On Oriented Graphs with Certain Extension
Properties

T.H.Marshall *

Abstract

Let ' be an oriented graph. We denote the in-neighborhood and
out-neighborhood of a vertex v in I by I'"(v) and I't (v) respectively.
We say T has Property A if, for each arc (u,v) in I, each of the
graphs induced by I'*(u) N I'*(v), T'*(x) NI~ (v), I~ (u) NTH(v)
and I'"(u) N T~ (v) contains a directed cycle, and I" has Property B
if each arc (u,v) in I extends to a 3-path (¢,u), (u,v), (v,w), such
that [T+(¢) NI~ (u)| > 5 and [T (v) N[~ (w)] > 5.

We show that the only oriented graphs of order at most 17, which
have both properties A and B are the Tromp graph Tig and the graph
T obtained by duplicating a vertex of Tie.

We apply this result to prove the existence of an oriented planar
graph with oriented chromatic number at least 18. '

1 Introduction

This paper is concerned with oriented graphs, that is digraphs without loops
or oppeosite arcs; if I is an oriented graph, then we write I" = (V, A), where
V and A are respectively the vertex set and arc set of I'. We denote the out-
neighborhood (resp. in-neighborhood) of a vertex v in T' by I't1(v) (resp.
I'=1(v)). We usually denote these sets by I'*(v) and I'"(v) respectively.

We will investigate oriented graph which have the following extension
properties.

Definition:- An oriented graph I' has Property A if for each arc (u,v)
in (T),

Each of the graphs induced by I'*(u) N T+ (v), I't(u) NI~ (v),
I'~(u) NT*(v) and I'"(u) NI~ (v) contains a directed cycle, (1)
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and Property B if,

Each arc (u,v) €T, extends to a 3-path (¢,u), (u,v), (v,w), such that
[T+(#) NI~ (u)| 2 5 and [T*(v) NI~ (w)] 2 5 2

Our main result is:

Theorem 1 Up to isomorphism, the only oriented graphs of order at most
17, which have both properties A and B are the Tromp graph Tis and the
graph T7% obtained by duplicating a vertez of Tig.

We will define the graphs Tj¢ and T3 in section 2.

This work originated from some problems concerning homomorphisms
of oriented planar graphs. A homomorphism from G; = (V;, 4;) to G2 =
(Va, Az) is a function ¢ : Vi — V5 such that, if (u,v) € A;, then (¢(u), #(v)) €
As. An oriented graph H is a homomorphism bound for a class C of ori-
ented graphs-in short a C-bound-if H admits a homomorphism from every
graph in C. By analogy with the unoriented case, we define the oriented
chromatic number x,(G) of an oriented graph G, as the smallest order of a
homomorphism bound for {G}. For a class C, we then define x,(C) as the
supremum of x,(G) for G € C (this may of course be 00). Hell and Nesetfil’s
book [1] section 6.4 gives some further background on homomorphisms and
homomorphism bounds for oriented graphs.

We will be concerned with P-bounds, where P is the class of oriented
planar graphs. An obvious question concerning P-bounds is: how small
can they be (assuming that any exist at all)? This questions can be seen as
an oriented analog of the four color problem (In the category of unoriented
graphs the 4CT is just the statement that K4 is & homomorphism bound for
the planar graphs). Raspaud and Sopena [4] have constructed a P-bound
of order 80, and this remains the smallest known. Thus x,(P) < 80. In the
other direction, it is quite easy to show that x,(P) > 15, and this bound
has been improved in turn to 16 by Sopena [6] and 17 by the author [2].

Trivially, any extension of a P-bound is also a P-bound, so it is natural
to focus on minimal such graphs, that is oriented graphs which are P-
bounds, but whose proper subgraphs are not. The next result relates P-
bounds to the extension properties A and B.

Theorem 2 Every minimal P-bound T' has properties A and B.
We prove this result in Section 6, together with the following
Lemma 3 ([2]) Neither Ti¢ nor Tt bound P.

Interestingly, Ti¢ does bound the oriented planar graphs of girth 5 or
more [3], as well as the oriented graphs (planar or not) of treewidth 3 or
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less [5]. That Tye is not a P-bound is proved in [2], but the proof given
here is much easier.

Finally, Theorems 1, 2 and Lemma 3 combine to give an improved lower
bound for x,(P).

Theorem 4 Every P-bound has order at least 18. Thus x,(P) > 18.

(The second statement follows readily from the first. For each oriented
graph H of order less than 18, there is an oriented planar graph Py which
admits no homomorphism into H. The union of all these planar graphs
then has oriented chromatic number at least 18). Theorem 2 also greatly
simplifies the existing proofs that x,(P) > 16 and 17.

We use the following notations. Let I' = (V, A) be an oriented graph,
then V(I') = V, A(T') = A, || = |V|. For u,v € V, we define [u,v] to
be 1, -1 or 0, when there is, respectively, an arc from « to v, an arc from
v to u or no arc in either direction. We set d*(v) = [[*(v)|, (here, and
throughout the paper, we use the 4 notation to indicate that the statement
is true for each choice of sign), and d(v) = d*(v) + d~(v), the degree of
v. For U C V, we let [U] denote the subgraph of I" induced by U, and
I'-U = [V \U]. We write I'; ~T'5 to indicate that the oriented graphs I’y
and I'; are isomorphic, and Iy 2 I's to indicate that I'; is isomorphic to a
subgraph of I';. In the latter case we also say that I'; is an extension of I's.
We will say that two vertices u and v agree (resp. disagree) on a vertex w
if [u, w][v,w] = 1 (resp. —1), and that they (dis)agree on a vertex set S if
they (dis)agree on every vertex in S. We let d(u,v) (resp. a(u,v)) denote
the set of vertices on which u and v disagree (resp. agree). Two vertices
u,v € V(I') will be termed complementary or a complementary pair if they
either agree or disagree on the set of all of their common neighbors.

2 Paley tournaments and Tromp graphs

Let g be a prime, ¢ = 3 mod 4. The Paley tournament P, is defined by
V(P,) =%, A(P,) = {(a,b) | b — a is a nonzero quadratic residue}. Since
—1is not a square inZ,, P, is an oriented graph. The automorphisms of Py
are the maps of the form az + b, where a,b €1, a is a nonzero quadratic
residue. Clearly P, is arc transitive.

We construct the Tromp graph Taq42 of order 2¢ + 2, by taking two
copies of P, with vertex sets {0,1,...¢ — 1} and {0',1’,...g— 1}, and
two additional vertices 0o and co’. We then add arcs such that [0o,z] =
[oo’,2’] = 1 for all z € Z,, and [z,¥'] = [z',y] = —[r,y] and [z,2] = 0
for distinct z,y € 2, U {oo}. These graphs are also arc transitive; their
symmetries are discussed further in [2]. We will mostly be concerned with
the graphs P;, Tg and T} and their extensions.
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Definition:- If G is a vertex transitive oriented graph and v € V(G),
then G* (Resp. G™) is the extension of G obtained by appending a new
vertex ¥ to G, such that [#,v] =0, and [3, w] = [v, w] (resp. —[v,w]) for all
w € V(G) \ {v}. Since G is vertex transitive, G* and G~ are defined up to
isomorphism independently of the choice of v. For convenience we will let
v =0, when G = P;.

Observe that each of P; and P;” have one complementary pair, {0,0},
while T3 has four, {{0,0'},{1,1'},{2,2}, {o0, 00'}}. The vertices of these
pairs agree on all the other vertices for P, and disagree for P; and T.
In all these cases v and w are complementary if and only if [v, w] = 0. We
will be concerned with extensions of order 8 of the graphs P;", Py and Tg;
these are constructed simply by adding (possibly) an arc to Py and P,
and up to four arcs to Tz. We gather some simple observations about these
graphs. Except for the last one, the proofs are all routine (keeping in mind
the arc-transitivity of P; and Tg), so we leave the details to the reader.

Lemma 5 If C is a directed 8-cycle of T = Py or Ty then there is a unigque
v € V(T'), such that V(C) =T*(v) or V(C) =T (v).

Lemma 6 If C; and Cy are two disjoint directed cycles of I' = Py then
there is a unique v € V(T'), such that {V(C1), V(C2)} = {T*(v),I'""(v)}.

Lemma 7 If (u,v) is an arc in T' ~ Py, then [0+ (u)NT~(v)| = 1.

Lemma 8 If ' is an order 8 extension of P; (resp. Tg), u and v are
distinct vertices in T and a = %1, then [[*(u) NI~=*(v)] (resp. [I'*(uv) N
I'*(v)]) contains no directed cycle.

Lemma 9 Let G; and Gy be oriented graphs of order 5 obtained by remov-
ing a directed 3-cycle from respectively a P; extension and a Ty extension,
then Gy and G2 are not isomorphic.

Proof:- Suppose that the lemma is false, then there exists an oriented
graph I' with vertex sets A and B, of size 8, such that [A] D Ts, [B] 2 P
and B\ A and A\ B both induce directed 3-cycles. If A\ B contains no pair
which is complementary in [A], then, by Lemma 5, [A N B] contains two
vertices  and z’ which are complementary in A, together with a directed
3-cycle which lies in I'+(z) NI~ (z'), but, since [B] 2 P, this contradicts
Lemma 8.

Thus A\ B does contain a pair which is complementary in [A], whence
AN B comprises two more such pairs, {z,z’'} and {y,y'}, together with a
vertex 2. Since B\ A induces a triangular circuit, it does not contain the
pair which is complementary in [B], and so lies in an induced P;. Hence,
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by Lemma 5, [A N B] includes a vertex v and a cycle C in I'*(v) or I'"(v).
Since C cannot contain both vertices of either pair {z,z'} or {y,¥'}, we
may assume that C = [{z,y, 2}] and v = z’. Now

[#',4] = [y,z] (because z and z' are complementary in [A])
= [z,2z] (because {z,y,2} induces a directed cycle)
= =[a',]

_[xly y] (because C C F"'(a;’) or C C T ('),

a contradiction. O

3 Proof of Theorem 1: first cases

We now begin the proof of Theorem 1. After some preliminary results, we
prove that if I' has properties A and B, then, I" > Tj¢ if |I'| < 16 (Lemma
16), and T' = Tk if || = 17 and has a vertex of degree less than 15 (Lemma
17). The proof is completed in Section 4 by showing that I" must have such
a vertex. To begin with it is convenient to slightly reformulate Property B.

An oriented graph I' has Property B if, for each u,v € V(I'), with
a=[u,v] #0,

Jw e V(I') such that v e I'"%(w) and [T*(u) NI~ *(w)| =5, (3)

that is « and w disagree “uniformly” on at least 5 vertices, which include
v. For every adjacent v and v in an oriented graph with Property B, we
will let w(u,v) denote a vertex which satisfies (3). (Of course, there may
be several such vertices, so we just choose arbitrarily.)

We first consider some implications of Property A alone. Sometimes the
following simpler criterion suffices.

Corollary 10 IfT has Property A, and [u,v] # 0, then |a(u, v)|, |d(u, v)| >
6.

Definition Let G be an oriented graph. G has property Q, if G contains a
directed cycle. For n > 1, G has property Q, if, for each v € V(G), [G*(v)]
and [G~(v)] have property @n—;. The following is implicit in [2, Lemma
10].

Lemma 11 IfT has Property A, then it has property Q3.

The next result generalizes [2, Lemma 11]. We defer its proof to Section
5.

Theorem 12 The only minimal graphs with property Q, of order 8 or less
are P7 and Tg.
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Corollary 13 Every oriented graph of order 8 with property Q2 is an ez-
tension of Pi*, Py or Ts.

Proof:- Let I' be of order 8 and have property Q. If I' contains an imbed-
ded Py and one other vertex v, then, by Lemma 6 and the definition of @5,
there is a vertex w which either agrees or disagrees with v on all their com-
mon neighbors. In this case I' 2 P or I' 2 P;. Otherwise, by Theorem
12, T2 Ts. O

Lemma 11, Theorem 12 and Corollary 13 now give

Lemma 14 For every T which has Property A, and v € V(T), d¥(v) > 7,
with [[%(v)] =~ Py if equality holds, and [T'*(v)] being an extension of Py,
Py or Ty if d(v) = 8.

Lemma 15 IfT has Properties A and B, and u € V(T'), then

If v € T*(u), and w(u,v) is adjacent to u, then d*(u) > 8. 4)

If u is adjacent to every other vertez, then d*(u) > 8. (5)
7<d*(u) <0 -9 (6)

If, in addition, |T'| < 17, then:

If u has o unique non-neighbor u', then u is the unique
non-neighbor of v/, and d(u,u') = V(') \ {u,v'} (7

If u has two non-neighbors u',u", then either |d(u,v")|, |d(u,u")| > 10,
or else [u/,u"] =0, and d(u,v’) or d(u,u”) is V(I) \ {x,v,uv"} (8)

Proof:- If v € I'*(u), and w = w(u,v) is adjacent to u, then (1) and
(3) give [P*(u)| 2 |T*(u) NI*(w)| + [T*(u) NT~*(w)| = 3+ 5, whence (4),
and so (5). Lemma 14 gives the first inequality of (6), and also the second
if d(u) < |I'| — 1. If d(u) = |T'| — 1, then this inequality follows from (5).

For the rest of the proof, we suppose that |I'| < 17. If u has a unique
non-neighbor v/, then d(u) < 15, and so there is some a = +1 such that
[Te(u)] < 7; thus by (4), we have w(u,v) = ' for every v € I'*(u), and
so u and u' disagree on I'*(u). Now let v € I'"*(u) and w = w(u,v),
so that [I'*(w) NT~%(u)] > 5. If w # o', then [I*(w) NT*(u)] > 3
and [['*(w) N {u,u’'}] = 1 (since [*(u) C I'"*(v')). But now [['*(w)| >
5+ 3+ 1=09, contrary to (6). Hence w(u,v) = v’ for all v € I'"*(u), and
(7) follows.
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If » has a two non-neighbors v’ and v”, then, by Lemma 14, we have
IP] = 17 and d(u) = 14. It follows from (7), that d(u') = d(u") = 14
also. Suppose that one of these vertices-we assume u"- disagrees with u on
fewer than 10 vertices, then for some a € {-1,1}, |[I'*(u) NT~*(v')| < 5.
It follows using (4) that, for every v € I'*(u), w(u,v) = v'; that is u and
u’ disagree on I'*(u). Now suppose for a contradiction that [u’,u"] # 0.
It follows from (7) that ' has a non-neighbor v € I'~*(u), and so, using
(4), that w(u,v) = u”. In particular |T~*(u) N I'*(»")| > 5. But now
[P (w') NT=*(u")| < 2, contrary to (1). Thus [v/,4”] = 0 and so I'*(v/) =
I'~*(u), whence d(u,u') = V([') \ {¢,v,«"}. O

Note that (6) eliminates the case |I'| = 15 immediately. We can now
also easily deal with the case [['| = 16.

Lemma 16 The only oriented graph I' of order at most 16 with properties
A and B is Tyg.

Proof:- By (6), |I'| = 16, and each vertex of I has exactly one non-neighbor.

Let 7 map each vertex of V(I') to its non-neighbor. By (7), it follows
that 7 is an involution, and [7(z),7(y)] = —[r(z),y] = [z,¥], for z,y €
V(I'), so that 7 is an automorphism of I. Let co € V(I'); since each
[[%(00)) ~ P; is a tournament, 7 maps I'*(00) to '~ (00), and, in view of
(7), it follows that I' ~ Tyg. O

In order to deal with non-neighboring vertices more easily, it is con-
venient to use the complement T' of an oriented graph T, defined as the
(unoriented) graph on the same vertex set, where two vertices are joined
by an edge in T if and only if they are not joined by an arc in T

Lemma 17 The only oriented graph ' of order 17 with properties A and
B and with at least one vertez of degree at most 14 is Ty,

Proof:-. By (6), each vertex has degree at least 14 in ", and so at most
two in T, and our hypothesis is that this is attained for at least one vertex.
By (7) the neighbor of a vertex of degree one in T' also has degree one, thus
the components of T are isolated vertices, Kys and cycles, and we have at
least one cycle C. Let C have vertices in order v;, v, ...v,. We will show
first that n = 3. First we note that n < 5, for otherwise we would have two
adjacent vertices u and v in I', with four non-neighbors altogether, none
of which are common to both vertices. Thus V(I') would contain u and v,
together with their four non-neighbors and at least 12 common neighbours,
whence |I'| > 18, a contradiction.

Suppose now that n = 4. In this case v; and v3 are adjacent vertices
in ', which have in common their two non-neighbors v and v4. Suppose
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that v3 € I'*(v;). By (3), there is a vertex w = w(v1,vs) such that v3 €
I'%*(v;) NI'"*(w) and |T'*(v;) NI'"*(w)| > 5. Since w cannot be v; or vy,
it must be adjacent to v;. But, since I'*(v;) =~ P, this contradicts (4).

Suppose now that n = 5. By (8) and Corollary 10, if ¢ and j are
consecutive (modulo 5), then [d(v;, v;)| > 10, and otherwise |d(vi, v;)| > 6.
Thus ‘

> ld(ve,v;)] > 50+ 30 =80
1<i<j<5
On the other hand, each vertex v of I' — C is in at most 6 of the sets
d(v;,v;) (this value being attained when v has three out-neighbors and two
in-neighbors in C, or vice-verse), and each vertex of C is in at most 1. Thus
the above sum cannot exceed 6(12) + 5 = 77, a contradiction.

Thus |C| = 3. We have |d(v1, v2)|+ |d(v1, v3)|+ |d(v2,v3)| < 28, because
each vertex of ' — C contributes at most 2 to this sum, and each vertex of
C, nothing. But, by (8), if this inequality is satisfied, then two of the values
of |d(v;, v;)| are 14, whence the third is zero; that is two of the vertices of
C agree on all their common neighbors.

It follows that I' can be obtained from an oriented graph G of order
16, by duplicating a vertex, and it is easy to check that G inherits the
properties A and B from I'. Thus, by Lemma 16, G ~ Tyg, and so ' ~ Tj%.
O

4 Completion of proof of Theorem 1

In view of Lemmas 16 and 17, we can complete the proof of Theorem 1, by
showing that there is no oriented graph of order 17 and minimum degree
at least 15, which has properties A and B. Throughout this section we will
suppose, for a contradiction, that T is such a graph. We choose a fixed
vertex oo of I, and set I'y = [[*(c0)], Iy = [[~(00)]. By (7) we have
immediately

Lemma 18 T'; and I's are both tournaments.

We will call a vertex v of I deficient if d(v) = 15. By (7), each deficient
vertex v has a unique non-neighbor v'; we will refer to {v, v’} as a deficient
pair. In view of the above lemma, each deficient pair which does not include
00, has one vertex in each of I'; and I's.

By Lemma 14 and (6), each of 'y and I'; is an extension of Tg, P, P-;"
or P;.

Lemma 19 Let T D P; (resp. Py or Ty), with v and v' be complemen-
tary in Iy, and define, for e = £1

Ac(v) = [[(v) NT™(v)] (resp. [[*(v) NT*(v))),
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then

Ay(v) and A_1(v) each contain a directed cycle in T2,  (9)

IfTa D T3 ~ P, and A1(v) and A_y(v) both lie in T,
then there is a vertex u in T3, such that [u,v] =0 or [u,v"] =0,

(10)
T is either a tournament, or has at least two deficient pairs. (11)

Proof:- If oo is deficient, then we let 0o’ denote the (unique) non-neighbor
of co. Let S := V(I') — V(I'1), whence S = V(I'2) U {00, 00’} when oo is
deficient, S = V(') U {00} otherwise. Since the arcs between oo and other
vertices of S are all in the same direction, a directed cycle in [S] does not
contain oo; nor (in view of (7)) does it contain co’. Thus all directed cycles
in [S] actually lie in 5. It follows from Lemma 18 and (1) that A;(v) and
A_;(v) each contain a directed cycle. These cycles have no vertex in I',
so must lie in [S], hence in I'y; this establishes (9).

Now let I'; be as in (10). If oo is deficient, then I's = I'z, and we set
w = oo'; otherwise we let w be the single vertex in I'; \ I's. By Lemma 6,
there is a vertex u in I's such that {A;(v), A_;(v)} = {[[F ()], [[5 ()]}
We claim that either [u,v] = 0 or [u,?’] = 0. Suppose for a contradiction
that u is adjacent to both v and v'.

Suppose first that I'; 2 Ty or P;, then u either agrees with both v and
v’ on T'3 \ {u} or disagrees with both. In the former case

12 < |d(u, v)| + |d(u,v)| < 6 +2+2+2.

The first equality follows from Corollary 10, and the summands on the
right are contributed by the vertex sets V(I'y) \ {v,v'}, {v,v'}, {w} and
{oo}, respectively. Hence equality holds, and so v and v’ both disagree
with u, hence agree with each other, on w; that is, for some 7 € {-1,1},
w € I'(v) NT7(v'). Now each of [['""(v) NT"(u)] and [['~7(v') NI (u)]
contains a directed cycle, and these must lie in I'; U {c0}, hence (since all
arcs between co and Iy are in the same direction) in I';. Since these cycles
are disjoint, [T"(u) NV (T'y)] > 6, whence [T'=7(u) NV (T';)| < 2, contrary to
(1).

I u disagrees with v and v’ on Cj U Cs, then, arguing as before we have

12 < |a(u,v)| + la(u,v') < 6+ 2+2+0

(this time oo contributes nothing to the sum), for an immediate contradic-
tion.
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Now suppose that I’y D P;". Now u agrees with one of the vertices v,v’
on I'3 \ {u} and disagrees with the other. We suppose that u agrees with
v. By a similar argument to before

12 < |d(u, v)| + [a(u, )| 6 +2+2+1,

(this time oo contributes 1 to the sum), again giving a contradiction. We
have thus proved (10).

Now (11) easily follows. If I is not a tournament then we may assume
that oo is deficient, whence I's ~ P;. The existence of another deficient
pair now follows from (10), with I's = T'p. O0.

Lemma 20 Neither I'y nor I'; is an extension of Py .

Proof:- By symmetry (properties A and B are preserved under reversal
of arcs), we may suppose for a contradiction that I’y D P; . Let {v,v'} be
the complementary pair in I'y. Let A = A;(v) U A_1(v), as defined in (9),
and § = V(T') \ (T1 U {o0}). For each w € A, there is an € € {-1, 1} such
that v,v' ¢ I'*(w), and so, by (1) and Lemma 6,

Vw € A, there are ¢,n € {—1,1} such that I'(w) D T7(v) \ {+'} (12)

By the pigeonhole principle, there is thus an n = £1 such that the
vertices of the directed cycle C = I'J(v) \ {v'} agree (pairwise) on a set
B C A, of at least three vertices. Thus the set D := S\ B has at most
5 vertices. Let the arcs of C be (ap, 1), (a1,a2) and (a2, aq), then each
w € D is T (o;) NT~(ei41) for at most one value of ¢ (reading subscripts
modulo 3). Hence (again by the pigeonhole principle), there is an arc
(e, a;i41) of C for which I'*(a;) NT'~(c441) has at most one vertex in D,
hence in S. But since o; and ;4 agree on v and on v/, Lemma 7, shows
that |T'f (;) NI (e41)] = 1; hence |[T+(a;) NI~ (@i41)] < 2, contrary to
1.0

Completion of Proof of Theorem 1:- To begin with, we consider
the case where one or both of I'y, I's is a T3 extension. By symmetry, we
assume that I'; 2 Tg. We first show that

If u € V(T';) is deficient, and {v,v'} are complementary in I'y, then v
‘and v’ do not agree on u. (13)

Let w € V(I'1) be the non-neighbor of u. Note that (13) is immediate if
w € {v,v'}. Otherwise, by (7), we have [v,u] = —[v,w] = [v/,w] = [/, 4].
By (9), we have

Every complementary pair in I'; agrees on at least 6 vertices of I'2. (14)
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From (11), (13) and (14), it follows that I" either has exactly two deficient
pairs, or none. In particular,

There is a complementary pair of non-deficient vertices in I';.  (15)

We now begin to eliminate cases. It follows from (10) and (15) that I';  P;.
Next we suppose that I'; 2 Pf, and let 0 and 0 be complementary in Iz,
with [0,0] = 1. We show first that

Every complementary pair in I'; agrees on 0. (16)

We first we note, using (10), (14) and the fact that I'y — {0} ~ Py, that if
v and v’ are complementary and fail to agree on 0, then one of the pair is
deficient. Thus if (16) fails, then I' has at least one deficient vertex, and
hence it has two—call these u; and up. If 0 is one of these, then, by (13),
no complementary pair agrees on 0, in which case every pair contains a
deficient vertex, contrary to (15). Thus 0 ¢ {u;,u3}, but now (16) follows
from (13) and (14).

Using (16), I'~(0) comprises a set of complementary pairs in I';, and a
3-cycle in I'; (0 and oo are both in I'*(0)). Thus |['—(0)| is odd, whence, by
(5) and (6), 0 is deficient, contrary to (13) and (16). Together with Lemmas
14 and 20, this shows that, if I') 2 T3, then I's 2 P;. By symmetry, it
follows that if one of the graphs I';, I'; is an extension of T3, then both are.

To complete the proof, we choose 0o to be non-deficient. This is justified
because [I'| = 17 and there are an even number of deficient vertices. The
only cases that we have not eliminated are I';,I'; D P;* and I'1, Tz 2 Ts.
Let v and v’ be complementary in I'; with [v/,v] = 1. When I'; 2 T3, we
also suppose, using (15), that v is non-deficient. Setting C =T'] (v) \ {v'},
I'"(v) contains v/, oo, C and the vertices of a directed 3-cycle from TI';.
By (6), I'"(v) contains only these eight vertices. When I'; 2 Ty (resp.
Pf), C C T*(o0) NT*(v') (resp. I'*(c0) NT'=(v')), whence, by Lemma
8, [[~(v)] 2 P (resp. Ts). If [T+ (v)| = 8, then [T*+(v) NT| = 5, and,
by Lemma 9, [['+(v)] 2 T (resp. P;). If [T+ (v)] = 7, then v is deficient,
whence Ty 2 P and [~ (v)] 2 Ts. Thus in either case, one of the graphs
[T+ (v)], [[~(v)] is an extension of T3, and the other is an extension of Py,
a case we have already eliminated. O

5 Proof of Theorem 12

It suffices to show that, if T is a tournament of order at most 8 with
property Q2, then T contains an imbedded P; or T3. We suppose first
that |T| = 8; we may assume that V(T) =2, U {0}. For each v € V(T)
3<d*(v) <4. Let Ay = {v € V(T) | d¥(v) = 3}, and for v € Ay,
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define p(v) = [T*(v) N Az|. By counting indegrees and outdegrees, |A;| =
|A—| = 4 and the mean value of p(v) is 3/2. We assume that p(v) attains
its maximum value at v = 0; thus p(0) > 2. We assume that 0 € A,
(this is justified since the P; and T3 are both self anti-isomorphic and
property Q2 is also preserved under anti-isomorphism). We may further
assume that T*(0) = {1,2, 4}, that {1,2} C A_ and that [1,2] = 1, whence
[2,4] = [4,1] = 1, and T—(0) = {3,5,6,0} (the motivation for these and
subsequent choices is to make T resemble P;). Next, we may assume that
T-(1) = {0,4,6}, whence T+(1) = {2,3,5,0}, and [4,6] = [2,6] =

(because if [6,2] = 1, then T—(2) = {0,1,6} spans a transitive triangle).
Next we may assume that 7~ (2) = {0, 1,5}, whence T+(2) = {3,4,6,0}.

Suppose now that p(0) =3, then 4 € A_, and so [4,5] = 1 (else [T’ 4]
is transitive). By the remaining symmetry (between vertices 3 and 0), we
may assume that T—(4) = {0,2,3}, whence T+(4) = {1,5,6 ,0}. Now
{0} € T*+(d) € {0,3,5,6}, whence 0 € A_ (else T+(0) = {0, a, b}, with
{a,b} C {3,5,6}, which induces a transitive triangle in all cases); thus
T+(0) = {0,3,5,6}, T-(0) = {1,2,4}. We now have A_ = {1,2,4,0},
and so A4 = {0 3,5,6}. Now T is determined by the value of [3,5]. If
3, 5) = 1, then 57] P;; otherwise T D Ty (with complementary pairs
{0,0},{1, 3} {2,6} and {4,5}).

Finally suppose that p(0) = 2. By our maximality assumption, we then
have p(v) < 2 for all v. We now have 4 € Ay, and so, since p(1) < 2,
we then have 6 € A_. It follows that 7~(6) = {2,4,5}, since {2,4, 3}
and {2,4,0} both span transitive triangles. Hence T+ (6) ={0,1,3,0}. A
similar argument then gives T*(4) = {1,5,6}, whence T~ (4) = {O 2,3 0}
Since p(4) < 2, 5 e A.,., whence T+(5) = {0,2,6}, T-(5) = {1,3,4,0}.
Now again [I7] =

If|IT|=7 then we can select any v € V(T'), and construct an extension
T of T by appending a new vertex w in such a way that v and w agree
on V(T)\ {v}, and v and w are joined by an arc in either direction. Since
T also has property Qa, the result just proved shows that 7" contains an
imbedded graph G isomorphic to P; or T3. In neither case can G contain
two vertices which agree on all their common neighbors, so we must have
G=T-{w}=TorT=T-{v}~T. In both cases T~ P;. O

6 P-bounds

In this section we recall from [2] some necessary conditions for an oriented
graph to be a P-bound.

Definition:- A class C of oriented graphs is k-complete if the graph ob-
tained by pasting together two graphs in C along isomorphic I-tournaments
(I £ k) is also in C. In particular, observe that P is 2-complete.
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We say that an oriented graph I is minimal with some property P if T
has this property, but no proper subgraph of I" has.

Lemma 21 ([6], Lemma 3) LetC be a 2-complete class of oriented graphs,
I’ a minimal C-bound, G a graph in C, (u,v) an arc in G and (¥/,v') an
arc in T, then there is a homomorphism ¢ : G — T, such that ¢(u) = v’
and ¢(v) =v'.

Proof of Theorem 2:- Let I be a P-bound. From [2, Lemma 8], T has
property A. To prove property B, let P be the oriented graph constructed
from a directed 5-cycle C, and two other vertices a and b, with arcs from a
to each vertex in C, and from each vertex in C to b. Then P is planar, and
every homomorphism of P is injective. Now, if u,v € V(T') and [u,v] = 1,
then Lemma 21 gives a homomorphism ¢ : P — I', which maps a to u, and
one of the vertices of C to v, whence (3) holds if we set w = ¢(b). Similarly,
if [u,v] = —1, then there is a homomorphism mapping b to u, and some
vertex of C to w, and we can take w = ¢(a). O

Proof of Lemma 3:- Modify the graph P in the proof of Theorem
2 above, by reversing one of the arcs beween b and C, to conclude, by a
similar argument, that for each vertex v in a minimal P-bound, there exists
a vertex v which disagrees with u and at least four vertices, and agrees on
at least one. But this is false for Tg.

Since there is a homomorphism from Tj% to Tie (identify the duplicated
vertices), it follows that 77 does not bound P either. O

7 Concluding Remarks

We can obtain results similar to Theorem 1 using property A alone. The
following is implicit in [2].

Theorem 22 The only connected oriented graphs with property A and
mazimum degree 15 or less are Tyg and T,

and in an earlier version of this paper we proved

Theorem 23 The only oriented graphs with property A of order 17 or less
are Thg, Tj and the graph Tig constructed by adding a new verter w, with

Tie  (w) = {0,1,2,4,0,1,2,4'}, and Tig ~(w) = {00,3,5,6,00", 3, 5,6}

The details of the proof, which we omit, are tedious. Theorem 1 follows
from Theorem 23, by showing (for example through (7)) that P does not
have property B; but the arguments are much simpler if this condition is
incorporated from the start.
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