrite the above equation as

n oo 9
[[a+¢) =3 Pa(m)g™ Y An(m)g®™ .

k=1 m=0 m=0

Comparing the coefficients of ¢™ at both sides, we have two recurrence
identities:

13!
Qn(m) = Y An(i)Pa(m — 2i), where 1 <m <, (4)
i=0
and
13
> An(i)Pa(m — 2i) = 0, where § <m . (5)
i=0

(we assume that A, (7) =0 for i > 0.)

It could be verified that Ag(n) = Qk.e(n) — Qk,o(n); where Q () and
Qk,0o(n) are the numbers of partitions of n into an even and odd number of
distinct parts not exceeding k, respectively.

Now we state Euler’s Pentagonal Number Theorem formally. Let A(n) =
Qe(n) — Qo(n), i.e. the number of partitions of n into an even number of
distinct parts minus the number of partitions of n into an odd number of
distinct parts. Then we have

= { D p=

0, otherwise
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Remark 3.1 If k& > n, obviously we have Py(n) = P(n), Ar(n) = A(n),
Qr(n) = @(n). In (4) let m = n to find that

13
Q(m) =) A(i)P(m — 2i) .

i=0
Example
5
Q(10) =) A(3)P.(10-2i) = P(10) +(~1)'P(8) + (~1)' P(6) —0+0+1.
=0
Remark 3.2 In (5) let m = 26 to find the following identity:
)
D An(i)Pa(m —2)=0.
i=0

Now we find a kind of generalization for Euler’s Pentagonal Number
Theorem but before that, we have to state two lemmas:

Lemma 3.1 In the expansion of

[Ha-¢" =3 At
k=1 i=0
we have .
A, (" ; i —z’) = (=1)"An(i) .
Proof. Let

n
Pa(g)=JJ(1-¢".
k=1
By factoring —g* from each term of the right side product we will see that
'Iz iy
Pa(q) = (-1)"¢" 7" Pu(1/q) .

Comparing the coefficients of g™ at both sides gives us the result. 0O

Lemma 3.2 Assume that a is a nonnegative integer and let

v24a+1+1 v2da+1-1
=% | BT
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" and )
T(a) = 3 (DT + (-D%).
Then we have .
D A(k) =T(a) .
k=0
Proof. We have

a T . T2 .

AR =D (-1 + Y (1Y,
k=0 j=0 i=1

where T),T> are the greatest integers such that 7)(3T; — 1)/2 < @ and

T5(3T2 +1)/2 < a, respectively. The first sum equals to 1(1+ (~1)T) and

the second sum equals to §(—1+ (-1)"2). Calculating T}, T and adding

the two terms gives us the result. 0O

Recall that A, (m) equals to the difference between the number of par-
titions of m into even number of distinct parts not exceeding n, and odd
number of distinct parts not exceeding n; furthermore we assume that
T(a) = 0, whenever a < 0.

Theorem 3.1 (Partial generalization of Euler’s Theorem) Letm,n
be positive integers and n > 1. We have the equations

A(m)+T(m-n—-1), for0<m<2n
An(m) = {(—1)"{A (2 —m) +T (22 -m)}, forasm<b

where a = Q"'Dz(""2) b= n(n2+l)’

Proof. The theorem assertion is evident for m < n; hence assume that
m > n. Regarding the fact

n n—1
[Ta-=0a-[[-g
k=1 k=1

and comparing the coefficients of g™ at both sides, we have A,(m) =
Ap_1(m) — Ap—1(m — n). With the presumption n > (m + 1)/2 we have:

An(m) = On_y(m) — A(m —n)
= Ap_o(m)—-A(m—-n+1)—-A(m —n)

= Ajmpa)(m) - > Am-k).
k=242
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Now we let m = n to find Al%ﬂj (m):

Almgr)(m)=Am)+ Y A(m-k).
k=l mg2)

Obviously, for m = n we have A, (m) = A(m). If m > n it follows that

An(m) = A(m)+ Y A(m-—k)

k=n+1
m-n—1 m+1
= A(m) + Z A(k), where n > 5
k=0

Finally when we apply the above lemmas we find the result. 0O
Corollary 3.1 If we apply the constraints

0_<-m52n_1 or ﬂ:%ﬂs,vns.?%w’

then A, (m) takes the values 0,+1, £2.

The recurrence equation we applied in the above theorem, is in terms
of both m,n. It may be more suitable to have an equation in terms of
one variable. The following theorem gives us a recurrence equation in one
variable.

Theorem 3.2 Let 0,(m) denote sum of the divisors of an integer m that
are less than or equal to n. Then we have the following recurrence equation:

m-—1
An(m) = "115 3" Bn(k)on(m - k),
k=0

where 1 <m < n(n+1)/2.
Proof. We start from the following identity:

= 6 n(n+ 1)

H(l -gF) = ZAn(m)qm, where § = ———=,

£ 2
k=1 i=0

We consider g as a real variable with the condition |g| < 1. First take the

logarithm and then differentiate on both sides to find that

Z _qu—l — an:l mAﬂ(m)qm_l . (6)

1<k<n 1-g¢* an=o An(m)gm™
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We could rewrite the left hand side in the form of a power series as follows:

—kg*1 k kj
Z 1—g¢F Z Z—kq_l-q7

1<k<n 1<k<n j20

- 3 Tk,

1<k<n §>1

For an integer m > 0 and every 1 < k < n, the last sum produces the
term —kq™ whenever there is a positive integer j such that kj — 1 = m.
This means that the coefficient of ¢™ in the last sum equals gn(m + 1).
Hence we could write that

k k—1
> T ==Y onlm+ 1) (7)
1<k<n 9 m>0

Combine equations (6) and (7) to find that

9 9
Z mAn(m)g™ ! = — Z on(m+1)g™ Z Ap(m)g™

m=1 m2>0 m=0
Comparing the coefficients of ¢™ at both sides gives us the result. O
The generating function we found in equation (7), can be applied to find
an explicit formula for A, (m). The next theorem states this formula.

Theorem 3.8 Let m,n be positive integers and o,(r) denote sum of the
divisors of an integer r that are less than or equal to n. Then we have the
following identity:

n(Ti m), < m < Biin
S Gy [l o 1ems

k=1 7y, 21 =1
ritratetre=m

Proof. Let F(q) = Eme A, (m)g™, where 0 is just defined as in the above
theorem. From equations (6) and (7) it follows that

F'(q) _ m
W = -ng»()an(m+ 1)q

Note that the power series on the right hand side is uniformly convergent
for |g| < 1 — e. Remarking that F(0) = 0, integrate on both sides to find
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F(q):

k
_ op(m+1) ,. _ (‘ Yom21 1'énz‘l‘lm)
F(q) = exp ('— ’nXZ:O —m;—l—'q +1) = ,g) Kl . (8)

It is easily seen that the power series on the right hand side has the con-
ditions of term rearrangement. Thus for an integer m > 0 and every
0 < k £ m, the k-th term of the last sum produces the term

o (T)
(-1 H e
1,72, 721 i=1
ri+rototre=m
So the total coefficient of ¢™ in the last sum equals to

> Sy .

i
1 or2n 21 i=1
7‘1 +ratedrg=m

Comparing the coefficients of g™ at both sides of equation (8) concludes
the proof. O

4 Bounded partitions and prime factors

In the remainder of the paper we consider

nSn+1t

(~4:q)n = H(1+q")" D Qu(m)g™

m=0

and consider p as an odd prime factor of n. Let w be a primitive p-th root
of unity, i.e. w = cos(27/p) + isin (2m/p). Let Q(w) be the field extension
of w over Q. First we calculate the amount of (—w;w), in Q(w). We have

n/p
(i = T+t = (Tawwt))

k=0

Since w is a primitive root of unity we have

p—1
Pz)=2-1= H(z—-w"

k=0
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Let z = —1 in this equation to see that

p-1

[Ta+w¥)=2.

k=0

Therefore we have (—w;w), = 2™/7.

The polynomial
z(—z)- = 1+Z+22+-”+ZP—1
z—1
is a minimal polynomial for w over Q. So we conclude that the set
A= {l,w,w? b, wP?}

constitutes a Q-basis for Q(w) as a Q-vector space. Thus
(~wjw)y =27 =2"P.140-w+0-w?+.- 4+ 0-wP?

is the basis representation of (—w;w), in Q(w). On the other hand let us
assume that

n
(—wyw)n = H(l +wk) =ap +a1w+aw? + - +apywPt .
k=1

In fact we have expanded the product and reduced the powers modulo p.
It is clear that

Lo
;= Qn(kp+1i), where o; = |n(n+1)/2p —i/p) . (9)
k=0
The expansion above could be written in the form
(ap — a,,_l) -1+ (a1 - ap_l) ‘w+ (a2 — a,,_l) w4 (ap-z - ap_l) _.wp-2

as a representation over basis A. Since the representation over a basis is
unique, we have the following system of equations:

p-1
ap —ap—1 =27, @i—a,_1=0,1<i<p-2 and Zai=2"
i=0
which leads to the solution
n _ on/p gn _ 9n/p
ao=2"/"+—2—%-, a,~=——p—2——for1$i$p—1.

So we have the following result:
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Theorem 4.1 Let n be a positive integer and p an odd prime factor of it.
Then we have the followz'ng identities:

n/
S Qulkn) =22+ L2 S50 k) = 2T prigic,

k=0 k=0
where a; = |n(n+1)/2p — i/p).

4.1 Application

Case study 1. Let X = {1,2,3,--: ,n} and consider p as an odd prime
factor of n. We are interested in the number of subsets of X for which

sum of their members is congruent to ¢ modulo p. In fact Q. (%), Qn(p +
1), Qn(p+2i),- - - are equal to the number of subsets of X for which the sum

of their members are ¢,p + i,p + 2i,- - -, respectively. Looking at equation
(9) makes it clear that each a; in the expansion of

n
(~wyw)y = H(l +uw*)=ap+aw+ag?+ -+ ap_jw?!
k=1
describes the number of subsets of X for which the sum of their members
is congruent to ¢ modulo p. So if we denote sum of the members of § C X
by o(S), then we have

on/p 4 ___.2"—:"”', i=0

#{SCX:0(9) =1 (modp)}:{ n_on/p ) .
2+/, i#0

Case study 2. In the case X = {1,2,3,:-: ,n}, n = pt + 1 there would
be a similar argument for the coefficients a; of (—w;w),. But in this case
we have

p—1 t
(~wiw)n = (H(l +w")) (1+w) =20=1/p 4 on=D/py
k=0

So we have the following system of equations:

ap—ap_1 = 2("—1)/P’ a1~ apog = 2(n—l)/p’
a;i—ap_1=0,2<i<p-2 and Zai=2"
i=0

with solution

n — 9)2(n—1)/p n (n+p—-1)/p
a0=a1=2 +( :)2 s a,-=2—ﬂ;)—-—for2$i5p—1.
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And we conclude that

2" 4(p—2)2(n-ti/p
> ,1=0,1
#{SCX:0(S)=i (modp)}=
2“i2(":v—1)/p . i£0,1

Case study 3. In the case X = {1,2,3,:-- ,n}, n=pt — 1 we have

n ~1 t=1, 9
(-wiw)n = [T +o¥) = (i‘[(l +w’°)) h(l +wk) = 2(n-pHl/p
k=1

k=0 k=1
which by a similar argument finally gives us the following answer:
9(n—p+1)/p 4 _2"_—2_‘"_;"_“1’.':, i=0

#{SCX:0(S)=i¢ (modp)}=
on_o(n-p+1)/p .
==, i#0
Remark 4.1 The problem could be solved for the cases n = pt £+ (p — 1)/2
in a similar way.

Now let us introduce the notation P, x(m) which denotes the number
of partitions of m into at most n parts with differences at most k, i.e.
partitions like by +bo+- - -+b, of m where b; < b; 41, s < n, and b;41-b; < k.
By conjugation in the Ferrers diagram, P, x(m) also stands for the number
of partitions of m into parts for which each part has repeated at most &
times and no part is greater than n.

The generating function for such kind of partitions is
n k B
T(q) = ]I (Z Q") .
J=1 \i=0

We want to generalize Theorem (4.1), so let us assume that [ = ged(n, k) >
1, and p be a prime factor of . Let w = cos (2w/p) + isin (27/p) be the
root of unity. Then we have

n (k p=1/ k \"P
@ =] (Zw‘j) T (Zw") .
j=1 \i=0 Jj=0 \i=0

Terms of the product inside parenthesis are all one, except the first term
which is equal to (k 4 1)*/?. Therefore we have T(w) = (k + 1)™/P. Just
like Theorem (4.1) view it as a representation of T'(w) over the basis

A= {l,w,wz,wa,--- ,w”"z} .
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On the other hand calculate the product which T'(w) consists of, and reduce
the powers modulo p, i.e. write T'(w) = ao + a1w + agw? + - - + ap_ywP~ L.
A similar argument as in Theorem (4.1) leads us to the following equation:

(20=8p-1)+(a1—ap-1)w+(az—ap_1)w’+ - -+(@p_2—ap_1)wP ™% = (k+1)"/7.

Therefore we have the system of equations

, o1
ao—ap_y = (k+1)%, a;—ay_1=0,1<i<p-2 and Zai = (k+1)"
i=0
with solution
k n_ n/p
ao=(k+1)"/p+( il Ch 2V , and

P
o = (k+1)" — (k+1)™/P
P

fori<ig<p-1.

So we conclude that the following result holds.

Theorem 4.2 Let n,k be positive integers and let | = ged(n,k) > 1 and p
be a prime factor of l. Then we have the following identities:

(k+ 1" = (b + 1)/

[2d1)
> Parl(ip) = (k+ )P + , and
=0 p

& k4 1)" = (k+ 1)/P

> Pastip+i) = EELZEED por 1 i,

2

where o; = |kn(n + 1)/2p — i/p).

5 Concluding Remarks

If we use the notations P}(n) and Qf(n) for the partitions of n into
exactly k parts and into exactly k distinct parts, the relation between P (n)
and Qj(n) to Py(n) and Qi(n) is P (n) = Pi(n—k), Qi(n) = Qx—1(n—k).
So we may replace Py(n) and Qi(n) with P}(n) and Q}(n) to make new
identities.

Unfortunately the idea applied to derive the generalization we found
for Euler’s Pentagonal Number Theorem does not work without further
constraints. However, it would be possible to derive lower and upper bounds
from the recursive equations we had.
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In section (4), if we had considered a factor m of n that was not necessar-
ily prime, then we would have had to deal with the Cyclotomic Polynomial

e.x)= [T x-9),
¢evu;,

where U, is the subset of primitive n-th roots of unity in the set of complex
numbers. In this case there are difficulties with a basis representation; also
we have more variables than equations. However, it still is possible to derive
some new identities.
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