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Abstract

In this paper, we consider the problem of determining the structure of
a minimal critical set in a latin square L representing the elementary
abelian 2-group of order 8.
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1 Introduction

In recent years many researchers have dealt with the study of existence
and construction of critical sets which consist of the minimum amount
of information needed to recreate combinatorial structures uniquely (cf.
Nelder [11], Smetanuik [14], Curran and van Rees [3], Cooper, Donovan
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and Seberry [1], Cooper, McDonough and Mavron [2}, Donovan, Cooper,
Nott and Seberry [5], Donovan and Cooper [6], Fu, Fu and Rodger [8],
Donovan and Howse (7], Donovan [4], and SahaRay, Adhikari and Seberry
12, 13]). ‘

Despite more than 30 years of research, many gaps exist in the public
knowledge about critical sets in latin squares. There is not a lot known
about the critical sets in latin squares in general. Donovan [4] has provided
a reference list for the existence of critical sets in latin squares of order
less than or equal to 10 and exhibited a critical set from a latin square
of each order. Donovan, Cooper, Nott and Seberry [5] have dealt with
critical sets in some specific classes of latin squares. Among various types,
they considered the latin square L, representing an elementary abelian 2-
group C} of order n = 2" and obtained a lower bound on the size of the
critical set. In particular, they claimed that for a latin square representing
the elementary abelian 2-group of order 8, the lower bound on the size of
the critical set is 24. Khodkar [10] improved this lower bound to 25 and
presented a critical set of this size. The precise pattern of the critical set
is not discussed. In this paper, we further investigate this problem and
explicitly determine the unique structural form of a minimal critical set,
specifying the number of triples from each row of the latin square in the
set.

2 Preliminary Definitions and Notations

A latin square L of order n is an n X n array with entries chosen from a
set N of size n such that each element of N occurs precisely once in each
row and in each column. In what follows N is assumed to be {1,2,...,n}.
Following Donovan, Cooper, Nott and Seberry [5], we represent a latin
square L of order n by a set of ordered triples {(3, j; k)| element k occurs
in the position (4,7), ,j,k€ N}.

A partial latin square P of order n is an n x n array with entries chosen
from N such that each element of N occurs at most once in each row and in
each column of P. Then |P| is said to be the size of the partial latin square
and the set of positions Sp = {(%,7)| (¢,7:k) € P, 3 k € N} is said to
determine the shape of P. Let P and P’ be two partial latin squares of the
same order, with the same size and shape. Then P and P’ are said to be
mutually balanced if the entries in each row (and column) of P are the same
as those in the corresponding row (and column) of P’. They are said to be
disjoint if no position in P’ contains the same entry as the corresponding
position in P. A latin trade I is a partial latin square for which there exists
another partial latin square I’ of the same order, size and shape with the
property that I and I’ are disjoint and mutually balanced. Thus in L, if
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we replace I by I’, the properties of a latin square still hold.

If L contains a s x s subarray S and if S is a latin square of order s,
then we say that S is a latin subsquare of L. A cycle is a latin subsquare
of order 2, also known as an intercalate.

A uniquely completable set (UC set) U of triples is such that it yields
only one latin square L of order n which has element k in the position (%, 7)
for each (,7; k) € U.

Definition 2.1 A set C is said to be a critical set if
1. C is a UC set, and
2. no proper subset of C satisfies 1.

A minimal critical set is a critical set of the smallest possible size.

Let r; (c;) denote the row z (column z) of L, z = 1,2, ...,n. Following
the notation introduced in Donovan, Cooper, Nott and Seberry [5], let
C —r; (C — ¢;) denote a critical set with triples chosen from n — 1 rows
(columns), distinct from the row z (column z) of L.

We display below three latin squares L;, i = 1,2,3 of order 2* respec-
tively, representing the elementary abelian 2 group. Our discussion centers
around these special structured latin squares.
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In the following, we assume n = 8 and hence N = {1,2,...,8}. We denote
by IE¥, the cycle formed by the elements k and k' from the ith and i'th

rows of L3, where k,k',i,9 € N and &k # k' and i # i'. For example, for
i=1,=3,k=2and k' =4,

Ilzg = {(1! 2; 2)1 (11 4; 4)’ (3s 4; 2)’ (3: 2 4)}

The subsets of N, denoted by A; and 4; = N\4;,i=1,2,...,7, defined
below play a key role in our subsequent discussion, where

Ar={1,2,3,4}, A;={1,2,5,6}, As={1,2,7,8}, }
(2.1)

Ag= {1’31 5, 7}1 As = {1, 3,6, 8}» Ag = {1:4, 5’8} and
A7 ={1,4,6,7}.
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Corresponding to the subsets A; and A; of N, we define Sy, 4, to be a
latin subsquare of L3 formed by the rows r; and columns ¢, where z € 4;
and y € A;.

We now wish to draw the reader’s attention to the following remarks
which are crucial in the construction of a critical set in L.

Remark 2.2 There ezist precisely four cycles, corresponding to any two
rows of Lz. For e:cample, corresponding to the 1st and 3rd rows of L3, there
ezist four cycles I3, I3, I3], IS.

Remark 2.3 Corresponding to each A; as given in (2.1), i =1,2,...,7,
there ezist four latin subsquares Sa,a,, Sa,4,> SA,4, and 54, 4,, each iso-
morphic to L, embedded in L3.

To elucidate the structure of a minimal critical set in L3, we use below
some definitions and theorems from Donovan, Cooper, Nott and Seberry
[5] and Khodkar [10].

Definition 2.4 [5] Two latin squares L and M of order n are said to be
isotopic or equivalent if there ezists an ordered triple (o, 8,7) of permuta-
tions such that o, 8,7y map the rows, columns and elements respectively of
L onto M. That is, if (i,4; k) € L, then (ia, jB; ky) € M.

Isotopism of two critical sets A and B can be defined along the same line.

Theorem 2.5 [5] Let L be a latin square of order n with a critical set C.
Let (c, B,7) be an isotopism from the critical set C onto C. ThenC isa
critical set in a latin square L and L of order n is isotopic to L.

Theorem 2.6 [5] Let Ly be the latin square representing the elementary
Abelzan 2-gmup of order 22, Let C be a minimal critical set in Lo. Then
ICl=

Corollary 2.7 Any critical set in Ly must contain at least 5 triples chosen
from each of the four latin subsquares Sa,a,, Sa,A,» SA.a, and S, 4,, where
Ai,i=1,2,...,7 are as given in (2.1).

Theorem 2.8 [5] Let L, be a latin square representing the elementary
Abelian 2-group C3 of order n = 2¥. Let C —r; be a critical set in L,,.
Then |C — ] > 2v"1(2¥ — 1).

Theorem 2.9 [5] Let L be a latin square, C a critical set in L and S a
latin subsquare of order 2in L. Then [CN S| > 1.

Theorem 2.10 [10] Let L3 be a latin square representing the elementary
Abelian 2-group of order n = 23. Let A be a critical set in L3. Then
|A| > 25.

184



.3 Main Result:

Khodkar [10] obtained a minimal critical set of size 25 in L3. However,
the precise structural form of a minimal critical set has not been discussed
so far in the literature. In this section we determine the unique structural
form of the minimal critical set in L3 and in the process of construction,
an alternative proof to the lower bound on the size of the critical set is also
presented.

Theorem 3.1 Let C be a minimal critical set in Lz. Let n' = (ny,ng,...,
ng), where n; is the number of the triples from the ith row of L3 to be
included in C. Then n' = (3,2,4,4,3,3,3,3) up to some permutation.

Proof : It is to be noted that interchanging columns with rows or entries
with rows leaves the structure of L3 unaltered. Thus in view of the existence
of a minimal critical set of size 25, we assurne that the minimal critical set
in L3 contains at least one triple chosen from each row, each column and
each element of N, otherwise, by Theorem 2.8 the size of the minimal
critical set would be at least 28. We now discuss the structural form of
a minimal critical set C in Lz. In this connection, we define n; to be the
number of triples from the ith row of L3 in C, i = 1, 2,...,8. The different
possibilities of n; in C are dealt below.

Case (a): n; =1 for at least one i = 1,...,8.
Case (b): n; > 2, Vi=1,...,8 and n; = 2 for at least one 3.1
i=1,...,8. (3.1)

Case (c): n; 23 Vi=1,...,8.

Case (a):

Let n; = 1 and without loss of generality, we assume that from r; only
(1,1;1) € C. In view of Remark 2.2, there exist four disjoint cycles cor-
responding to r; and r;, | = 2,3,...,8 Hence using Theorem 2.9, it is
clear that each r;, | = 2,3,...,8 must contribute at least three triples to
C, one from each of the cycles other than that consisting of (1,1;1). Thus
considering the subsquares

1[2]3]4 5[6]7]8
2[1[4[3 6[5(8][7
Sam=3Ta[A]2]| M4 =[78]5]6]"
4[3[2]1 8[7[6]5

it follows that C' must contain at least two triples chosen from each of
the rows ro, 73 and 74 of S A, 4, to ensure inclusion of at least one triple
from each of the cycles I}$, Im, I7, 188, I8, IS]. Again from Corollary
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2.7, it follows that C must contain at least 5 triples from S, 4,. Thus as
n; = 1 and (1,1;1) € C, it follows that C must contain at least four triples
collectively from the rows ry, r3 and r4 of Sa,4, and by the pigeon hole
principle at least two triples from one of the rows, say ;. Hence combining
the triples from Sy, 4,, C must contain at least four triples from 7, and at
least three triples from each of the rows 73 and r4. Thus ny > 4, n3 >3
and n4 > 3. Similar arguments considering each pair of subsquares S4; 4,
and S, 4;» yield that n; > 4 for at least one ¢ in A; and ny 2 3,1 # 1,
i #1i,7 € Aj, j =4, 5, 6, 7. Hence the size of C attains the minimum
only if n; = 4 for exactly one i € A;, i # 1, j = 4, 5, 6, 7 leading to
the possibilities of either ng =ngy =4 orns =ng=4orny =ng =4 as
AN Ag = {1,3}, AgN Ay = {1,4}; AgNAg = {1,5}, AsNA; = {1,6};
AgN Az ={1,7} and A5 N Ag = {1,8}. Summing up the above arguments
it follows that under the assumption of n; = 1, |C| attains the minimum
only if one of the following cases hold.

Case(i): no=nzg=mng=4, ns=ng=ny=ng=3,
Case (ii) . Ny =TNg =Ng = 4, ng=mng4 =Ny =Ng = 3; (3.2)
Case (iit): no=ny=ng=4, ng=ng =ns =ng =3.

In each of these cases of (3.2), |C| =1+4-3+3-4 = 25. Without loss of

generality, we assume that Case(z) of (3.2) holds. As n; =1 and ns = 3,

in view of Theorem 2.9, considering four disjoint cycles formed by r; and

7s, it follows that C must contain exactly one triple from each of IS, I3
and I3, leading to eight possible choices of three triples from rs which can
be classified into essentially two distinct cases:

Case (1): three triples from 75 of S, 4, (54, 4,)
with no triples from 75 of Sz, 4, (54,4, ) (3.3)
Case (2): two triples from Sz 4,(54,4,) )
with one triple fromSy4, 4, (5S4, 4,)-

Under Case (1) of (3.3), satisfying the conditions n; = 1, np = n3 =
ng = 4, ng = ng = ny = ng = 3, we verified using computer search that
all feasible choices of a partial latin square of size 25 lead to more than
one completion of the latin square. Hence any partial latin square thus
formed is not uniquely completable and therefore is not a critical set. Un-
der Case (2) of (3.3), without loss of generality, we assume that (5,3;7),
(5,4;8) and (5,6;2) € C. Now considering all cycles arising from the rows
rs and g, it can be verified that at least one of (6,7;4) and (6,8;3) € C
and to satisfy ng = 3, there are only three possibilities of three triples
from 76, viz. {(6,7;4),(6,2;5),(6,3;8)} or {(6,8;3),(6,2;5),(6,4;7)} or
{(6,7;4),(6,8;3),(6,2;5)}. Assuming that {(6,7;4),(6,8;3),(6,2;5)} C C,
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with the given choices of triples in the rows r; and rs, it follows from Re-
mark 2.2 and Theorem 2.9, that the possible choices of triples in C must be
either {(7,2;8),(7,4;6),(7,5;3)} from r; combined with {(8, 3;6), (8, 5;4),
(8,7;2)} from rg or {(7,4;6),(7,5;3),(7,8;2)} from r; combined with
{(8,2;7),(8,3;6),(8,5;4)} from rg. For each of these choices, it is checked
that all the possibilities of four triples from r3 in C violate Corollary 2.7
as the requirement of at least five triples in C from the subsquare S4,4, is
not satisfied. Thus if {(6,7;4), (6,8;3),(6,2;5)} C C, there does not exist
any critical set C of size 25. A similar conclusion holds true if we assume
that {(6,7;4),(6,2;5),(6,3;8)} c C or {(6,8;3),(6,2;5),(6,4;7)} C C.
Using exhaustive computer search we arrive at the same conclusion under
Case (ii) and Case (iii) of (3.2).

Case (b):

Without loss of generality, we consider the case that C contains only (1,1;1)
and (1,2;2) from r; and at least two triples from every other row of Lz. In
view of Theorem 2.9, it follows that C contains at least three triples from
T to represent at least one triple from each of the cycles I35, IS and
I{8. Thus ny > 3. Moreover, considering cycles I3} and I{$, r3 should
contribute at least two triples from S, z,. Similarly, considering cycles
I$% and IP] formed by the rows r; and r4, C should have at least two
triples from r4 of S,, z,. Moreover, there should be at least one triple from
each of the cycles Iéj and I}? from Sa, 4, in C, which results in at least
six triples from the set of rows {r3, r4} in C. Similar arguments apply
to the set of rows {rs, 76} and also to the set of rows {r7, rg}. Thus
ng + ng > 6, ns + ng > 6 and ny + ng > 6. Hence, besides r; there can be
at most one row from each of the sets {rs, r4}, {rs, 76} and {r7, rs} with
exactly two triples in C. Let § € {0,1,2,3} be the number of rows beside
T1 contributing exactly two triples to C. In the following, starting with the
highest value of 4, we argue that |C| > 26, V6.

6=23:

Under this condition, one of the following eight cases must happen.

(%) n =n3g=ng=ny =2, (i) Ny =n3="ng ="nNsg =2,

() m1=n4=ns=nsg=2, () ni=ng=ng=ny=2, (3.4)
(v) mi=nz=ns=ng=2, (vi) ni=na=ng=nr=2, ’
(’01:1:) NI=N4=N5 =nN7= 2, (viiz') N =7N4="Ng =78 = 2.

Dealing with these cases of (3.4) one by one we find that under (z), there
are exactly eight triples in C from S4, 4, U S4,4, violating Corollary 2.7.
Similar arguments hold for (i) — (iv). Now dealing with (v), we proceed
sequentially to select triples from r3, rs and rg in order. It turns out
that for the choice of triples {(3,6;8), (3,7;5)} or {(3,5;7), (3,8;6)} from
3, the choice of two triples from 75 is fixed. Then every choice of two
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triples from rg violates Theorem 2.9. Each of the other possible choices
of two triples from r3 viz. {(3,8;6), (3,7;5)} and {(3,5;7), (3,6;8)} lead
to a valid choice of two triples from rg, which yields |C| > 26. We only
explain this situation assuming that {(3,8;6), (3,7;5)} C C. In this case,
there are fix choices of two triples from r5 and rg sequentially. Recall that
ng +ny4 > 6, ns + ng > 6 and ny + ng > 6. Thus the choice of eight triples
from 7, r3, rs and rg in order leads to ng > 4 and ny > 4. But all the
feasible choices satisfying ng = 4 (n7 = 4) violate Corollary 2.7 considering
Sagas O Sp. 4, (Saga, or Sa 4,)- Thus ng > 5 and n7 > 5 independently.
Again considering the cycles formed by 7, and r3, there should be at least
one triple from each of the cycles I23 and I}§ in C. Since n3 = 2, these
two triples must be from 72, leading to no > 4. Thus under Case (v), the
conditions that n; =2, np >4, n3+ny4 26, ns+ng>7andny+ng>7
must be satisfied leading to |[C| > 26. Similar arguments hold for Cases

(vi) — (viig).
6=2:

To begin with, let us assume that besides r; both r3 and rs, have two
triples in C, namely (3,5;7), (3,8;6) and hence (5,4;8), (5,7;3) € C.
Recall that ny > 3 considering the cycles formed by the rows 7, and r and
in view of the fact that only (1,1;1) and (1,2;2) € C. Again as n3 = 2 and
only (3,5;7) and (3,8;6) € C, the requirement of the representation of at
least one triple from each of the cycles IZ3 and I3} leads to ny > 4. Now
considering the two subsquares S4, 4, and S, 4,, it follows from Corollary
2.7 that C must contain at least 10 triples from the set of rows {ry,73,75,77}
i.e., n1 +ng+ns+ny > 10. This implies that n; > 4asn; = ng =ns = 2.
Now we consider the triples that need to be chosen from 75 in C. It follows
that at least one triple from each of the cycles I3, If§, 138, 128, I§] and
I} should be in C leading to ng > 4. Thus ny = 2, ny > 4, n3 +ny > 6,
ns + ng > 6 and ny + ng > 8, implying thereby that |C| > 26 and hence C
cannot be a minimal critical set.

d=1:

We assume that besides r; only r3 contributes exactly two triples to C,
whereas every other row contributes at least three triples to C. It can be
verified using Theorem 2.9 that the set of two triples from r3 can be one of
the following 4 choices viz. {(3,5;7), (3,8;6)}; {(3,5;7),(3,6;8)}; {(3,7;5),
(3,6;8)}; {(3,7;5),(3,8;6)}. We argue below assuming that {(3,5;7),
(3,8;6)} C C. The other choices can be dealt with similarly. As argued in
the previous paragraphs, in the case of inclusion of (1,1;1) and (1,2;2) in
C, n3g +n4 > 6, ng + ng > 6 and n7 + ng > 6 still hold. Moreover, ng = 2
with the given choices of triples forces ny > 4 considering cycles formed by
{r1,72} and {r2,73}. Similarly ns > 4 when cycles formed by {r;,r4} and
{r3,T4} are considered. Under the requirement of n; > 3, i € {5,6,7,8},

|C| can attain the minimum size of 25 only if n; = 3 for at least three
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i’s, i € {5,6,7,8}. Without loss of generality, we assume that ns = 3.
The consideration of cycles formed by the sets of rows {rs,r;} and {rs,r3}
separately, yields that there are in all eight choices of three triples from rs
as given below

G = {(51 6; 2)a (51 7 3)1 (51 8; 4)}) C = {(5n4; 8)) (5» 7; 3)3 (5, 8; 4)}7

Cs= {(5! 1;5)a (51 3; 7)1 (5, 4, 8)}’ Ci= {(5, 3; 7)’ (5a 4; 8): (51 7 3)}» (3 5)
Cs = {(5’1;5)1(5’4;8)’ (51 7;3)}1 Ce = {(5’4;8)’(5,5;1):(5: 7;3)}1 )
C; = {(5)4;8)7 (51 6; 2), (5a 7 3)}v Cs = {(5) 2;6)1 (5,4; 8)1 (5: 7; 3)}°

For each of the choices except the choice C; in (3.5) above, we sequen-
tially proceed to choose the minimum number of triples from 77, rg, 76, 74,72
in order. Using Corollary 2.7 or Theorem 2.9 depending on the situation
in each case, it turns out that [C| > 26. Our argument below explains this
fact corresponding to the choice of C; from r5. Under the given choices of
triples from 71,73 and 75, at least 4 triples from r7 must be chosen, as oth-
erwise, the choice of exactly three triples from 77 violates Corollary 2.7 with
respect to Sa,4,. Hence ny > 4. If ny > 5, then ny + ng > 8, which yields
|C| > 26. In the case of ny = 4, exhaustive computer search shows that,
either ng > 4 or ng > 4. In each of these cases ng+ng+n7+ng > 14 leading
to |C| > 26. Similar arguments hold true for other choices of C;,i # 1,2
from r5. For the choice of C; in r5, using Remark 2.7 it can be argued that
the size of C is at least 26 always, except when C consists of the triples
(1,1;1),(1,2;2) from ry; (3,5;7),(3,8;6) from r3; (5,4;8), (5,7;3), (5,8;4)
from rs; (7,3;5), (7,6;4), (7,7; 1) from r7; (8,2;7), (8,4; 5), (8, 6;3) from rg;
(6,1;6),(6,6;1), (6,7;4), (6,8;3) from rs; (4,2;3),(4,3;2),(4,4;8),(4,5;7)
from r4; and (2,2;2),(2,3;4),(2,5;6),(2,7;8) from ro. In this case of
IC| = 25, apparently there is no contradiction via Corollary 2.7 and/or
Theorem 2.9 as has been observed earlier, but interestingly, this particular
choice of C' can be completed to a Latin square L’ different from L3 as
displayed below, establishing that C is not even a UC.

1]2[3]6]4[8]7]5
2|(1|4[3(|6[5]8]7
3[4[8[1[7[2[5]6
oo [B[8[2[4[8]7[6[1
T [7I5[1[8]2][6[3]a
6[8[7[2][5(1[4]3
8657 [3[4[1]2
4[7][6|5]1(3][2]8

6=0:
Under this condition, C contains precisely two triples from exactly one
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row of L, and at least three triples from the remaining rows. In view of
Theorem 2.5, without loss of generality, we assume that (1,1;1), (1,2;2),
(1,3;3), (2,3;6) and (2,7;8) € C. Then considering the cycles formed by
the sets of rows {r3,r1}, {r3,r2}, {rs,71} and {rq,ro} separately , it turns
out that r3 and r4 should contribute at least 4 triples to C. Now under
these conditions, we searched for a critical set C with |C| = 25 and n' =
(3,2,4,4,3,3,3,3) . We present below one such critical set among many.

1123
6 8
3 1 8|5
3|2 817
¢ = 2|34
6 7 1
5|6 2
7 5|4

Case (c):

Under the condition that n; > 3,Vi = 1,...8, there can exist a critical
set C with |C| = 25, only if C contains exactly 3 triples from 7 rows and
exactly 4 triples from the remaining row of L3. In view of Theorem 2.5
without loss of generality we can assume that each of the rows ry,72,73,74
has three triples in C. Exhaustive computer search with all possible choices
of three triples from the first four rows of L3 reveals that this requires
choosing at least 4 triples from two of the remaining rows r;,7¢,77,7s,
increasing the size of the critical set to 26. Thus the minimum size of 25
for a critical set in L3 is attainable only when n’ = (3,2,4,4,3,3,3,3) up
to some permutation.
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