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1. INTRODUCTION

The notion of a trade in design theory was first formally introduced in 1977 by
Hedayat [11]. However, trades have been used in the literature quite earlier under
different disguise. Back in 1916, "quadrangular and hexagonal transformations”,
appeared in constructing Steiner triple systems of order 15 [28]. In the 1970s,
names such as "t-pods” {14], "null designs” [13], "functions with strength ¢” [3]
and "fragments” [12] carried the concept of a combinatorial trade. The original
use of these objects as defined by Hedayat was to avoid some undesirable blocks in
an experimental design while maintaining the same parameter-variety set. But the
idea behind them was later extended to solve several diverse problems concerning
graphs, ¢-designs, signed designs, latin squares, and large sets.

There are some review papers on these objects available [1, 21, 15, 27]. In [1,
21] the structure and properties of these objects as well as their interaction with
other combinatorial structures are surveyed. More recently, some algorithms which
exploit trades and their rich algebraic properties were developed and utilized to
solve several classification and existence problems in design theory. Since this
algorithmic approach is not touched in available reviews, this paper intends to
provide a brief update on this algorithmic approach and its applications. The pa-
per is organized as follows: in Section 2, introductory concepts are presented;
Section 3 describes an algorithm for the classification of trades while in Section 4
applications of this algorithm for the case of t-designs and large sets are explained.
Section 5 is about a local search algorithm for constructing signed designs.

2. DEFINITIONS AND PRELIMINARIES

Let v,k,t and A be positive integers. Let X be a set of cardinality v and let P(X)
denote the set of all i-subsets of X. The elements of X and P,(X) are called points
and blocks, respectively. We define a t-(v,k,A) design, or briefly a t-design to be
a pair (X, %), where & is a collection of blocks of X with the property that every
element of P,(X) lies in exactly A blocks of %8. We also note that if A > 0, then
we must have 0 <t < k < v, for the definition to make sense. An isomorphism
between (X, %) and (X', #') is a one-one mapping from X to X’ such that the
blocks of % are mapped onto the blocks of %'. If no such mapping exists, then
the designs are said to be non-isomorphic. The set of automorphisms of a design
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(that is, isomorphisms from a design to itself) forms a group which acts in a nat-
ural way as a permutation group on the points of the design and consequently on
its blocks. A design is called rigid if its automorphism group is the trivial group.

A t-(v,k) trade T = {T), T} consists of two disjoint collections of blocks of
X, T and T, such that for every A € PB(X), the number of blocks containing A is
the same in both 71 and 75. The covering property of the elements of £ (X) in a
t-(v,k) trade forces T} and 75 to have the same number of blocks. This number,
which we refer to as the volume of the trade is an important characteristic of the
trade and is denoted by vol(T). A trade is void if vol(T") = 0. Clearly, both T; and
T3 must cover the same set of points which is called the foundation of the trade
and is denoted by found(T), For each point x € found(T), we consider the set
of all blocks containing it. By omitting x from these blocks, we obtain a (¢t — 1)-
(v—1,k—1) trade and we call it the derived trade with respect to x. Two trades
T = {T),T»} and T/ = {T|,T;} are called isomorphic if there exists a bijection
o : found(T") — found(7”) such that 6(T) = {0(T1),0(2)} = {T{, T} =T'. An
isomorphism o such that 6(T) = T is called an automorphism of T. Clearly, the
set of all automorphisms of T forms a group. T is called rigid if its automorphism
group is trivial.

Suppose the sets Pi(X) and P(X) are ordered with some legitimate order-
ing. Now, we define a (7) x (}) inclusion matrix, P, = (pa), whose rows and
columns are indexed by the elements of F;(X) and P(X), respectively and is de-

fined as follows:
_J1 AcCB
Pas = 0, otherwise.

For t <k < v—t, it is known that that the rank of P, is (;) [11] and hence its
kernel, denoted by N7, is a Z-module of dimension () — (7).
3. AN ALGORITHM FOR THE CLASSIFICATION OF TRADES

There are different bases for N, in the literature. For a brief description, the
reader is referred to [19] where the authors also introduce a new basis which is
called the standard basis by them. In [9], it is shown how this basis can be used
to classify ¢-(v, k) trades as follows.

The (}) — ({) trades of the standard basis constitute the columns of a matrix
My, which has the following block structure:

1
M=
* [ My ]
, where / is the identity matrix of order (i) — (). The rows of M}, corresponding
to 7 are indexed by the so-called starting blocks and the remaining rows by the
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non-starting blocks [23]. In [8], the following recursive block structure is obtained

for M}, :

k
v | My O
TN M

A direct way to produce and classify all #-(v, k) trades is to compute linear com-
binations of the columns of M;, with coefficients 0, 1 and —1, and then to decide
whether the resulting trade is simple. Except for a few small values of the param-
eters, the dimension of Ny, makes it impractical to deal with all the columns of
My, However, considering the recursive structure of M} ,, the problem turns into
classifying (¢ — 1)-(v— 1,k — 1) trades. Suppose (¢ — 1)-(v—1,k— 1) trades have
been classified so that we have one representative for each isomorphism class. Let
T be a t-(v,k) trade and let D; be its derived trade with respect to the point 1.
D; is clearly isomorphic to one of the representative (¢ — 1)-(v— 1,k — 1) trades,
say D). So, there exists a permutation 7% such that D} = zD;. Therefore, £T
(an isomorphic copy of T') will be the extension of D}. Hence, to classify t-(v,k)
trades, up to isomorphism, it suffices to extend only the representatives of the iso-
morphism classes of (t — 1)-(v— 1,k— 1) trades. The structure of M’ ' helps us in
determining r-(v, k) trades by extending (¢ — 1)-(v— 1,k — 1) trades. Let T/ be a
(t—1)-(v—1,k— 1) trade. Then the coefficients of the first (}_}) — (!_}) columns
of My, are specified by the blocks of T'. To extend T”, it suffices to determine the
coefficients of the remaining columns of M}, in such a way that the result would
be a simple trade. Finally, we have to check for isomorphism among all extensions
to obtain a classification of all t-(v,k) trades. The pseudo code for the algorithm
is as follows:

Algorithm. A recursive algorithm to classify trades
Procedure ClassifyTrads (t,v,k)

begin

if (t=1) then
Compute (z,v,k);

else begin
ClassifyTrades (t — 1,v—1,k—1);
Extend (¢ —1,v—1,k—1);

end

end

In the pseudo code, Compute produces all simple trades which can be obtained
as a linear combination of the columns of M), with coefficients 1 and —1.

This recursive construction which ignores isomorphic copies of the derived
trades, results in a considerable reduction in the number of extensions that are
to be checked further to distinguish isomorphism classes. In [20], Khosrovshahi
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et al., utilized mathematical reasoning to classify 2-(v,3) trades for v=6 and 7.
They proved that there exist 3 trades with foundation size 6 and 12 trades with
foundation size 7. For v = 8, there are over 560,000,000 distinct trades and we
definitely need an algorithm to accomplish classification. Application of the above
algorithm to this case results in about 300, 000 extensions and reports (see [9]) the
total number of 2-(8,3) trades as 15,011. The algorithm has also been applied to
some classes of 2-(9,3) trades [9].

4. COMBINATORIAL TRADES IN CLASSIFICATION OF {-DESIGNS AND LARGE
SETS

In general, any kind of complete classification of combinatorial objects is a
challenging task. There are several common algorithmic approaches which are
used to search for configurations with particular properties. Indeed, the use of
clever computational techniques in enumeration theory, has not only enabled many
existence and enumeration questions to be settled, but has also allowed larger
classes of designs to be analyzed, often leading to the formulation of conjectures
whose truth have been established for infinite families of designs. In [2, 4, 26, 25]
some interesting instances are provided. -

Since special classes of some combinatorial objects can be translated into the
framework of trades, we can employ any algorithm for the classification of trades
on these objects as well. Therefore, in this section, we demonstrate how the algo-
rithm of Section 3 can be used on structures other than trades. We shall describe
two such instances here.

4.1. Trades and r-designs. Let T; = (X, %) be a t-(v,k, (;_})/2) design. Then,
T = {Ti, T2} is a trade with vol(T) = (})/2, where T3 = (X, P(X)\#). This
means that, with some modification, the algorithm of the previous section can be
employed for the classification of r-(v,k, (;_) /2) designs. In practical situations,
however, the number of designs grows so rapidly that we may consider classifying
a subset of such designs. A good choice is usually imposing in addition a non-
trivial automorphism &, and then classify non-rigid designs. However, this does
not affect the applicability of the algorithm for the case of non-rigid designs. To
see this, note that if the design 77 has a non-trivial automorphism z, then 7 is
an automorphism of the trade T as well. Furthermore, any automorphism ¢ of
the trade T such that 07y = 7> corresponds to an isomorphism between the two
designs T; and T5. Indeed, for a non-rigid trade, we have the following simple
lemma.

Lemma 4.1.1. Let T = {Ti, T} be a simple t-(v,k) trade of volume (;)/2. Then
T is non-rigid if and only if one of the following occurs:

(i) T and 7> are non-rigid designs.
(ii) 77 and T; are isomorphic rigid designs.



Therefore, If we manage to classify all -(v,k) trades of volume () /2 with a
non-trivial automorphism, then we can also obtain the classification of all non-
rigid t-(v,k, Arr/2) designs, where A, = (;_!). In addition to this, we may con-
struct some rigid designs as well. To see this, note that each of these trades, say
T = {11, T2}, consists of two t-(v,k, Ay /2) designs T; and T. According to the
above Lemma, if T admits exactly two automorphisms and 7 is rigid, then T,
is also a rigid design isomorphic to T;. These trades produce ¢-(v,k, A,,/2) rigid
designs and the rest of the trades produced by the algorithm, add to the collection
of non-rigid designs.

We now proceed to illustrate this with an example. We consider the class of
2-(10,3,4) designs. The 60 blocks of these designs constitute exactly half of all
(%) blocks. let Tj = (X, 4B) correspond to a 2-(10,3) design with 60 blocks and
define 75 as the remaining 60 blocks of (X, P(X)\ ). Clearly, T is a 2-(10,3,4)
design disjoint from 7} and hence T = {T1,T>} is a trade of volume 60. Therefore,
we can run ClassifyTrades (2, 10, 3) to classify these trades.

In ClassifyTrades (2, 10, 3), 1-(9,2) trades of volume 36 are first classi-
fied. Up to isomorphism, there exist exactly 10 non-isomorphic 1-(9,2) trades,
S1,...,810 [8]. The direct extensions of these derived trades result in over 200,000, 000
solutions for which isomorphism testing would be clearly hard to carry out. To
overcome this difficulty, as described before, we may consider a subset of this
class consisting of non-rigid trades. We classify all 2-(10,3) trades of volume 60
with a non-trivial automorphism, then we can also obtain the classification of all
non-rigid 2-(10,3,4) designs and at the same time construct some rigid designs.
For a complete description and computational results, the interested reader is re-
ferred to [8], where this classification is used to enumerate (but not construct)
the exact number of rigid trades and consequently the exact number of rigid 2-
(10,3,4) designs. Some other parameter sets on which this algorithm has suc-
cessfully been applied are 3-(11,4,4) designs [6], 4-(12,5,4) designs 5-(13,6,4)
designs, and 6-(14,7,4) designs [7].

4.2. Tradesand largesets. A large set of t-(v,k,A) designs, denoted by LS[N](z, &, v),
is a partition of Px(X) into N disjoint z-(v,k,A) designs, where N = (;7{)/A. We
first consider N =2 in which the large set will consist of two disjoint z-(v,k,4)
designs, where A = (}) /2. The explanation of the previous section shows that an
LS[2](¢,k,v) is exactly a t-(v,k) trade T = {T}, T3} of volume (})/2 where T; and
T; are t-(v,k, (;_}) /2) designs. This translation of large sets in terms of trades
can again be exploited to obtain classification results about large sets in the same
way that we did about designs. We therefore omit the details and mention that
non-rigid 2-(10,3) trades of volume 60, which we obtained in previous section,
are exactly all non-rigid LS[2](2, 3, 10) and the same is true about other parameter
sets.

For LS[N](t,k,v) with N > 2 (i.e., when the large set is not directly a trade), an
algorithm based on trades has been devised to generate a large set whose existence
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question was open. The following simple observation, is the basis of the method
used. Let B = {%;}/, be an LS[N](t,k,v) with a non-trivial automorphism 7 of
type 17 p™ (in other words, % consists of m cycles of (prime) length p and n fixed
points). Then if B # %; for some 1 giSN,Bcontainsalso.@,."j,j= L...,(p—-
1). This means that if the large set contains one such design, i.e. 8* # 4 , then it
also contains .93",.93"2, ces i So, if we can produce all candidates for & in a
large set, we construct at the same time p components of it. Now, if N — 2 designs
of large set are produced this way, then the remaining 2 (disjoint) designs will
naturally form a trade and hence the standard basis for trades can be employed to
find them.

To illustrate, the smallest open case on LS[7](3,k,v), i.e. LS[7](3,5,11), was
resolved with this approach. Let B = {;}]_, be an instance of a LS[7)(3,5,11)
which is invariant under G =< ¢ > where o is of type 123%. For this class,
computational results show that B can not consist of G-invariant designs [24].
Therefore, the only possible structure for a G-invariant LS[7](3,5,11), would be
(Q.,Qf,.@fz)gz(ﬂg,@g ,.@5’2 ), where 87 = ;. We now propose the fol-
lowing algorithm to construct B : take 4 to be any of 24 3-(11,5,4) designs
invariant under . The choices for these designs can be obtained as in [10]. Next,
determine all permutations 7 of type 1233 such that %, %7, and B are dis-
joint. Relabel the points so that the designs are disjoint under the action of ¢ (i.e,
7 = (1)(2)(345)(678)(9AB) for every solution). Now, we have a set of 3 dis-
joint isomorphic designs. Removing orbits of these designs from columns of the
Kramer-Mesner matrix, obtain (if possible) all candidates for %, (i.e. &5 = %,).
Now, we are left with 198 blocks from among which we need to construct 2 more
disjoint (isomorphic under o) 3-(11,5,4) designs to complete the large set. These
designs form a 3-(11,5) trade T = {7}, Tz} with vol(T) = 66 such that T,° = T5.
So, we can implement backtracking on the standard basis of trades to produce
such trades [5].

5. A LOCAL SEARCH ALGORITHM FOR THE CONSTRUCTION OF SIGNED
t-DESIGNS

The search for a combinatorial structure may be formulated in the form of
an optimization problem in which the “goodness” of an approximate solution is
measured in terms of an objective or cost function. The goal is to find a config-
uration of minimum cost through applying a series of transformations. A new
configuration is accepted if its cost does not exceed the cost of its pre-image. In
this section, we present an algorithm of this type for the construction of t-designs
which is based on trades. But first we prefer to scrutinize designs and trades from
an algebraic point of view.

In the definitions for designs and trades, we used the term collection deliber-
ately to reflect the fact that any block B is allowed to occur a positive number of
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times, say m(B), in the structure. The integer m(B) is called the multiplicity of
B. Our formal definition of a £-(v,k,A) design is then a vector of non-negative
integers m = (m(B) : B € P(X)) with the property that Y5, m(B) = A, for all
A € B(X). At-(vk) trade T = {T1, T2} corresponds similarly to an integer vector
m = (m(B) : B € P;(X)) with the property that ¥’ g, m(B) = 0 for all A € P,(X),
provided that we negate the multiplicities of blocks of the 7 (or T3) part of the
trade. A ¢-design or trade is simple if no two blocks are identical.

Another closely related configuration to the aforementioned structures, is the
notion of a signed design. A signed design with positive integer parameters
1,k,v,A, is an integer vector m = (m(B) : B € P(X)) with the property that ¥ 54 m(B) =
A forall A € P,(X). Clearly a design is just a signed design with non-negative mul-
tiplicity for each block.

1t will also be convenient for us to consider these structures as solutions to
a matrix equation. We consider the system of equations P,"’km = Aj (*), where
J is the (})-dimensional all-one vector. Any integral solution of (x) is called a
" t-(wk,A) signed design; any non-negative integral solution of (+), is called a z-
(v,k,A) design; and any integral solution of () for A =0, is called a ¢-(v,k) trade.
Therefore, the set of all ¢-(v,k) trades is the kernel of 7.

Let m be a #-(v,k,A) signed design and let my be an arbitrary ¢-(v,k) trade.
Clearly, m + mr is also a signed design. This augmentation of a signed design
by a trade is referred to as trade-off. In this section we show how trade-off can
be employed in the context of combinatorial optimization to devise a local search
algorithm for constructing signed designs.

The basic idea is to choose a trade T in such a way that its augmentation to
the signed design can reduce the number of blocks with negative multiplicities. If
this can be accomplished, then we might hope to produce signed designs which
are "close” to designs. For a set of parameters, the set (S) of feasible solution is
taken to be the solutions of (x). Define the neighborhood of m € S as elements of
Sm, where S = {m’ € S such that m —m’ is a minimal trade}. In this model,
the following can be considered as cost functions:

()
®1(m) = :g' |mi],
®)
¢2(m) =— E mi,

i=1,m<0
¢3(m) = @;(m) + @2(m),
@4(m) = @ (m) — | {m;|m; # 0}(.
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For example. the cost function @, shows the number of blocks with negative
multiplicities in the signed design. Clearly, p(m) = 0 if and only if m = Oor
equivalently, when m is a 7-design. We can now present the Iocal search algorithm
as follows.

Algorithm. A local search algorithm to construct signed r-designs.
Procedure ConstructSignedDesign (¢,v,k,A)
begin

m = FindSignedDesign (¢,v,k,1);
repeat
m' = ChooseNeighbor (m,Sp);
if p(m’) < p(m) thenm = m'’;
until p(m’) > @(m) for all m’ € Spy;

end

In the pseudo code, FindSignedDesign, finds a #-(v,k,A) signed design m. An
algorithm to do this can be found in [16]. ChooseNeighbor selects a new signed
design from Sy, by choosing first a set of blocks with undesirable multiplicity in
m and then proceeds to construct all minimal trades passing through those blocks.
For each such trade T, its augmentation to m is computed and tested with the
appropriate cost function. If the test fails, another set of blocks is tested and
processed until all the signed designs in the neighborhood are examined.

Examples of signed designs produced using this approach are 2-(15,5,4), 4-
(12,5,4), and 4-(15,5,5) designs [22, 17, 18].
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