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Abstract

A fall k-coloring of a graph G is a proper k-coloring of G such
that each vertex of G sees all k£ colors on its closed neigh-
borhood. We denote Fall(G) the set of all positive integers
k for which G has a fall k-coloring. In this paper, we study
fall colorings of lexicographic product of graphs and categor-
ical product of graphs. Also, we show that for each graph
G, Fall(M(G)) = @ where M(G) is the Mycielskian of the
graph G. Finally, we prove that for each bipartite graph
G, Fall(G°) C {x(G°)} and it is polynomial time to decide
whether Fall(G°) = {x(G*°)} or not.

Keywords: fall coloring, lexicographic product, categorical
product.

Subject classification: 05C

1 Introduction

All graphs considered in this paper are finite and simple (undirected,
loopless and without multiple edges). Let G = (V, E) be a graph and
keNand [k] :={il]i €N, 1 <i<k}. A k-coloring (proper k-
coloring) of G is a function f : V — [k] such that for each i, 1 <
i < k, f71(4) is an independent set. We say that G is k-colorable
whenever G admits a k-coloring f, in this case, we denote f~1(i) by
V; and call it a color class (of f) corresponding to color i, 1 < i < k.
The minimum integer k for which G has a k-coloring, is called the
chromatic number of G and is denoted by x(G).

Let G be a graph, f be a k-coloring of G and v be a vertex of G.
The vertex v is called colorful (or color-dominating or 5-dominating)
if each color 1 < i < k appears on the closed neighborhood of v
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(f(N[v]) = [k]). The k-coloring f is said to be a fall k-coloring (of
G) if each vertex of G is colorful. There are graphs G for which G
has no fall k-coloring for any positive integer k. For example, Cs (a
cycle with 5 vertices) and every graph with at least one edge and
one isolated vertex, have no fall k-colorings for any positive integer
k. The notation Fall(G) stands for the set of all positive integers k
for which G has a fall k-coloring. Whenever Fall(G) # 0, we call
min(Fall(G)) and max(Fall(G)), fall chromatic number of G and fall
achromatic number of G and denote them by x;s(G) and ¥;(G),
respectively. The concept of fall coloring introduced in 20600 in [1].

2 Fall colorings of lexicographic product of
graphs

Let G and H be graphs. The lexicographic product of G and H, de-
noted by G[H], is defined the graph with vertex set V(G) x V(H) and
edge set {{(z1,1), (z2,¥2)}| 1,22 € V(G) and y1,y2 € V(H) and
[ {z1,72} € E(G)) or (z1 = z2,{y1,42} € E(H)) ]}. For each
z € V(G), the induced subgraph of G[H] on {z} x V(H) is denoted
by H;.

Note that G[H| and H|[G] are not necessarily isomorphic. For
example, let G := Ky and H be the complement of G. G[H] has 4
edges and H|G] has 2 edges and therefore, they are not isomorphic.
But lexicographic product of graphs is associative up to isomorphism
( For arbitrary graphs G1, G2 and G3, (G1[G2])[G3] and G1[G2[G3]|
are isomorphic. ).

Theorem 1. Let G and H be graphs and k € Fall(G[H]) and f be
a fall k-coloring of G[H]. Then, for each € V(G), Sy := f(V(Hz))
forms a fall |Sy|-coloring of H.

Proof. Let z € V(G) and (z,y) be an arbitrary vertex of H, and
its color be a. Then, for each 8 € S; \ {a}, there exists a vertex
(a,b) of G[H] adjacent with (z,y) which is colored 3. Obviously
a = x, otherwise, since 8 € S;, there exists a vertex (z,z) € V(H;)
colored B. (z,y) is adjacent with (a,b) and z # a, so {z,a} € E(G)
and therefore, (z,2) and (a,b) are adjacent in G[H] and both of
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them are colored 8, which is a contradiction. Therefore, @ = z and
(a,b) € V(H;). Hence, S, forms a fall |S;|-coloring of H,. ]

Corollary 1. Let G and H be graphs. If Fall(G[H]) # 0, then,
Fall(H) # 0.

Corollary 2. Let G and H be graphs such that Fall(G[H]) # 0.
Then, Fall(H) # 0 and for each fall k-coloring f of G[H] and each
z € V(G), xs(H) < |f(V(Ha))| < ¢7(H).

There are pairs of graphs (G, H) for which Fall(G) = 0 but
Fall(G[H]) # 9. For example, Fall(Cs) = @ but C5[K;] has a fall
5-coloring. First let’s label the vertices of Cs[K?2] lexicographically:
1:=(1,1), 2 :=(1,2), 3 := (2,1),..., 10 ;= (5,2). Hereis a
fall 5-coloring f of Cs[K2]: f(1) =1, f(2) =2, f(3) =3, f(4) =
1, f(5) =1, f(6) =5, f(7) =2, f(8) = 4, (9) = 5, F(10) = 3.
Also, there are pairs of graphs (G, H) for which Fall(G) = @ and
Fall(H) # § and Fall(G[H]) = 0. For example, Fall(Cs) = 0 and
Fall(K1) # 0 and Fall(Cs[K;]) = Fall(Cs) = @. The next theorem
shows that if Fall(G) # @ and Fall(H) # 0, then, Fall(G[H]) # 0.

Theorem 2. Let G and H be graphs for which Fall(G) # 0 and
Fall(H) # 0. Then, {33 k| s € FallG), Vi, 1<i<s: k €
Fall(H)} C Fall(G[H])).

Proof. Let s € Fall(G) and g : V(G) — [s] be a fall s-coloring of
G and for each 1 < ¢ < s, k; € Fall(H) and h; be a fall k;-coloring of
H. Let’s color each vertex (z,y) of G[H] by color (g(x), hy(z)(¥)). In-
deed, let’s consider the function f : V(G[H]) — S := {(g(x), hy(z)(¥))
| (z,¥) € V(G) x V(H)} which assigns to each (z,y) of G[H],
(9(z), hy(z)(y))- For each adjacent vertices (z,y) and (a,b) in G[H],
{z,a} € E(G) or (z = a and {y,b} € E(H)). So, g(z) # g(a) or
(9(z) = 9(a) and hyey(y) # hy(a)(8))- Therefore, (g(c), koie)(¥)) #
(9(a), hg(a)(b)). This shows that f is a (37, k:)-coloring of G[H]
such that uses exactly > ;_; k; colors. Now let’s show that f is a
fall (3_;.; k:)-coloring of G[H]. For each (z,y) € V(G[H]) and each
(a, B) € S\ {(9(z), hg(z)(¥))}, there is a vertex (u, v) of G[H] colored
(e, B), or equivalently, (g(u), hye)(v)) = (e, B). Now, there are two
cases:
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Case I) g(x) = g(u) : In this case, hy(z) = hg(y) and hy)(y) #
hg(u)(v). Since hy(y) is a fall ky(z)-coloring of H, there exists a vertex
z € V(H) such that {z,y} € E(H) and hg)(2z) = hgy)(v). The
vertex (z, z) of G[H] is adjacent with (z,y) and its color is f((z, 2)) =
(g(z):hg(:c) (z)) = (g(u)’hg(u)(v)) = (e, B).

Case II) g(z) # g(u) : Since g is a fall s-coloring of G, there
exists a vertex I € V(G) such that {z,l} € E(G) and g(l) = g(u).
So, hg(u)(v) = hgy(v). The vertex (I,v) is adjacent with (z,y) in
GLH] and £((1,0)) = (9(0), o (v)) = (9(w), hy(¥)) = (@, B).

Hence, f isafall (3_;_, ki)-coloring of G[H]. Therefore, {3°;_; ki
s € Fall(G), Vi, 1 <i < s: k; € Fall(H)} C Fall(G[H]). .

Corollary 3. Let G and H be graphs for which Fall(G) # 0 and
Fall(H) # 0. Then, x;(GlH]) < x/(G)xs(H) < $5(G)by(H) <
¥r(G[H)).

xf(G[H]) and x7(G)xs(H) are not necessarily equal. For exam-
ple, x7(Co) = 3 and xs(K32) = 2. Therefore, xs(Co)xs(K2) = 6, but
xf(Co[K2]) < 5, first let’s label the vertices of Cg[K3] lexicograph-
ically: 1:=(1,1), 2:=(1,2), 3:=(2,1), ..., 18:=(9,2). Here is a fall 5-
coloring f of Co[Ka: (1) =1, £(2) = 4, f(3) =2, f(4) =3, f(5) =
5, f(6) = 1, f(7) = 4, £(8) = 2, £(9) = 3, f(10) = 1, f(11) =
5, f(12) = 2, f(13) =4, f(14) = 3, f(15) = 1, f(16) =2, f(17) = 5
and f(18) = 3. Also, ¥;(G)¢s(H) and 9¢(G[H]) are not nec-
essarily equal. For example, ¥;(Cg) = 2 and 9;(K2) = 2 and
therefore, v7(Cg)¥s(K2) = 4. But 9y(Cs[K3]) > 5. First let’s
label the vertices of Cg[K3)] lexicographically: 1 := (1,1), 2 :=
1,2), 3 :=(2,1),..., 16 := (8,2). Here is a fall 5-coloring f of
Golio): f(1) =1, £(2) =2, £(3) =3, f(4) =4, f(5) =5, f(6) =
L f(7) =2 f(8) =3, f(9) =4, f(10) =1, f(11) =5, f(12) =
2, f(13) =3, f(14) =1, £(15) =5 and f(16) = 4.

Theorem 2 says that if G and H are graphs for which Fall(G) #
@ and Fall(H) # 0, Then, {37 _, k| s € Fall(G), Vi, 1 < i <
s: k; € Fall(H)} C Fall(G[H]). Since 5 € Fall(Cy[K3]) and 5 ¢
{31kl s € Fall(Cy), Vi, 1 < i< s: k; € Fall(K2)}, Fall(G[H])
and {3°7_, ki| s € Fall(G), Vi, 1 <i < s: k; € Fall(H)} are not
necessarily equal.

Theorem 3. There are pairs of graphs (G, H) for which Fall(G) #
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@ and Fall(H) # 0 and the following strictly inequalities hold.
xs(GlH]) < x5(G)xs(H) < ¥5(G)os(H) < ¢5(G[H]).

Proof. Let G := Cg\/Cs\/ Cy (the join of Cg and Cs and Cg)
and H := K». Since (Cs\/ Cs \/ Co)[K2] and (Cs[K2)) V(Cs[Ka]) V
(Co[K2]) are isomorphic, x((Ce V CsV Co)[Kz]) = x7(Co[K2]) +
x£(Cs[K2))+x7(Co[Ka]) < 4+4+5 = 13 and ¢7((Cs \/ Cs V Co)[K2))
= 9y (ColKa]) + ¥ (CalKa)) + 7 (Cola]) 2 6+ 5+6 = 17 . Also,
xf(CeVCs\/ Co) = 7 and ¥;(Ce V CsV/ Cy) = 8 and x;(K3) =
¥¢(K2) =2, as desired.

|

Theorem 4. For each € > 0, There exists a pair of graphs (S,T)
for which min{v¢(S[T]) — ¥5(S)¥s(T), ¥ (S)¥s(T) — xs(S)xs(T),
xs(8)xs(T) — x5(S[T]} 2 &.

Proof. With no loss of generality, we can assume that ¢ is a nat-
ural number. Let G := Cs\/Cs\/Cq and S := K.[G] and T :=
Kj. Since S[T] and K [G[T]] are isomorphic and xs(K.[G[T])) =
ex5(G[T]) and ¢ (K [G[T]]) = ey#(G[T]), the theorem implies. W

One can easily observe that if G and H are graphs such that
Fall(G[H]) # 0, then, xs(G[H]) 2 w(G)xs(H). The next clear
proposition introduces a sufficient condition for equality.

Proposition 1. Let G and H be graphs such that Fall(G) # 0 and
Fall(H) # 0 and x;(G) = w(G). Then, xs(G[H]) = xs(C)xs(H) =
w(G)xs(H).

Corollary 4. If G is a tree or a complete graph or Co (for

some k € N\ {1}) and H is a graph such that Fall(H) # 0, then,
x5 (GH]) = xs(G)xs(H) = w(G)xs(H).

Theorem 1 says that in every fall k-coloring of G[H] and each
z € V(G), the number of colors appear on V(H;) is at most ¥¢(H).
Hence, ¥7(G[H]) < (6(G)+1)¢7(H). The following clear proposition
introduces a sufficient condition for equality.

Proposition 2. Let G and H be graphs for which Fall(G) #
® and Fall(H) # @ and ¢5(G) = 6(G) + 1. Then, ¥4(G[H]) =
Y1 (G)os(H) = (6(G) + 1)s(H).
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Corollary 5. If G is a tree or a complete graph or Csy (for some
k € N) and H is a graph such that Fall(H) # 0, then, ¥¢(G[H]) =
Ys(G)r(H) = (6(G) + 1)y (H).

3 Type-II graph homomorphisms and lexico-
graphic product of graphs

Now we study a type of graph homomorphisms that is related to fall
colorings of graphs.

Definition 1. Let G and H be graphs. A function f : V(G) —
V(H) is called a type-II graph homomorphism from G to H if f
satisfies the following two conditions.

1) {u,v} € E(G) = {f(u), f(v)} € E(H).
2) {u1,m1} € E(H) = W € fl(v1) : Ju € f~(wg) st {u,v} €
E(G). Py

Type-1I graph homomorphisms introduced by Laskar and Lyle in
2009 in [3]. They showed that for any graph G, k € Fall(G) iff there
exists a type-II graph homomorphism from G to K. Note that every
type-II graph homomorphism from a graph G to a complete graph,
is surjective. If fy is a type-II graph homomorphism from G to H
and f; is a type-II graph homomorphism from H to I, then, faof:
is a type-II graph homomorphism from G to I. Also, if there exists
a type-II graph homomorphism from G to H and k € Fall(H), then,
k € Fall(G). If there exists a type-II graph homomorphism from
G to G5 and a type-II graph homomorphism from H; to Ha, then,
there exists a type-1I graph homomorphism from G10H; to G.0H>.
We prove a similar theorem for lexicographic product of graphs.

Theorem 5. Let Gy, G2, Hy and Hs be graphs and f1 be a type-1I
graph homomorphism from G; to G2 and fa be a surjective type-II
graph homomorphism from Hy to Ha. Then, there exists a type-II
graph homomorphism f3 from Gi[H1] to Go|Hy).

Proof. Let f3: V(Gi[H1]) — V(G2[H3]) be defined the function
which assigns to each (g, k) € V(G1[H1]), f3((g9, k) = (f1(9), f2(R))-
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For each {(zl,yl), (:Bz,yz)} € E(G1[H1]), {.’1:1,3:2} € E(Gl) or (:1:1 =
z2 and {y1,y2} € E(H1)). Therefore, {fi(z1), fi(z2)} € E(G3) or
(filz1) = fi(z2) and {f2(11), fa(y2)} € E(Hz)). This shows that
{(fi(z1), f2(w1)), (f1(z2), f2(u2))} € E(G2[Hz]) and therefore, Prop-
erty 1 holds. Now for each {(a1, £1), (a2, B2)} € E(G2[H2]) and each
(u1,v1) € f5 (a1, B1)), there are two cases:

Case I) {1,002} € E(Gs3) : Since fy is a type-II graph homo-
morphism and u; € f; (), there exists uy € f{ (a2) such that
{u1,u2} € E(G1). Surjectivity of fo implies that there exists vy €
J3(B2)- Therefore, (ug,v) € f3 (2, B2)) and {(u1, v1), (uz2, %)} €
E(G1[H1]) and accordingly, Property 2 holds.

Case II) oy = a2 and {61,082} € E(Hz) : In this case, u; €
r 1(ag) and since fy is a type-II graph homomorphism and v; €
fs 1(ﬂl) there ex18ts vg € fy 1(85) such that {v1,ve} € E(H).
Hence, (u1,v2) € f5'((02,82)) and {(u1,v1), (u1,v2)} € E(G1[H])
and therefore, Property 2 holds. Thus, f3 is a type-II graph homo-
morphism. n

Corollary 6. If G and H are graphs such that vy € Fall(G) and
ro € Fall(H), then,
xf(G[H]) < Xf(G[Krz]) < Xf(Krl [Km]) < ¢f(K7'1 [Kr,)) <
V1(G[Kr,)) < 95(GH]).

4 Fall colorings of categorical product of graphs

Let G1 = (V1, E1) and Ga = (V,, E3) be graphs. The graph G; x
= (Vi x Vo, {{(z1, 1), (z2,92)}| {z1,22} € E(G1) and {y1,32} €
E(G3)}) is called the categorical product of G and H.

Categorical product of graphs is commutative and associative up
to isomorphism (For each arbitrary graphs G1, G2 and G3, Gy x Ga
and G2 x G are isomorphic, also, (G1 X G2) X G3 and G x (G2 X G3)
are isomorphic.). For arbitrary graphs G and H, if E(G) = 0 or
E(H) = 0, then, E(G x H) = @ and therefore, G x H has only a
fall 1-coloring and Fall(G x H) = {1}. Thus, we focus on nonempty
edge set graphs, unless stated otherwise. Firstly, note that Fall(G :=
({a,b,¢,d}, {{a, b}, {b, c}, {c,a},{d,a}}) = @ and Fall(G x G) = 0.
Secondly, note that Fall(Cs := ({0,1,2,3,4},{{0,1},{1,2},{2,3},
{3,4},{4,0}})) = 0, but the function f : V(Cs x Cs) — [5] which
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assigns to each (2, j) of V(Cs xCs), f((4, 7)) :=(the arithmetic residue
of 24+ 27 modulo 5)+1 where the last + is the natural summation in
Z, is a fall 5-coloring of Cs x Cs, and therefore, Fall(Cs x Cs) # 0.
The next theorem implies that if Fall(G) # @ or Fall(H) # 0, then,
Fall(G x H) # 0.

Theorem 6. Letn € N and Gy,...,G, be arbitrary graphs.
For every i, 1 < i < n, we have: Fall(G;) C Fall(x™;G;).

Proof. Since categorical product of graphs is commutative and
associative up to isomorphism, it suffices to prove that Fall(G;) C
Fall(Gy x G3). If Fall(Gy) = 0, the theorem holds trivially. For each
k € Fall(G,), there exists a fall k-coloring f of G;. Now, the function
g : V(G1 x Gg) — [k] which assigns to each (u,v) € V(G) x Ga),
g((u,v)) = f(u) is a fall k-coloring of G1 x G2 and therefore, k €
Fall(Gy x G3). Hence, Fall(G;) C Fall(G; x Ga). |

Corollary 7. For each n € N and arbitrary graphs Gy,...,Gy such
that for each i € [n], Fall(G;) # 0, the following inequalities hold.

xf(x%1Gi) < min{xs(Gi)| ¢ € [n]} < max{s(Gi)| i € [n]} <
Y1 (%=1 Gi)-

Theorem 7. Let Gy, G3, H, and Hs be graphs and f; be a type-
II graph homomorphism from G; to G2 and fy be a type-II graph
homomorphism from Hy to Ha. Then, there ezists a type-II graph
homomorphism f3 from Gy x Hy to Go x Hs.

Proof. Let f3:V(G1xH;) — V(G2 x H3) be defined the function
which assigns to each (g, h) € V(G1x Hy), f3((g,h)) = (f1(9), f2(R)).
For each {(:L‘l,yl),(mg,yz)} € E(Gl X Hl), {ml,mg} € E(Gl) and
{v1,92} € E(H1). Therefore, {fi(z1), fi(z2)} € E(G2) and {f2(11),
f2(2)} € E(H2). Hence, {f3((z1,v1)), f3((z2,42))} € E(G2 x Ha)
and therefore, Property 1 of type-II graph homomorphisms holds.
Now for each {(a, b), (c,d)} € E(Gax Hz) and each (o, 8) € f31((c,d)
), @ € fi}(c) and B € f;1(d). So, there exist = € f{'(a) and
y € f;1(b) such that {z,a} € E(G:1) and {y,5} € E(H,), hence,
(:B, y) € f.'i_l((a, b)) and {(.’B, y)v(a’ﬁ)} € E(Gl X Hl) So, Property
2 of type-II graph homomorphisms holds, too. Consequently, f3 is a

type-1I graph homomorphism.
[ |
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We know that if f is a type-II graph homomorphism from G
to H and k € Fall(H), then, k € Fall(G). Also, for each graph
G and each natural number k, k € Fall(G) iff there exists a type-
II graph homomorphism from G to Kj. Therefore, the previous
theorem implies the following corollary.

Corollary 8. Letn € N and for each i € [n], G; be a graph and
ki € Fall(G;). Then, there exists a type-II graph homomorphism
from xX_,G; to x_, Ky, and Fall(x; Ky,) C Fall(x},G;). Also,
x(x{21Gi) < xp(Xj1 Kiy) < $p(xy Ki,) < $5(x7e1Gi). These
inequalities can easily extend to more inequalities in general. For

. ~ X (Kry % G2)
ezample, in the case n = 2, xf(G1 x G3) < { xf(G1 %X Kg;) =

K G
Xf(Kiey X Kiy) < Y7 (K, X K,) < { z;ngIXXKI:; < ¥5(G1xG2).

Dunbar, et al. in [1] showed that for each m,n € N\ {1},
Fall(K;, x K;) = {m,n}. They also showed that if n € N\ {1}
and for each i € [n], r; € N\ {1}, then, {ry,...,m} C Fall(x®, K,,).
They constructed a fall 6-coloring of K3 x K3 x K4 and asked for
conditions for a finite and with more than two elements set S :=
{r1,..,7a} € N\ {1} for which § G Fall(x, K,,).

Theorem 8. Letn >3, §:={ry,...,7a} CN\{l}, n<m<..<
Tn and S contain af least one even integer. Then, S G Fall(x,Kr,),

besides, Fall(x}_, K,) contains an integer greater than ry,.

Proof. There are five cases.

Case I) 1 = 2 : In this case, let t € {ry,..,7,}\ {r1,7n}. Con-
sider K2 x K; X K;,. Let o be a disarrangement of [t] (a permu-
tation o of [t] such that for each i € [t], o(¢) # i). Obviously,
{(1,46,1,(1,0G),2),2,6,2), 2,00, D1 1 < i < §U{{(z.32)]
(z,9,2) € KoxKixK,,, z=14}| 3 < i < r,} is the set of color classes
of a fall (r, +t — 2)-coloring of K3 x Ky x K. But rp +t—2> 1,
and therefore, in this case, Fall(K2 x K; x K,.) contains an integer
greater than ry. .

Case II) 2 < r; and {r1,...,rn} contains at least two distinct
even integers such that one of them is r, and the other is 7 that s €
{1,...,n—=1} : Let r; € {r1,...,tn}\{rs,mn}. Consider K, x Ky; xKy,
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and a disarrangement o of [r;]. For each t, 1 < ¢t < r;, color the
vertices (1,t,1),(1,0(t),2),(2,¢,2) and (2,0(t),1) with the color ¢
and color each other vertex (z,y,z) with the color [x_lj(fj,-zﬁ) +
| 252 Jrj+ the color of (z—2| 25 ],y,2—2| 231 ]). Thisis a fall =25™-
coloring of K, x Kr; X K,,. Since 2 < ry, m > max{rs,Tj,Tn}.
Hence, Theorem 6 1mphes that Fall(x2, K, ) contains an integer
greater than r,.

Case III) 2 < r; and {ry,...,mn} contains at least two distinct
even integers such that none of them is r, : Similar to the Case II,
Fall(x?_, K;,) contains an integer greater than 7.

Case IV) 2 < r; and {r1,...,7,} contains exactly one even integer
and ry, is even : In this case, consider K, _,-1 X K,,_, X K, and
a disarrangement o of [r,-1]. For each t, 1 <t < r,_1, color the
vertices (1,t,1),(1,0(t),2),(2,t,2) and (2,0(t),1) with the color ¢
and color each other vertex (a: y,2) of K;,,_,—1 X Ky, x K, with
the color | &5 |(2254™) + | 25 Jra—1+ the color of (z— 2|_“"lj,y,
2|21 ). Also, color each vertex (tn-2,9,2) of Ky, _, x Ky, x K,
with the color {n=2=Lr=1Ts 11 Therefore, a fall (M&ﬂ+l)
coloring of K,,_, X K,-,l , X K, and also of x K, yields. But,
Mﬁ"—'—‘—'ﬁ +1 > r,. Thus, Fall(Ks x K; x Kr,,) and therefore
Fall(x,_lK,.,.) contains an integer greater than ry.

Case V) 2 < 7, and {ry,...,7n} contains exactly one even integer
and 7, is odd : In this case, similar to the Case IV, Fall(x}, K,)
contains an integer greater than r,.

Accordingly, in all cases, {r1,...,rn} G Fall(x},K,). Besides,
Fall(x?_, K;,) contains an integer greater tha.n Tn.

|

Even though Dunbar, et al. in [1] constructed a fall 6-coloring
of K3 x K3 x K4, this theorem also shows that in the Corollary 7,
the inequality max{¢¢(G;)| ¢ € [n]} < ¥r(x};G;) can be strict in
many cases. But we conjecture that the inequality x;(x%,Gi) <
min{x¢(G:)| ¢ € [n]} is always an equality.

Conjecture 1. For each n € N and for each arbitrary graphs
G1,...,Gy such that for each i € [n], Fall(G;) # 0, the following
equality holds.

Xs(xE1Gi) = min{xs(Gi)| i € [n]}.
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5 Fall colorings of some graph constructions

In this section, we study fall colorings of union of graphs and My-
cielskian of graphs and then, we show that fall k-colorings of a graph
are some proper k-colorings of some graphs in a specified set.

5.1 Fall colorings of union of graphs

Let » € N and for each 1 < 7 < n, G; be a graph. The graph
ULy (15} x V(GO), Uiy {61 2), 6,0} (5,9} € E(Go)}) i called
the union graph of Gy, ..., Gn and is denoted by Wi, G;

The following obvious proposition describes fall colormgs of union
of graphs.

Proposition 3. Let n € N and for each 1 < i < n, G; be a graph.
Then, the following three statements hold.

1) I)"Fz:nll(kg-]zh_1 G;) 7='= @, then, for each 1 < i < n, Fall(G;) # 0.

2) Fall(Ji, Gi) = i, Fall(G).

3) If FallWi, Gi) # 0, then, x;(Wi, Gi)=min N, Fall(G:)
and $y(41_, Gi) = max 2, Fall(Gy).

Since any graph G is isomorphic to any union graph of all its
connected components, the following corollary yields immediately.

Corollary 9. Let G be a graph and G;, 1 < i < n, be all its
connected components. Then, the following three statements hold.

1) If Fall(G) # 0, then, for each 1 < i < n, Fall(G;) # 0.

8) Fall(G) = (i, Fall(G).

3) I Fall(G) # 0, then, x;(G) = min(\, Fall(G:) and 17(C) =
max [ )i, Fall(G;).

5.2 Fall Colorings of Mycielskian of graphs

Let G := ({z1,...,zs}, E(G)) be a graph. The Mycielskian of G (de-
noted by M(G)) is a graph with 2n+1 vertices 1, ...,Tn,¥1,- .+, ¥n, 2
i adge et 5(6) Ut a3 4 € ), (51 € BCG} Ut
i € [n]}.

For example, M(K3) is Cs. We know that Fall(M(K3)) = Fall(Cs)
=@. Now we prove that for each graph G, Fall(M(G)) = 0.
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Theorem 9. For each graph G, Fall(M(G)) = 0.

Proof. If E(G) = @, then, M(G) has at least one isolated vertex
and also at least one edge. Therefore, Fall(M(G)) = §. Now we prove
the theorem for the case E(G) # 0. If E(G) # 0 and Fall(M(G)) # 0,
then, there exists a fall k-coloring f of M(G) for some k € N. Since
E(G) # 0, there exists an integer ip € [r] such that f(zi) # f(2)
and since for each j € [n], f(y;) # f(2) and f is a fall k-coloring,
there exists i; € [n] such that z;, € Ng(zi,) and f(zi,) = f(2).
Since for each i € [n] with f(z;) # f(2), N(w) \ {2} C N(z:),
so f(z;) € {f(v:), f(2)}, on the other hand, f(z;) # f(z), hence,
f(z:) = f(y:). This immediately shows that each color of [k] ap-
pears on the neighborhood of y;,, which is a contradiction. Hence,
Fall(M(G)) = 0.

n

5.3 Restriction of fall {-colorings of a graph into some
proper t-colorings of some graphs in a specified set

Now we prove that fall k-colorings of a graph are some proper k-
colorings of some graphs in a specified set.

Let G be agraph and 1 <t < §(G)+1 be a fixed natural number.
For each v € V(G), choose t — 1 arbitrary elements of Ng(v) and
join these t — 1 vertices to each other and name the new graph H.
Let G; be the set of all graphs H constructed like this.

Proposition 4. For each 1 < t < §(G) + 1, t € Fall(G) iff
t € {x(H)| H € Gi}. Specially, Fall(G) = URP ™ ({x(H)| H €
Gi}N{ih)-

Proof. Let1 < ¢ < §(G)+1. Ift e {x(H)| H € Gs}, then,
there exists a graph H in G, such that x(H) =t and there exists a
t-coloring f of H. This coloring f of H, is obviously a fall {-coloring
of G and therefore, ¢t € Fall(G). Conversely, if t € Fall(G), then,
there exists a fall ¢t-coloring g of G. For each v € V(G), there exist
t—1 elements of Ng(v) such that the set of their colors and the color
of v is equal to [t], join all of them to each other to construct a new
graph T in G;. The fall t-coloring g of G is obviously a t-coloring
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of T, also w(T) > ¢, thus, x(T) = t and ¢t € {x(H)| H € G;}. The
second part of the proposition follows immediately.
|

Restricting this proposition into r-regular graphs and ¢t = r + 1,
yields a beautiful proposition of [2] but in different terminologies.

Proposition 5. For each r-regular graph G, r + 1 € Fall(G) iff
x(GP) = r + 1, where G? = (V(G), {{z,v}| z,y € V(G), = #
Y, dG(m,y) < 2})

6 Fall colorings of complement of bipartite
graphs

Complement of bipartite graphs are very interesting graphs, because
in each proper k-coloring, the cardinality of each color class is at
most 2. The following theorem characterizes all fall colorings of this
type of graphs.

Theorem 10. Let G be a bipartite graph. Then, Fall(G¢) C
{x(G®)}. Besides, it is polynomial time to decide whether Fall(G) =
{x(G°)} or not.

Proof. Let A and B be the partite sets of G. If Fall(G°) # 0,
then, there exists some k belong to Fall(G¢). Suppose that f is a
fall k-coloring of G°. Obviously, each color class of f is either of
the form {z} or of the form {y,z} such that y€ A and z € B. A
color class is of the form {z} iff = is an isolated vertex of the graph
G. Therefore, the set of color classes of f is the union of {{z}| z €
V(G), dege(z) = 0} and the set of edges of a perfect matching of
the induced subgraph of G on {z| z € V(G), dege(z) > 0}, also,
k=|V(G)| - i|{z| = € V(G), dega(z) > 0}|. Therefore, Fall(G¢) C
{IV(G)| - 4{z] z € V(G), dege(z) > 0}|}. Besides, if Fall(G®) # 0,
then, the induced subgraph of G on {z| z € V(G), degg(z) > 0}
has a perfect matching, in this case, obviously, x(G°) = |V(G)| —
izl = € V(G), dege(z) > 0}|, and consequently, Fall(G°) =
{x(G°)}. Therefore, for each bipartite graph G, Fall(G°) C {x(G°)}.
We know that if Fall(G°) # 0, then, the induced subgraph of G on
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{z| z € V(G), degg(x) > 0} has a perfect matching. Conversely, if
the induced subgraph of G on {z| z € V(G), dege(z) > 0} has a
perfect matching, then, the union of {{z}| z € V(G), degg(z) =0}
and the edge set of each perfect matching of the induced subgraph of
G on {z| £ € V(G), degg(z) > 0} is the set of color classes of a fall
(IV(G)| - i|{z| = € V(G), degg(z) > 0}|)-coloring of G¢ and there-
fore, Fall(G®) # 0. Accordingly, Fall(G®) = {x(G®)} iff Fall(G°) # 0
iff the induced subgraph of G on {z| =z € V(G), dege(z) > 0} has a
perfect matching. Since the problem of determining whether or not
the induced subgraph of G on {z| z € V(G), degs(z) > 0} has a per-
fect matching, is a polynomial time problem, thus, it is polynomial
time to decide whether Fall(G¢) = {x(G®)} or not.

[ ]
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