Super edge-magic total labeling of subdivided stars

K. Ali¹, M. Hussain¹, H. Shaker¹, M. Javaid²,*

Department of Mathematical Sciences, COMSATS Institute of Information Technology, Lahore, Pakistan {akashifali, mhmaths, hani.uet}@gmail.com

> ² Department of Mathematics, FAST (National University), Lahore, Pakistan javaidmath@yahoo.com

Abstract. An edge-magic total labeling of a graph G is a one-to-one map λ from $V(G) \cup E(G)$ onto the integers $\{1,2,\cdots,|V(G) \cup E(G)|\}$ with the property that, there is an integer constant c such that $\lambda(x) + \lambda(x,y) + \lambda(y) = c$ for any $(x,y) \in E(G)$. If $\lambda(V(G)) = \{1,2,\cdots,|V(G)\}$ then edge-magic total labeling is called super edge-magic total labeling. In this paper, we formulate super edge-magic total labeling on subdivision of stars $K_{1,p}$, for $p \geq 5$.

Keywords: Super edge-magic total labeling, subdivision of stars.

1 Introduction

All graphs in this paper are finite, simple, planar and undirected. The graph G has the vertex-set V(G) and edge-set E(G). A general reference for graph-theoretic ideas can be seen in [12].

A labeling (or valuation) of a graph is a map that carries graph elements to numbers (usually to positive or non-negative integers). In this paper, we focus on one type of labeling called edge-magic total labeling (EMTL). An edge-magic total labeling of a graph G is a one-to-one map λ from $V(G) \cup E(G)$ onto the integers $\{1, 2, \cdots, |V(G) \cup E(G)|\}$ with the property that, there is an integer constant c such that $\lambda(x) + \lambda(x, y) + \lambda(y) = c$ for any $(x, y) \in E(G)$. An edge-magic total labeling λ of graph G is called super edge-magic total labeling (SEMTL) if $\lambda(V(G)) = \{1, 2, \cdots, |V(G)\}$.

^{*} The research contents of this paper is a part of Ph.D thesis and is partially supported by the Higher Education Commission of Pakistan.

The subject of edge-magic total labeling of graphs has its origin in the work of Kotzig and Rosa [8,9], on what they called magic valuations of graphs. The notion of super edge-magic total labeling was introduced by Enomoto et al. in [3] and they proposed following conjecture:

Conjecture 1 [3] Every tree admits a super edge-magic total labeling.

In the effort of attacking this conjecture, many authors have considered super edge-magic total labeling for some particular classes of trees for example [1,6,11]. Lee and Shah [10] have verified this conjecture by a computer search for trees on at most 17 vertices. Earlier, in [8] Kotzig and Rosa proved that every caterpillar is super edge-magic total. However, conjecture 1 still remains open. A star is a particular type of tree. Super edge-magic total labeling for subdivision of star $K_{1,3}$ was studied by Baskoro et al. [2]. In [7] Javaid et al. furnished super edge-magic total labeling on subdivision of $K_{1,4}$ and w-tree. However, super edge-magic total labeling for subdivision of star $K_{1,p}$, for $p \geq 5$ is still open. In this paper we find super-edge magic total labelings on subdivision of star $K_{1,p}$, for $p \geq 5$.

In the following section we present super edge-magic total labelings on subdivision of $K_{1,p}$.

2 Main Results

r

For $n_i \geq 1$ and $p \geq 5$, let $G \cong T(n_1, n_2, ..., n_p)$ be a graph obtained by inserting $n_i - 1$ vertices to each of the i-th edge of the star $K_{1,p}$, where $1 \leq i \leq p$. Thus, the graph T(1, ..., 1) is a star $K_{1,p}$.

Before giving our main results, let us consider the following lemma found in [4] that gives a necessary and sufficient condition for a graph to be super edge-magic total.

Lemma 1. A graph G with v vertices and e edges is super edge-magic total if and only if there exists a bijective function $\lambda: V(G) \to \{1, 2, \dots, v\}$ such that the set $S = \{\lambda(x) + \lambda(y) | xy \in E(G)\}$ consists of e consecutive integers. In such a case, λ extends to a super edge-magic total labeling of G with magic constant a = v + e + s, where $s = \min(S)$ and

$$S = \{\lambda(x) + \lambda(y) | xy \in E(G)\}\$$

= \{a - (v + 1), a - (v + 2), \cdots, a - (v + e)\}.

Theorem 1. For any odd $n \ge 3$, $G \cong T(n, n, n-1, n, 2n-1)$ admits super edge-magic total labeling with magic constant a = 15n.

Proof.

Let us denote the vertices and edges of G, as follows:

$$V(G) = \{c\} \cup \{x_{ij} \ | \ 1 \leq i \leq 5 \ ; \ 1 \leq j \leq n_i\},$$

$$E(G) = \{c \ x_i \mid 1 \le i \le 5\} \cup \{x_{ij} x_{ij+1} \mid 1 \le i \le 5 \ ; \ 1 \le j \le n_i - 1\}.$$

If
$$v=|V(G)|$$
 and $e=|E(G)|$ then $v=6n-1$, $e=6n-2$.

Now, we define the labeling $\lambda: V \cup E \to \{1, 2, ..., v + e\}$ as follows:

$$\lambda(c)=4n+1.$$

For odd j,

$$\lambda(u) = \begin{cases} \frac{j+1}{2}, & \text{for } u = x_{1j} \\ n+1-\frac{j-1}{2}, & \text{for } u = x_{2j} \\ \frac{j+1}{2}+n+1, & \text{for } u = x_{3j} \\ \frac{n-j}{2}+\frac{3(n+1)}{2}, & \text{for } u = x_{4j} \\ \frac{2n-j-1}{2}+2(n+1), & \text{for } u = x_{5j} \end{cases}$$

For even j,

$$\lambda(u) = \begin{cases} \frac{j}{2} + 3n + 1, & \text{for } u = x_{1j} \\ \frac{n-j-1}{2} + 3n + 1 + \frac{n+1}{2}, & \text{for } u = x_{2j} \\ \frac{j}{2} + 4n + 1, & \text{for } u = x_{3j} \\ \frac{n-j-1}{2} + 4n + 1 + \frac{n+1}{2}, & \text{for } u = x_{4j} \\ \frac{2n-j-2}{2} + 5n + 1, & \text{for } u = x_{5j} \end{cases}$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $s=3n+3,3n+4,\cdots,8n+2$. Therefore, by Lemma 1 λ can be extended to a super edge-magic total labeling and we obtain the magic constant a=v+e+s=15n.

Theorem 2. For any odd $n \geq 3$, $G \cong T(n, n, n-1, n, 2n-1, 4n-3)$ admits super edge-magic total labeling with magic constant a = 25n-7.

Proof.

Let us denote the vertices and edges of G, as follows:

$$V(G) = \{c\} \cup \{x_{ij} \mid 1 \le i \le 6 \ ; \ 1 \le j \le n_i\},$$

$$E(G) = \{c \ x_i \mid 1 \le i \le 6\} \cup \{x_{ij}x_{ij+1} \mid 1 \le i \le 6 \ ; \ 1 \le j \le n_i - 1\}.$$

If v=|V(G)| and e=|E(G)| then

$$v=10n-4,$$

$$e=10n-5.$$

Now, we define the labeling $\lambda: V \cup E \rightarrow \{1, 2, ..., v + e\}$ as follows:

$$\lambda(c)=6n.$$

For odd j,

$$\lambda(u) = \begin{cases} \frac{j+1}{2}, & \text{for } u = x_{1j} \\ n+1-\frac{j-1}{2}, & \text{for } u = x_{2j} \\ \frac{j+1}{2}+n+1, & \text{for } u = x_{3j} \\ \frac{n-j}{2}+\frac{3(n+1)}{2}, & \text{for } u = x_{4j} \\ \frac{2n-j-1}{2}+2(n+1), & \text{for } u = x_{5j} \\ \frac{4n-j-3}{2}+3n+2, & \text{for } u = x_{6j} \end{cases}$$

For even j,

$$\lambda(u) = \begin{cases} \frac{j}{2} + 5n, & \text{for } u = x_{1j} \\ \frac{n-j-1}{2} + 5n + \frac{n+1}{2}, & \text{for } u = x_{2j} \\ \frac{j}{2} + 6n, & \text{for } u = x_{3j} \\ \frac{n-j-1}{2} + 6n + \frac{n+1}{2}, & \text{for } u = x_{4j} \\ \frac{2n-j-2}{2} + 7n, & \text{for } u = x_{5j} \\ \frac{4n-j-4}{2} + 8n - 1, & \text{for } u = x_{6j} \end{cases}$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $s = 5n + 2, 5n + 3, \dots, 11n + 1$. Therefore, by Lemma 1 λ can be extended to a super edge-magic total labeling and we obtain the magic constant a = v + e + s = 25n - 7.

Theorem 3. For any odd $n \geq 3$ and $p \geq 5$, $G \cong T(n, n, n-1, n, n_5, ..., n_p)$ admits super edge-magic total labeling, where $n_p = n + \frac{(n-1)(p-3)(p-4)}{2}$.

Proof.

Let us denote the vertices and edges of G, as follows:

$$V(G) = \{c\} \cup \{x_{ij} \mid 1 \le i \le p \; ; \; 1 \le j \le n_i\},$$

$$E(G) = \{c \ x_i \mid 1 \le i \le p\} \cup \{x_{ij}x_{ij+1} \mid 1 \le i \le p \ ; \ 1 \le j \le n_i - 1\}.$$

If v=|V(G)| and e=|E(G)| then

$$v = pn + (n-1) \sum_{i=1}^{p-4} i(p-i-3),$$

$$e = pn + (n-1)\sum_{i=1}^{p-4} i(p-i-3) - 1.$$

Now, we define the labeling $\lambda: V \cup E \to \{1, 2, ..., v + e\}$ as follows:

$$\lambda(c) = 3n + \frac{1}{2}[(p-4)(n+1) + (n-1)\sum_{i=1}^{p-4}i(p-i-3)] + 1.$$

For odd j,

$$\lambda(u) = \begin{cases} \frac{j+1}{2}, & \text{for } u = x_{1j} \\ n+1-\frac{j-1}{2}, & \text{for } u = x_{2j} \\ \\ \frac{j+1}{2}+n+1, & \text{for } u = x_{3j} \\ \\ \frac{n-j}{2}+\frac{3(n+1)}{2}, & \text{for } u = x_{4j} \end{cases}$$

For odd j and $5 \le k \le p$,

$$\lambda(x_{kj}) = \frac{n_k - j}{2} + 2(n+1) + \frac{1}{2}[(k-5)(n+1) + (n-1)\sum_{i=1}^{k-5} i(k-i-4)].$$

Let
$$\alpha = (2n+1) + \frac{1}{2}[(p-4)(n+1) + (n-1)\sum_{i=1}^{p-4}i(p-i-3)]$$
 and $n_k = n + \frac{(n-1)(k-3)(k-4)}{2}$.

For even j,

$$\lambda(u) = \begin{cases} \frac{j}{2} + \alpha, & \text{for } u = x_{1j} \\ \frac{n-j-1}{2} + \alpha + \frac{n+1}{2}, & \text{for } u = x_{2j} \\ \\ \frac{j}{2} + \alpha + n, & \text{for } u = x_{3j} \\ \\ \frac{n-j-1}{2} + \alpha + n + \frac{n+1}{2}, & \text{for } u = x_{4j}. \end{cases}$$

For even j and $5 \le k \le p$,

$$\lambda(x_{kj}) = \frac{n_k - 1 - j}{2} + 2n + \alpha + \frac{1}{2}[(k - 5)(n - 1) + (n - 1)\sum_{i=1}^{k-5} i(k - i - 4)].$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $s = \alpha + 2, \alpha + 3, \dots, \alpha + pn + 1$. Therefore, by Lemma

1 λ can be extended to a super edge-magic total labeling and we obtain the magic constant $a = v + e + s = \alpha + 2pn + 2(n-1)\sum_{i=1}^{p-4} i(p-i-3) + 1$. \square

3 Conclusion

In this paper, we have shown that a subclass of trees, namely subdivided stars $G \cong T(n, n, n-1, n, n_5, ..., n_p)$, admits super edge-magic total labeling only for odd $n, n_p = n + \frac{(n-1)(p-3)(p-4)}{2}$ and $p \ge 5$. For the remaining cases, problem is still open. Therefore, for further research we propose following open problems.

Open Problem 1 $G \cong T(n, n, ..., n)$ admits super edge-magic total labelings, for any positive integer $n \geq 3$.

Open Problem 2 For $n_i \geq 3$, $G \cong T(n_1, n_2, ..., n_p)$ is super edge-magic total labelings with $p \geq 5$ and $1 \leq i \leq p$.

References

- 1. A. Ahmad, K. Ali, and E. T. Baskoro, On super edge-magic total labeling of a forest of banana trees, *Utilitas Math.*, to appear.
- 2. E. T. Baskoro, A. A. G. Ngurah, and R. Simanjuntak, On (super) edge-magic total labeling of subdivision of $K_{1,3}$, SUT J. Math., 43 (2007), 127-136.
- H. Enomoto, A. S. Llado, T. Nakamigawa, and G. Ringle, Super edge-magic graphs, SUT J. Math., 34 (1980), 105-109.
- R. M. Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle, The place of super edge-magic labeling among other classes of labeling, *Discrete Math.*, 231 (2001), 153-168.
- 5. J. A. Gallian, A dynamic survey of graph labeling, J. Combin., January 2009.
- M. Hussain, E. T. Baskoro, and Slamin, On super edge-magic total labeling of banana trees, *Utilitas Math.*, 79 (2009), 243-251.
- M. Javaid, M. Hussain, K. Ali, and H. Shaker, Super edge-magic total labeling on subdivision of trees, *Utilitas Math.*, to appear.
- A. Kotzig, and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451-461.
- 9. A. Kotzig, and A. Rosa, Magic valuation of complete graphs, Centre de Recherches Mathematiques, Universite de Montreal, (1972), CRM-175.
- S. M. Lee, and Q. X. Shah, All trees with at most 17 vertices are super edgemagic, 16th MCCCC Conference, Carbondale, University Southern Illinois, November 2002.
- V. Swaminathan, and P. Jeyanthi, Super edge-magic strength of fire crackers, banana trees and unicyclic graphs, *Discrete Math.*, 306 (2006), 1624-1636.
- 12. D. B. West, An Introduction to Graph Theory (Prentice-Hall, 1996).