On Fall Colorings of Graphs

Saeed Shaebani

Department of Mathematical Sciences
Institute for Advanced Studies in Basic Sciences (IASBS)
P.O. Box 45195-1159, Zanjan, Iran
s_shaebani@iasbs.ac.ir

Abstract

A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex of G sees all k colors on its closed neighborhood. We denote Fall(G) the set of all positive integers k for which G has a fall k-coloring. In this paper, we study fall colorings of lexicographic product of graphs and categorical product of graphs. Also, we show that for each graph G, Fall(M(G)) = \emptyset where M(G) is the Mycielskian of the graph G. Finally, we prove that for each bipartite graph G, Fall(G^c) $\subseteq \{\chi(G^c)\}$ and it is polynomial time to decide whether Fall(G^c) = $\{\chi(G^c)\}$ or not.

Keywords: fall coloring, lexicographic product, categorical product.

Subject classification: 05C

1 Introduction

All graphs considered in this paper are finite and simple (undirected, loopless and without multiple edges). Let G = (V, E) be a graph and $k \in \mathbb{N}$ and $[k] := \{i \mid i \in \mathbb{N}, \ 1 \leq i \leq k\}$. A k-coloring (proper k-coloring) of G is a function $f: V \to [k]$ such that for each $i, \ 1 \leq i \leq k, \ f^{-1}(i)$ is an independent set. We say that G is k-colorable whenever G admits a k-coloring f, in this case, we denote $f^{-1}(i)$ by V_i and call it a color class (of f) corresponding to color $i, \ 1 \leq i \leq k$. The minimum integer k for which G has a k-coloring, is called the chromatic number of G and is denoted by $\chi(G)$.

Let G be a graph, f be a k-coloring of G and v be a vertex of G. The vertex v is called colorful (or color-dominating or b-dominating) if each color $1 \le i \le k$ appears on the closed neighborhood of v

(f(N[v]) = [k]). The k-coloring f is said to be a fall k-coloring (of G) if each vertex of G is colorful. There are graphs G for which G has no fall k-coloring for any positive integer k. For example, C_5 (a cycle with 5 vertices) and every graph with at least one edge and one isolated vertex, have no fall k-colorings for any positive integer k. The notation Fall(G) stands for the set of all positive integers k for which G has a fall k-coloring. Whenever Fall(G) $\neq \emptyset$, we call $\min(\operatorname{Fall}(G))$ and $\max(\operatorname{Fall}(G))$, fall chromatic number of G and fall achromatic number of G and denote them by $\chi_f(G)$ and $\psi_f(G)$, respectively. The concept of fall coloring introduced in 2000 in [1].

2 Fall colorings of lexicographic product of graphs

Let G and H be graphs. The lexicographic product of G and H, denoted by G[H], is defined the graph with vertex set $V(G) \times V(H)$ and edge set $\{\{(x_1, y_1), (x_2, y_2)\} | x_1, x_2 \in V(G) \text{ and } y_1, y_2 \in V(H) \text{ and } [(\{x_1, x_2\} \in E(G)) \text{ or } (x_1 = x_2, \{y_1, y_2\} \in E(H))]\}$. For each $x \in V(G)$, the induced subgraph of G[H] on $\{x\} \times V(H)$ is denoted by H_x .

Note that G[H] and H[G] are not necessarily isomorphic. For example, let $G := K_2$ and H be the complement of G. G[H] has 4 edges and H[G] has 2 edges and therefore, they are not isomorphic. But lexicographic product of graphs is associative up to isomorphism (For arbitrary graphs G_1 , G_2 and G_3 , $(G_1[G_2])[G_3]$ and $G_1[G_2[G_3]]$ are isomorphic.).

Theorem 1. Let G and H be graphs and $k \in \text{Fall}(G[H])$ and f be a fall k-coloring of G[H]. Then, for each $x \in V(G)$, $S_x := f(V(H_x))$ forms a fall $|S_x|$ -coloring of H_x .

Proof. Let $x \in V(G)$ and (x,y) be an arbitrary vertex of H_x and its color be α . Then, for each $\beta \in S_x \setminus \{\alpha\}$, there exists a vertex (a,b) of G[H] adjacent with (x,y) which is colored β . Obviously a=x, otherwise, since $\beta \in S_x$, there exists a vertex $(x,z) \in V(H_x)$ colored β . (x,y) is adjacent with (a,b) and $x \neq a$, so $\{x,a\} \in E(G)$ and therefore, (x,z) and (a,b) are adjacent in G[H] and both of

them are colored β , which is a contradiction. Therefore, a = x and $(a, b) \in V(H_x)$. Hence, S_x forms a fall $|S_x|$ -coloring of H_x .

Corollary 1. Let G and H be graphs. If $\operatorname{Fall}(G[H]) \neq \emptyset$, then, $\operatorname{Fall}(H) \neq \emptyset$.

Corollary 2. Let G and H be graphs such that $\operatorname{Fall}(G[H]) \neq \emptyset$. Then, $\operatorname{Fall}(H) \neq \emptyset$ and for each fall k-coloring f of G[H] and each $x \in V(G)$, $\chi_f(H) \leq |f(V(H_x))| \leq \psi_f(H)$.

There are pairs of graphs (G,H) for which $\operatorname{Fall}(G) = \emptyset$ but $\operatorname{Fall}(G[H]) \neq \emptyset$. For example, $\operatorname{Fall}(C_5) = \emptyset$ but $C_5[K_2]$ has a fall 5-coloring. First let's label the vertices of $C_5[K_2]$ lexicographically: $1 := (1,1), \ 2 := (1,2), \ 3 := (2,1), \ldots, \ 10 := (5,2)$. Here is a fall 5-coloring f of $C_5[K_2]$: $f(1) = 1, \ f(2) = 2, \ f(3) = 3, \ f(4) = 4, \ f(5) = 1, \ f(6) = 5, \ f(7) = 2, \ f(8) = 4, \ f(9) = 5, \ f(10) = 3.$ Also, there are pairs of graphs (G,H) for which $\operatorname{Fall}(G) = \emptyset$ and $\operatorname{Fall}(H) \neq \emptyset$ and $\operatorname{Fall}(G[H]) = \emptyset$. For example, $\operatorname{Fall}(C_5) = \emptyset$ and $\operatorname{Fall}(K_1) \neq \emptyset$ and $\operatorname{Fall}(C_5[K_1]) = \operatorname{Fall}(C_5) = \emptyset$. The next theorem shows that if $\operatorname{Fall}(G) \neq \emptyset$ and $\operatorname{Fall}(H) \neq \emptyset$, then, $\operatorname{Fall}(G[H]) \neq \emptyset$.

Theorem 2. Let G and H be graphs for which $\operatorname{Fall}(G) \neq \emptyset$ and $\operatorname{Fall}(H) \neq \emptyset$. Then, $\{\sum_{i=1}^{s} k_i | s \in \operatorname{Fall}(G), \forall i, 1 \leq i \leq s : k_i \in \operatorname{Fall}(H)\} \subseteq \operatorname{Fall}(G[H])$.

Proof. Let $s \in \operatorname{Fall}(G)$ and $g: V(G) \to [s]$ be a fall s-coloring of G and for each $1 \leq i \leq s$, $k_i \in \operatorname{Fall}(H)$ and h_i be a fall k_i -coloring of H. Let's color each vertex (x,y) of G[H] by color $(g(x),h_{g(x)}(y))$. Indeed, let's consider the function $f: V(G[H]) \to S := \{(g(x),h_{g(x)}(y)) \mid (x,y) \in V(G) \times V(H)\}$ which assigns to each (x,y) of G[H], $(g(x),h_{g(x)}(y))$. For each adjacent vertices (x,y) and (a,b) in G[H], $(g(x),h_{g(x)}(y))$. For each adjacent vertices (x,y) and (a,b) in G[H], (g(x),g(x)) = g(a) and (x) = g(a) and (x) = g(a) = g(a) and (x) = g(a) = g(a) and (x) = g(a) = g(a). Therefore, (x) = g(a) = g(a) = g(a) and (x) = g(a) = g(a) = g(a). This shows that (x) = g(a) = g(a) = g(a) and (x) = g(a) = g(a) = g(a). Now let's show that (x) = g(a) = g(a) = g(a) and (x) = g(a) = g(a) = g(a). Now, there are two cases:

Case I) g(x) = g(u): In this case, $h_{g(x)} = h_{g(u)}$ and $h_{g(x)}(y) \neq h_{g(u)}(v)$. Since $h_{g(x)}$ is a fall $k_{g(x)}$ -coloring of H, there exists a vertex $z \in V(H)$ such that $\{z, y\} \in E(H)$ and $h_{g(x)}(z) = h_{g(u)}(v)$. The vertex (x, z) of G[H] is adjacent with (x, y) and its color is $f((x, z)) = (g(x), h_{g(x)}(z)) = (g(u), h_{g(u)}(v)) = (\alpha, \beta)$.

Case II) $g(x) \neq g(u)$: Since g is a fall s-coloring of G, there exists a vertex $l \in V(G)$ such that $\{x, l\} \in E(G)$ and g(l) = g(u). So, $h_{g(u)}(v) = h_{g(l)}(v)$. The vertex (l, v) is adjacent with (x, y) in G[H] and $f((l, v)) = (g(l), h_{g(l)}(v)) = (g(u), h_{g(u)}(v)) = (\alpha, \beta)$.

Hence, f is a fall $(\sum_{i=1}^{s} k_i)$ -coloring of G[H]. Therefore, $\{\sum_{i=1}^{s} k_i | s \in Fall(G), \forall i, 1 \leq i \leq s : k_i \in Fall(H)\} \subseteq Fall(G[H])$.

Corollary 3. Let G and H be graphs for which $\operatorname{Fall}(G) \neq \emptyset$ and $\operatorname{Fall}(H) \neq \emptyset$. Then, $\chi_f(G[H]) \leq \chi_f(G)\chi_f(H) \leq \psi_f(G)\psi_f(H) \leq \psi_f(G[H])$.

 $\chi_f(G[H])$ and $\chi_f(G)\chi_f(H)$ are not necessarily equal. For example, $\chi_f(C_9)=3$ and $\chi_f(K_2)=2$. Therefore, $\chi_f(C_9)\chi_f(K_2)=6$, but $\chi_f(C_9[K_2])\leq 5$, first let's label the vertices of $C_9[K_2]$ lexicographically: 1:=(1,1), 2:=(1,2), 3:=(2,1), ..., 18:=(9,2). Here is a fall 5-coloring f of $C_9[K_2]$: f(1)=1, f(2)=4, f(3)=2, f(4)=3, f(5)=5, f(6)=1, f(7)=4, f(8)=2, f(9)=3, f(10)=1, f(11)=5, f(12)=2, f(13)=4, f(14)=3, f(15)=1, f(16)=2, f(17)=5 and f(18)=3. Also, $\psi_f(G)\psi_f(H)$ and $\psi_f(G[H])$ are not necessarily equal. For example, $\psi_f(C_8)=2$ and $\psi_f(K_2)=2$ and therefore, $\psi_f(C_8)\psi_f(K_2)=4$. But $\psi_f(C_8[K_2])\geq 5$. First let's label the vertices of $C_8[K_2]$ lexicographically: 1:=(1,1), 2:=(1,2), 3:=(2,1),..., 16:=(8,2). Here is a fall 5-coloring f of $C_8[K_2]$: f(1)=1, f(2)=2, f(3)=3, f(4)=4, f(5)=5, f(6)=1, f(7)=2, f(8)=3, f(9)=4, f(10)=1, f(11)=5, f(12)=2, f(13)=3, f(14)=1, f(15)=5 and f(16)=4.

Theorem 2 says that if G and H are graphs for which $\operatorname{Fall}(G) \neq \emptyset$ and $\operatorname{Fall}(H) \neq \emptyset$, Then, $\{\sum_{i=1}^s k_i | s \in \operatorname{Fall}(G), \ \forall i, \ 1 \leq i \leq s : k_i \in \operatorname{Fall}(H)\} \subseteq \operatorname{Fall}(G[H])$. Since $5 \in \operatorname{Fall}(C_9[K_2])$ and $5 \notin \{\sum_{i=1}^s k_i | s \in \operatorname{Fall}(C_9), \ \forall i, \ 1 \leq i \leq s : k_i \in \operatorname{Fall}(H)\}$ are not necessarily equal.

Theorem 3. There are pairs of graphs (G, H) for which $Fall(G) \neq$

 \emptyset and Fall $(H) \neq \emptyset$ and the following strictly inequalities hold. $\chi_f(G[H]) < \chi_f(G)\chi_f(H) < \psi_f(G)\psi_f(H) < \psi_f(G[H]).$

Proof. Let $G := C_6 \bigvee C_8 \bigvee C_9$ (the join of C_6 and C_8 and C_9) and $H := K_2$. Since $(C_6 \bigvee C_8 \bigvee C_9)[K_2]$ and $(C_6[K_2]) \bigvee (C_8[K_2]) \bigvee (C_9[K_2])$ are isomorphic, $\chi_f((C_6 \bigvee C_8 \bigvee C_9)[K_2]) = \chi_f(C_6[K_2]) + \chi_f(C_8[K_2]) + \chi_f(C_9[K_2]) \leq 4 + 4 + 5 = 13$ and $\psi_f((C_6 \bigvee C_8 \bigvee C_9)[K_2]) = \psi_f(C_6[K_2]) + \psi_f(C_8[K_2]) + \psi_f(C_9[K_2]) \geq 6 + 5 + 6 = 17$. Also, $\chi_f(C_6 \bigvee C_8 \bigvee C_9) = 7$ and $\psi_f(C_6 \bigvee C_8 \bigvee C_9) = 8$ and $\chi_f(K_2) = \psi_f(K_2) = 2$, as desired.

Theorem 4. For each $\varepsilon > 0$, There exists a pair of graphs (S,T) for which $\min\{\psi_f(S[T]) - \psi_f(S)\psi_f(T), \psi_f(S)\psi_f(T) - \chi_f(S)\chi_f(T), \chi_f(S)\chi_f(T) - \chi_f(S[T])\} \ge \varepsilon$.

Proof. With no loss of generality, we can assume that ε is a natural number. Let $G := C_6 \bigvee C_8 \bigvee C_9$ and $S := K_{\varepsilon}[G]$ and $T := K_2$. Since S[T] and $K_{\varepsilon}[G[T]]$ are isomorphic and $\chi_f(K_{\varepsilon}[G[T]]) = \varepsilon \chi_f(G[T])$ and $\psi_f(K_{\varepsilon}[G[T]]) = \varepsilon \psi_f(G[T])$, the theorem implies.

One can easily observe that if G and H are graphs such that $\operatorname{Fall}(G[H]) \neq \emptyset$, then, $\chi_f(G[H]) \geq \omega(G)\chi_f(H)$. The next clear proposition introduces a sufficient condition for equality.

Proposition 1. Let G and H be graphs such that $\operatorname{Fall}(G) \neq \emptyset$ and $\operatorname{Fall}(H) \neq \emptyset$ and $\chi_f(G) = \omega(G)$. Then, $\chi_f(G[H]) = \chi_f(G)\chi_f(H) = \omega(G)\chi_f(H)$.

Corollary 4. If G is a tree or a complete graph or C_{2k} (for some $k \in \mathbb{N} \setminus \{1\}$) and H is a graph such that $\operatorname{Fall}(H) \neq \emptyset$, then, $\chi_f(G[H]) = \chi_f(G)\chi_f(H) = \omega(G)\chi_f(H)$.

Theorem 1 says that in every fall k-coloring of G[H] and each $x \in V(G)$, the number of colors appear on $V(H_x)$ is at most $\psi_f(H)$. Hence, $\psi_f(G[H]) \leq (\delta(G)+1)\psi_f(H)$. The following clear proposition introduces a sufficient condition for equality.

Proposition 2. Let G and H be graphs for which $\operatorname{Fall}(G) \neq \emptyset$ and $\operatorname{Fall}(H) \neq \emptyset$ and $\psi_f(G) = \delta(G) + 1$. Then, $\psi_f(G[H]) = \psi_f(G)\psi_f(H) = (\delta(G) + 1)\psi_f(H)$.

Corollary 5. If G is a tree or a complete graph or C_{3k} (for some $k \in \mathbb{N}$) and H is a graph such that $\operatorname{Fall}(H) \neq \emptyset$, then, $\psi_f(G[H]) = \psi_f(G)\psi_f(H) = (\delta(G) + 1)\psi_f(H)$.

3 Type-II graph homomorphisms and lexicographic product of graphs

Now we study a type of graph homomorphisms that is related to fall colorings of graphs.

Definition 1. Let G and H be graphs. A function $f:V(G)\to V(H)$ is called a type-II graph homomorphism from G to H if f satisfies the following two conditions.

1) $\{u,v\} \in E(G) \Rightarrow \{f(u),f(v)\} \in E(H)$. 2) $\{u_1,v_1\} \in E(H) \Rightarrow \forall v \in f^{-1}(v_1) : \exists u \in f^{-1}(u_1) \text{ s.t } \{u,v\} \in E(G)$.

Type-II graph homomorphisms introduced by Laskar and Lyle in 2009 in [3]. They showed that for any graph G, $k \in Fall(G)$ iff there exists a type-II graph homomorphism from G to K_k . Note that every type-II graph homomorphism from a graph G to a complete graph, is surjective. If f_1 is a type-II graph homomorphism from G to G and G is a type-II graph homomorphism from G to G if there exists a type-II graph homomorphism from G to G and G to G and G to G and G to G to G to G to G to G and G to G

Theorem 5. Let G_1 , G_2 , H_1 and H_2 be graphs and f_1 be a type-II graph homomorphism from G_1 to G_2 and f_2 be a surjective type-II graph homomorphism from H_1 to H_2 . Then, there exists a type-II graph homomorphism f_3 from $G_1[H_1]$ to $G_2[H_2]$.

Proof. Let $f_3: V(G_1[H_1]) \to V(G_2[H_2])$ be defined the function which assigns to each $(g,h) \in V(G_1[H_1])$, $f_3((g,h)) = (f_1(g),f_2(h))$.

For each $\{(x_1,y_1),(x_2,y_2)\}\in E(G_1[H_1]), \{x_1,x_2\}\in E(G_1)$ or $(x_1=x_2 \text{ and } \{y_1,y_2\}\in E(H_1))$. Therefore, $\{f_1(x_1),f_1(x_2)\}\in E(G_2)$ or $(f_1(x_1)=f_1(x_2) \text{ and } \{f_2(y_1),f_2(y_2)\}\in E(H_2))$. This shows that $\{(f_1(x_1),f_2(y_1)),(f_1(x_2),f_2(y_2))\}\in E(G_2[H_2])$ and therefore, Property 1 holds. Now for each $\{(\alpha_1,\beta_1),(\alpha_2,\beta_2)\}\in E(G_2[H_2])$ and each $(u_1,v_1)\in f_3^{-1}((\alpha_1,\beta_1))$, there are two cases:

Case I) $\{\alpha_1, \alpha_2\} \in E(G_2)$: Since f_1 is a type-II graph homomorphism and $u_1 \in f_1^{-1}(\alpha_1)$, there exists $u_2 \in f_1^{-1}(\alpha_2)$ such that $\{u_1, u_2\} \in E(G_1)$. Surjectivity of f_2 implies that there exists $v_2 \in f_2^{-1}(\beta_2)$. Therefore, $(u_2, v_2) \in f_3^{-1}((\alpha_2, \beta_2))$ and $\{(u_1, v_1), (u_2, v_2)\} \in E(G_1[H_1])$ and accordingly, Property 2 holds.

Case II) $\alpha_1 = \alpha_2$ and $\{\beta_1, \beta_2\} \in E(H_2)$: In this case, $u_1 \in f_1^{-1}(\alpha_2)$ and since f_2 is a type-II graph homomorphism and $v_1 \in f_2^{-1}(\beta_1)$, there exists $v_2 \in f_2^{-1}(\beta_2)$ such that $\{v_1, v_2\} \in E(H_1)$. Hence, $(u_1, v_2) \in f_3^{-1}((\alpha_2, \beta_2))$ and $\{(u_1, v_1), (u_1, v_2)\} \in E(G_1[H_1])$ and therefore, Property 2 holds. Thus, f_3 is a type-II graph homomorphism.

Corollary 6. If G and H are graphs such that $r_1 \in Fall(G)$ and $r_2 \in Fall(H)$, then,

$$\chi_f(G[H]) \le \chi_f(G[K_{r_2}]) \le \chi_f(K_{r_1}[K_{r_2}]) \le \psi_f(K_{r_1}[K_{r_2}]) \le \psi_f(G[K_{r_2}]) \le \psi_f(G[H]).$$

4 Fall colorings of categorical product of graphs

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs. The graph $G_1 \times G_2 := (V_1 \times V_2, \{\{(x_1, y_1), (x_2, y_2)\} | \{x_1, x_2\} \in E(G_1) \text{ and } \{y_1, y_2\} \in E(G_2)\})$ is called the categorical product of G and G.

Categorical product of graphs is commutative and associative up to isomorphism (For each arbitrary graphs G_1 , G_2 and G_3 , $G_1 \times G_2$ and $G_2 \times G_1$ are isomorphic, also, $(G_1 \times G_2) \times G_3$ and $G_1 \times (G_2 \times G_3)$ are isomorphic.). For arbitrary graphs G and H, if $E(G) = \emptyset$ or $E(H) = \emptyset$, then, $E(G \times H) = \emptyset$ and therefore, $G \times H$ has only a fall 1-coloring and Fall $(G \times H) = \{1\}$. Thus, we focus on nonempty edge set graphs, unless stated otherwise. Firstly, note that Fall $(G := (\{a,b,c,d\}, \{\{a,b\}, \{b,c\}, \{c,a\}, \{d,a\}\}) = \emptyset$ and Fall $(G \times G) = \emptyset$. Secondly, note that Fall $(C_5 := (\{0,1,2,3,4\}, \{\{0,1\}, \{1,2\}, \{2,3\}, \{3,4\}, \{4,0\}\})) = \emptyset$, but the function $f : V(C_5 \times C_5) \rightarrow [5]$ which

assigns to each (i, j) of $V(C_5 \times C_5)$, f((i, j)) := (the arithmetic residue of i+2j modulo 5)+1 where the last + is the natural summation in \mathbb{Z} , is a fall 5-coloring of $C_5 \times C_5$, and therefore, Fall $(C_5 \times C_5) \neq \emptyset$. The next theorem implies that if Fall $(G) \neq \emptyset$ or Fall $(H) \neq \emptyset$, then, Fall $(G \times H) \neq \emptyset$.

Theorem 6. Let $n \in \mathbb{N}$ and G_1, \ldots, G_n be arbitrary graphs. For every $i, 1 \leq i \leq n$, we have: $\operatorname{Fall}(G_i) \subseteq \operatorname{Fall}(\times_{i=1}^n G_i)$.

Proof. Since categorical product of graphs is commutative and associative up to isomorphism, it suffices to prove that $\operatorname{Fall}(G_1) \subseteq \operatorname{Fall}(G_1 \times G_2)$. If $\operatorname{Fall}(G_1) = \emptyset$, the theorem holds trivially. For each $k \in \operatorname{Fall}(G_1)$, there exists a fall k-coloring f of G_1 . Now, the function $g: V(G_1 \times G_2) \to [k]$ which assigns to each $(u, v) \in V(G_1 \times G_2)$, g((u, v)) = f(u) is a fall k-coloring of $G_1 \times G_2$ and therefore, $k \in \operatorname{Fall}(G_1 \times G_2)$. Hence, $\operatorname{Fall}(G_1) \subseteq \operatorname{Fall}(G_1 \times G_2)$.

Corollary 7. For each $n \in \mathbb{N}$ and arbitrary graphs G_1, \ldots, G_n such that for each $i \in [n]$, $\operatorname{Fall}(G_i) \neq \emptyset$, the following inequalities hold. $\chi_f(\times_{i=1}^n G_i) \leq \min\{\chi_f(G_i) | i \in [n]\} \leq \max\{\psi_f(G_i) | i \in [n]\} \leq \psi_f(\times_{i=1}^n G_i).$

Theorem 7. Let G_1 , G_2 , H_1 and H_2 be graphs and f_1 be a type-II graph homomorphism from G_1 to G_2 and f_2 be a type-II graph homomorphism from H_1 to H_2 . Then, there exists a type-II graph homomorphism f_3 from $G_1 \times H_1$ to $G_2 \times H_2$.

Proof. Let $f_3:V(G_1\times H_1)\to V(G_2\times H_2)$ be defined the function which assigns to each $(g,h)\in V(G_1\times H_1)$, $f_3((g,h))=(f_1(g),f_2(h))$. For each $\{(x_1,y_1),(x_2,y_2)\}\in E(G_1\times H_1)$, $\{x_1,x_2\}\in E(G_1)$ and $\{y_1,y_2\}\in E(H_1)$. Therefore, $\{f_1(x_1),f_1(x_2)\}\in E(G_2)$ and $\{f_2(y_1),f_2(y_2)\}\in E(H_2)$. Hence, $\{f_3((x_1,y_1)),f_3((x_2,y_2))\}\in E(G_2\times H_2)$ and therefore, Property 1 of type-II graph homomorphisms holds. Now for each $\{(a,b),(c,d)\}\in E(G_2\times H_2)$ and each $(\alpha,\beta)\in f_3^{-1}((c,d))$, $\alpha\in f_1^{-1}(c)$ and $\beta\in f_2^{-1}(d)$. So, there exist $x\in f_1^{-1}(a)$ and $y\in f_2^{-1}(b)$ such that $\{x,\alpha\}\in E(G_1)$ and $\{y,\beta\}\in E(H_1)$, hence, $\{x,y\}\in f_3^{-1}((a,b))\}$ and $\{(x,y),(\alpha,\beta)\}\in E(G_1\times H_1)$. So, Property 2 of type-II graph homomorphisms holds, too. Consequently, f_3 is a type-II graph homomorphism.

We know that if f is a type-II graph homomorphism from G to H and $k \in \operatorname{Fall}(H)$, then, $k \in \operatorname{Fall}(G)$. Also, for each graph G and each natural number $k, k \in \operatorname{Fall}(G)$ iff there exists a type-II graph homomorphism from G to K_k . Therefore, the previous theorem implies the following corollary.

Corollary 8. Let $n \in \mathbb{N}$ and for each $i \in [n]$, G_i be a graph and $k_i \in \operatorname{Fall}(G_i)$. Then, there exists a type-II graph homomorphism from $\times_{i=1}^n G_i$ to $\times_{i=1}^n K_{k_i}$ and $\operatorname{Fall}(\times_{i=1}^n K_{k_i}) \subseteq \operatorname{Fall}(\times_{i=1}^n G_i)$. Also, $\chi_f(\times_{i=1}^n G_i) \leq \chi_f(\times_{i=1}^n K_{k_i}) \leq \psi_f(\times_{i=1}^n K_{k_i}) \leq \psi_f(\times_{i=1}^n G_i)$. These inequalities can easily extend to more inequalities in general. For example, in the case n=2, $\chi_f(G_1 \times G_2) \leq \begin{cases} \chi_f(K_{k_1} \times G_2) \\ \chi_f(G_1 \times K_{k_2}) \end{cases} \leq \chi_f(K_{k_1} \times K_{k_2}) \leq \begin{cases} \psi_f(K_{k_1} \times G_2) \\ \psi_f(G_1 \times K_{k_2}) \leq \psi_f(G_1 \times G_2). \end{cases}$

Dunbar, et al. in [1] showed that for each $m, n \in \mathbb{N} \setminus \{1\}$, Fall $(K_m \times K_n) = \{m, n\}$. They also showed that if $n \in \mathbb{N} \setminus \{1\}$ and for each $i \in [n]$, $r_i \in \mathbb{N} \setminus \{1\}$, then, $\{r_1, ..., r_n\} \subseteq \text{Fall}(\times_{i=1}^n K_{r_i})$. They constructed a fall 6-coloring of $K_2 \times K_3 \times K_4$ and asked for conditions for a finite and with more than two elements set $S := \{r_1, ..., r_n\} \subseteq \mathbb{N} \setminus \{1\}$ for which $S \subseteq \text{Fall}(\times_{i=1}^n K_{r_i})$.

Theorem 8. Let $n \geq 3$, $S := \{r_1, ..., r_n\} \subseteq \mathbb{N} \setminus \{1\}$, $r_1 < r_2 < ... < r_n$ and S contain at least one even integer. Then, $S \subsetneq \text{Fall}(\times_{i=1}^n K_{r_i})$, besides, $\text{Fall}(\times_{i=1}^n K_{r_i})$ contains an integer greater than r_n .

Proof. There are five cases.

Case I) $r_1=2$: In this case, let $t\in\{r_1,...,r_n\}\setminus\{r_1,r_n\}$. Consider $K_2\times K_t\times K_{r_n}$. Let σ be a disarrangement of [t] (a permutation σ of [t] such that for each $i\in[t]$, $\sigma(i)\neq i$). Obviously, $\{\{(1,i,1),(1,\sigma(i),2),(2,i,2),(2,\sigma(i),1)\}|\ 1\leq i\leq t\}\bigcup\{\{(x,y,z)|\ (x,y,z)\in K_2\times K_t\times K_{r_n},\ z=i\}|\ 3\leq i\leq r_n\}$ is the set of color classes of a fall (r_n+t-2) -coloring of $K_2\times K_t\times K_{r_n}$. But $r_n+t-2>r_n$ and therefore, in this case, Fall $(K_2\times K_t\times K_{r_n})$ contains an integer greater than r_n .

Case II) $2 < r_1$ and $\{r_1, ..., r_n\}$ contains at least two distinct even integers such that one of them is r_n and the other is r_s that $s \in \{1, ..., n-1\}$: Let $r_j \in \{r_1, ..., r_n\} \setminus \{r_s, r_n\}$. Consider $K_{r_s} \times K_{r_j} \times K_{r_n}$

and a disarrangement σ of $[r_j]$. For each t, $1 \leq t \leq r_j$, color the vertices $(1,t,1), (1,\sigma(t),2), (2,t,2)$ and $(2,\sigma(t),1)$ with the color t and color each other vertex (x,y,z) with the color $\lfloor \frac{x-1}{2} \rfloor (\frac{r_j r_n}{2}) + \lfloor \frac{z-1}{2} \rfloor r_j +$ the color of $(x-2\lfloor \frac{x-1}{2} \rfloor, y, z-2\lfloor \frac{z-1}{2} \rfloor)$. This is a fall $\frac{r_s r_j r_n}{4}$ coloring of $K_{r_s} \times K_{r_j} \times K_{r_n}$. Since $2 < r_1, \frac{r_s r_j r_n}{4} > \max\{r_s, r_j, r_n\}$. Hence, Theorem 6 implies that $\operatorname{Fall}(\times_{i=1}^n K_{r_i})$ contains an integer greater than r_n .

Case III) $2 < r_1$ and $\{r_1, ..., r_n\}$ contains at least two distinct even integers such that none of them is r_n : Similar to the Case II, $\operatorname{Fall}(\times_{i=1}^n K_{r_i})$ contains an integer greater than r_n .

Case IV) $2 < r_1$ and $\{r_1, ..., r_n\}$ contains exactly one even integer and r_n is even: In this case, consider $K_{r_{n-2}-1} \times K_{r_{n-1}} \times K_{r_n}$ and a disarrangement σ of $[r_{n-1}]$. For each t, $1 \le t \le r_{n-1}$, color the vertices $(1, t, 1), (1, \sigma(t), 2), (2, t, 2)$ and $(2, \sigma(t), 1)$ with the color t and color each other vertex (x, y, z) of $K_{r_{n-2}-1} \times K_{r_{n-1}} \times K_{r_n}$ with the color $\lfloor \frac{x-1}{2} \rfloor (\frac{r_{n-1}r_n}{2}) + \lfloor \frac{z-1}{2} \rfloor r_{n-1} +$ the color of $(x-2\lfloor \frac{x-1}{2} \rfloor, y, z-2\lfloor \frac{z-1}{2} \rfloor)$. Also, color each vertex (r_{n-2}, y, z) of $K_{r_{n-2}} \times K_{r_{n-1}} \times K_{r_n}$ with the color $\frac{(r_{n-2}-1)r_{n-1}r_n}{4}+1$. Therefore, a fall $(\frac{(r_{n-2}-1)r_{n-1}r_n}{4}+1)$ -coloring of $K_{r_{n-2}} \times K_{r_{n-1}} \times K_{r_n}$ and also of $\times_{i=1}^n K_{r_i}$ yields. But, $\frac{(r_{n-2}-1)r_{n-1}r_n}{4}+1 > r_n$. Thus, Fall $(K_2 \times K_t \times K_{r_n})$ and therefore Fall $(\times_{i=1}^n K_{r_i})$ contains an integer greater than r_n .

Case V) $2 < r_1$ and $\{r_1, ..., r_n\}$ contains exactly one even integer and r_n is odd: In this case, similar to the Case IV, $\operatorname{Fall}(\times_{i=1}^n K_{r_i})$ contains an integer greater than r_n .

Accordingly, in all cases, $\{r_1,...,r_n\} \subsetneq \operatorname{Fall}(\times_{i=1}^n K_{r_i})$. Besides, $\operatorname{Fall}(\times_{i=1}^n K_{r_i})$ contains an integer greater than r_n .

Even though Dunbar, et al. in [1] constructed a fall 6-coloring of $K_2 \times K_3 \times K_4$, this theorem also shows that in the Corollary 7, the inequality $\max\{\psi_f(G_i)|\ i\in[n]\} \leq \psi_f(\times_{i=1}^n G_i)$ can be strict in many cases. But we conjecture that the inequality $\chi_f(\times_{i=1}^n G_i) \leq \min\{\chi_f(G_i)|\ i\in[n]\}$ is always an equality.

Conjecture 1. For each $n \in \mathbb{N}$ and for each arbitrary graphs G_1, \ldots, G_n such that for each $i \in [n]$, Fall $(G_i) \neq \emptyset$, the following equality holds.

$$\chi_f(\times_{i=1}^n G_i) = \min\{\chi_f(G_i) | i \in [n]\}.$$

5 Fall colorings of some graph constructions

In this section, we study fall colorings of union of graphs and Mycielskian of graphs and then, we show that fall k-colorings of a graph are some proper k-colorings of some graphs in a specified set.

5.1 Fall colorings of union of graphs

Let $n \in \mathbb{N}$ and for each $1 \leq i \leq n$, G_i be a graph. The graph $(\bigcup_{i=1}^n (\{i\} \times V(G_i)), \bigcup_{i=1}^n \{\{(i,x),(i,y)\} | \{x,y\} \in E(G_i)\})$ is called the union graph of $G_1, ..., G_n$ and is denoted by $\biguplus_{i=1}^n G_i$.

The following obvious proposition describes fall colorings of union of graphs.

Proposition 3. Let $n \in \mathbb{N}$ and for each $1 \leq i \leq n$, G_i be a graph. Then, the following three statements hold.

- 1) If Fall($\biguplus_{i=1}^n G_i$) $\neq \emptyset$, then, for each $1 \leq i \leq n$, Fall(G_i) $\neq \emptyset$.
- 2) $\operatorname{Fall}(\biguplus_{i=1}^n G_i) = \bigcap_{i=1}^n \operatorname{Fall}(G_i)$.
- 3) If Fall($\biguplus_{i=1}^n G_i$) $\neq \emptyset$, then, $\chi_f(\biguplus_{i=1}^n G_i) = \min \bigcap_{i=1}^n \operatorname{Fall}(G_i)$ and $\psi_f(\biguplus_{i=1}^n G_i) = \max \bigcap_{i=1}^n \operatorname{Fall}(G_i)$.

Since any graph G is isomorphic to any union graph of all its connected components, the following corollary yields immediately.

Corollary 9. Let G be a graph and G_i , $1 \le i \le n$, be all its connected components. Then, the following three statements hold.

- 1) If $\operatorname{Fall}(G) \neq \emptyset$, then, for each $1 \leq i \leq n$, $\operatorname{Fall}(G_i) \neq \emptyset$.
- 2) $\operatorname{Fall}(G) = \bigcap_{i=1}^n \operatorname{Fall}(G_i)$.
- 3) If $\operatorname{Fall}(G) \neq \emptyset$, then, $\chi_f(G) = \min \bigcap_{i=1}^n \operatorname{Fall}(G_i)$ and $\psi_f(G) = \max \bigcap_{i=1}^n \operatorname{Fall}(G_i)$.

5.2 Fall Colorings of Mycielskian of graphs

Let $G:=(\{x_1,\ldots,x_n\},E(G))$ be a graph. The Mycielskian of G (denoted by M(G)) is a graph with 2n+1 vertices $x_1,\ldots,x_n,y_1,\ldots,y_n,z$ with edge set $E(G)\bigcup\{\{y_i,x_j\}|\ i,j\in[n],\ \{x_i,x_j\}\in E(G)\}\bigcup\{\{z,y_i\}|\ i\in[n]\}.$

For example, $M(K_2)$ is C_5 . We know that $\operatorname{Fall}(M(K_2)) = \operatorname{Fall}(C_5) = \emptyset$. Now we prove that for each graph G, $\operatorname{Fall}(M(G)) = \emptyset$.

Theorem 9. For each graph G, $Fall(M(G)) = \emptyset$.

Proof. If $E(G) = \emptyset$, then, M(G) has at least one isolated vertex and also at least one edge. Therefore, $\operatorname{Fall}(M(G)) = \emptyset$. Now we prove the theorem for the case $E(G) \neq \emptyset$. If $E(G) \neq \emptyset$ and $\operatorname{Fall}(M(G)) \neq \emptyset$, then, there exists a fall k-coloring f of M(G) for some $k \in \mathbb{N}$. Since $E(G) \neq \emptyset$, there exists an integer $i_0 \in [n]$ such that $f(x_{i_0}) \neq f(z)$ and since for each $j \in [n]$, $f(y_j) \neq f(z)$ and f is a fall k-coloring, there exists $i_1 \in [n]$ such that $x_{i_1} \in N_G(x_{i_0})$ and $f(x_{i_1}) = f(z)$. Since for each $i \in [n]$ with $f(x_i) \neq f(z)$, $N(y_i) \setminus \{z\} \subseteq N(x_i)$, so $f(x_i) \in \{f(y_i), f(z)\}$, on the other hand, $f(x_i) \neq f(z)$, hence, $f(x_i) = f(y_i)$. This immediately shows that each color of [k] appears on the neighborhood of y_{i_1} , which is a contradiction. Hence, $\operatorname{Fall}(M(G)) = \emptyset$.

5.3 Restriction of fall t-colorings of a graph into some proper t-colorings of some graphs in a specified set

Now we prove that fall k-colorings of a graph are some proper k-colorings of some graphs in a specified set.

Let G be a graph and $1 \le t \le \delta(G) + 1$ be a fixed natural number. For each $v \in V(G)$, choose t-1 arbitrary elements of $N_G(v)$ and join these t-1 vertices to each other and name the new graph H. Let $\widehat{G_t}$ be the set of all graphs H constructed like this.

Proposition 4. For each $1 \leq t \leq \delta(G) + 1$, $t \in \text{Fall}(G)$ iff $t \in \{\chi(H) | H \in \widehat{G_t}\}$. Specially, $\text{Fall}(G) = \bigcup_{i=1}^{\delta(G)+1} (\{\chi(H) | H \in \widehat{G_i}\} \cap \{i\})$.

Proof. Let $1 \leq t \leq \delta(G) + 1$. If $t \in \{\chi(H) | H \in \widehat{G_t}\}$, then, there exists a graph H in $\widehat{G_t}$ such that $\chi(H) = t$ and there exists a t-coloring f of H. This coloring f of f, is obviously a fall f-coloring of f and therefore, f is f in f in

of T, also $\omega(T) \geq t$, thus, $\chi(T) = t$ and $t \in {\chi(H) | H \in \widehat{G}_t}$. The second part of the proposition follows immediately.

Restricting this proposition into r-regular graphs and t = r + 1, yields a beautiful proposition of [2] but in different terminologies.

Proposition 5. For each r-regular graph G, $r + 1 \in \text{Fall}(G)$ iff $\chi(G^{(2)}) = r + 1$, where $G^{(2)} = (V(G), \{\{x,y\} | x,y \in V(G), x \neq y, d_G(x,y) \leq 2\})$.

6 Fall colorings of complement of bipartite graphs

Complement of bipartite graphs are very interesting graphs, because in each proper k-coloring, the cardinality of each color class is at most 2. The following theorem characterizes all fall colorings of this type of graphs.

Theorem 10. Let G be a bipartite graph. Then, $\operatorname{Fall}(G^c) \subseteq \{\chi(G^c)\}$. Besides, it is polynomial time to decide whether $\operatorname{Fall}(G^c) = \{\chi(G^c)\}$ or not.

Proof. Let A and B be the partite sets of G. If Fall(G^c) $\neq \emptyset$, then, there exists some k belong to Fall(G^c). Suppose that f is a fall k-coloring of G^c . Obviously, each color class of f is either of the form $\{x\}$ or of the form $\{y,z\}$ such that $y \in A$ and $z \in B$. A color class is of the form $\{x\}$ iff x is an isolated vertex of the graph G. Therefore, the set of color classes of f is the union of $\{\{x\} | x \in V(G), deg_G(x) = 0\}$ and the set of edges of a perfect matching of the induced subgraph of G on $\{x | x \in V(G), deg_G(x) > 0\}$, also, $k = |V(G)| - \frac{1}{2}|\{x | x \in V(G), deg_G(x) > 0\}|$. Therefore, Fall(G^c) $\subseteq \{|V(G)| - \frac{1}{2}|\{x | x \in V(G), deg_G(x) > 0\}|$ Besides, if Fall(G^c) $\neq \emptyset$, then, the induced subgraph of G on $\{x | x \in V(G), deg_G(x) > 0\}$ has a perfect matching, in this case, obviously, $\chi(G^c) = |V(G)| - \frac{1}{2}|\{x | x \in V(G), deg_G(x) > 0\}|$, and consequently, Fall(G^c) $= \{\chi(G^c)\}$. Therefore, for each bipartite graph G, Fall(G^c) $\subseteq \{\chi(G^c)\}$. We know that if Fall(G^c) $\neq \emptyset$, then, the induced subgraph of G on

 $\{x \mid x \in V(G), \ deg_G(x) > 0\}$ has a perfect matching. Conversely, if the induced subgraph of G on $\{x \mid x \in V(G), \ deg_G(x) > 0\}$ has a perfect matching, then, the union of $\{\{x\} \mid x \in V(G), \ deg_G(x) = 0\}$ and the edge set of each perfect matching of the induced subgraph of G on $\{x \mid x \in V(G), \ deg_G(x) > 0\}$ is the set of color classes of a fall $(|V(G)| - \frac{1}{2}|\{x \mid x \in V(G), \ deg_G(x) > 0\}|)$ -coloring of G^c and therefore, Fall $(G^c) \neq \emptyset$. Accordingly, Fall $(G^c) = \{\chi(G^c)\}$ iff Fall $(G^c) \neq \emptyset$ iff the induced subgraph of G on $\{x \mid x \in V(G), \ deg_G(x) > 0\}$ has a perfect matching. Since the problem of determining whether or not the induced subgraph of G on $\{x \mid x \in V(G), \ deg_G(x) > 0\}$ has a perfect matching, is a polynomial time problem, thus, it is polynomial time to decide whether Fall $(G^c) = \{\chi(G^c)\}$ or not.

Acknowledgements

The author wishes to thank Ali Jamalian who introduced him the concept of fall coloring and the reference [1]. Also, he would like to thank Hossein Hajiabolhassan, Meysam Alishahi and Ali Taherkhani for their useful comments.

References

- [1] J. E. Dunbar, S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, J. Knisely, R. C. Laskar, D. F. Rall, Fall colorings of graphs, J. Combin. Math. Combin. Comput 33(2000), 257-273. papers in honor of Ernest J. Cockayne.
- [2] M. Ghebleh, L. A. Goddyn, E. S. Mahmoodian, M. Verdian-Rizi, Silver cubes, *Graphs Combin.* 24(2008), 429-442.
- [3] R. Laskar, J. Lyle, Fall coloring of bipartite graphs and cartesian products of graphs, *Discrete Applied Mathematics* 157(2009), 330-338.