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Abstract: Let G = (V, E) be a graph. Asubset DC Visa
dominating set if every vertex not in D is adjacent to a vertex
in D. The domination number of G is the smallest cardinality
of a dominating set of G. The bondage number of a nonempty
graph G is the smallest number of edges whose removal from
G results in a graph with larger domination number of G. In
this paper, we determine that the exact value of the bondage
number of (n — 3)-regular graph G of order n is n — 3.
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1 Introduction

For graph-theoretical terminology and notation not defined here, we follow
[14]. Specifically, a graph G = (V, E) is considered as an undirected graph
without loops and multi-edges, where V = V(G) is the vertex-set and
E = E(G) is the edge-set. For a vertex z in G, let Ng(z) = {y € V(G) :
zy € E(G)}, Nglz] = Ng(z) U {z} and Eg(z) = {zy : y € Ng(z)}.
The cardinality | E¢(z)| is the degree of z. For two disjoint nonempty and
proper subsets S and T in V(G), we use Eg(S, T) to denote the set of edges
between S and T in G, and G[S] to denote a subgraph of G induced by S.
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A vertex y is said to be dominated by a vertex z if y € Ng(z) in graph
G. A subset D C V is a dominating set of G if Ng(x) N D # @ for every
vertex z in G — D. The domination number of G, denoted by ¥(G), is the
minimum cardinality of all dominating sets of G.

In 1990, Fink et al. [3] introduced the bondage number as a parameter
for measuring the vulnerability of the interconnection network under link
failure. The bondage number of a nonempty graph G, denoted by b(G), is
the minimum number of edges whose removal from G results in a graph
with larger domination number than v(G), that is,

b(G) = min{|B| : B C E(G),¥(G — B) > v(G)}.

A nonempty subset B C E(G) is said a bondage setof G if y(G—B) > 4(G).
A hondage set B is said to be minimum if |[B| = b(G). In fact, if B is a
minimum bondage set, then v(G — B) = ¥(G) + 1, because the removal of
one single edge can not increase the domination number by more than one.

It is quite difficult to compute the exact value of the bondage number
for general graphs since it strongly depends on the domination number
of the graphs. Very recently, Hu and Xu [6] showed that the problem
determining bondage number for general graphs is NP-hard. However,
the bondage number has received considerable attention in [1-5,7-13,15].
Much work focused on the bounds of the bhondage number as well as the
restraints on particular classes of graphs. In particular, Fink et al [3]
showed b(K,) = [%] for an (n — 1)-regular graph K, of order n > 2,
b(G) = n — 1 for an (n — 2)-regular graph G of order n > 2, where G is a
t-partite graph Kn, n,,..n, Withni =np =.-.=n, =2 and t = % for an
even integer n > 4.

In this paper, we show that b(G) = n—3 for every (n — 3)-regular graph
G of order n > 4.

2 Main results

Lemma 2.1 v(G) =2 for any (n — 3)-regular graph G of order n > 4.

Proof. Let G be an (n — 3)-regular graph of order n > 4. It is clear that
~(G) > 2 since there exists no such a vertex that dominates all vertices in
G. We only need to construct a dominating set of G with two vertices. Let
z be any vertex, and let y and z be the only two vertices not adjacent to z
in G.

If yz € E(G), let D = {z,y}. If yz ¢ E(G), then there is a vertex w
adjacent to both y and z in G since n > 4. Let D = {z,w}. Then Dis a
dominating set of G. Thus ¥(G) < 2 and hence v(G) = 2. ]

Lemma 2.2 5(G) < n — 3 for any (n — 3)-regular graph G of order n > 4.
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Proof. For a vertex = in G, let G' = G — z. Then y(G’) > 2 since any
vertex y in G’ can not dominate all vertices in G’. Thus, 7v(G — Eg(z)) >
3 > 2 =(G) by Lemnma 2.1, which implies that (G) < n — 3. ]

Lemma 2.3 Let G be an (n — 3)-regular graph of order n > 7 and B be
a minimum bondage set of G. If |B| < n — 4, then there are at most two
vertices ¢ and y in G such that Eq(z)NB = Eg(y)N B = 0.

Proof. Let G’ = G—B. Then 4(G’) = 3 since B is minimum and ¥(G) = 2
by Lemma 2.1. Suppose to the contrary that there are three vertices z;, z3
and z3 such that

Ec¢(x;)nB =0 foreachi=1,2,3. (2.1)

Let X = {x1,x2,23}. We claim that X is a dominating set of G’. In fact,
if there is some vertex u in G’ that is not dominated by X, that is, u is
not adjacent to any vertex in X, then u has degree at most (n — 4) in G
by (2.1), a contradiction. Thus, since X is a minimum dominating set of
G’ there exists a vertex y;; ¢ Nor[z:]UNgr|z;] in G’ for 1 <is# j < 3. Let
Y = {y12, Y23, v13}. Then |Y| = 3 since the vertex z; has degree (n — 3) in
G’ by (2.1) for each i =1,2,3.

Since G is (n — 3)-regular, {y12, %13}, {¥12,¥23}, and {ye3, 13} are the
only two vertices not adjacent to x;, x> and z3 in G, respectively. Similarly,
{r1, 22}, {z2,z3} and {z3,x:} are the only two vertices not adjacent to y12,
y23 and y13 in G, respectively. Also since G is (n — 3)-regular, G[Y] = K.
Note that any vertex in X can dominate all vertices in G except for some
two vertices in Y. If G[Y] — B contains a vertex, say yo3, of degree two,
then {r),y23} is a dominating set of G — B, a contradiction. Therefore,
G[Y] = B contains no vertices of degree two, which means that

|E(G[Y])nB| > 2. (2.2)

Let § =V(G)\ (X UY). Then S # @ since n > 7. By (2.2) and |B| <
n —4, we have that |Eg(Y,S) N B| < n—6. Then there is some s € S such
that |Eg(s,Y) N B} < 1. Without loss of generality, assume that two edges
sy12 and syy3 are hboth not in B. Then {s, z,} is a dominating set of G’ since
s can dominate two vertices y;2 and y13 and x; can dominate all vertices
except for y12 and y13, which implies that ¥(G’) < 2, a contradiction. 1

Lemma 2.4 Let G be an (n — 3)-regular graph of order n > 7 and B be
a minimum bondage set of G. If there exists a vertex x € V(G) such that
Ec(z)yNB =0, then |[B|=n~-3.

Proof. By Lemma 2.2, we only need to prove that |[B| > n — 3. Let
z € V(G) such that Eg(z) N B = 0, let y, z be the only two vertices not
adjacent to z in G, and G' = G — B. Then 7(G’) > 3 by Lemma 2.1.
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If y2 ¢ E(G), then both y and z are adjacent to each vertex s € V; =
V(G)\ {z,y,2} in G. Thus at least one edge in {sy,sz} belongs to B
otherwise {z, s} is a dominating set of G’. Then

|BI > |Es({y,2}, i) N B| > [Vi| = n — 3.

If y2 € E(G), then y2 € B otherwise {z,y} is a dominating set of
G’. Let p and ¢ be the only vertex except r not adjacent to y and z
in G, respectively. Then both y and z are adjacent to any vertex t €
V2 =V(G)\ {z,9,2,p,q} in G. Thus at least one of {ty, ¢z} belongs to B
otherwise {z,t} is a dominating set of G’. Thus,

n—4 ifp=gq;

n—5 ifp#q. (2:3)

|Ec({y, 2z}, V2) N B| > |V3| ={

If p = q then, by (2.3), we have that
|B| > {yz}| + |Ec({y, 2}, Vo) N B| > n—3.

If p # q, then |(Eg(p) U Eg(q)) N B| = 1 since Eg(x)N B = @ and there
are at most two vertices u,v € V(G) such that Eg(u)NB = Eg(v)NB =0
by Lemma 2.3. Thus, by (2.3), we have that

|B| = {yz}| + |Ec({y, z},V2) N Bl + [(Ec(p) U Ec(@)) N B| 2 n - 3.
The lemma follows. ]
Theorem 2.1 b(G) = n—3 for any (n—3)-regular graph G of order n > 4.

Proof. We first consider n € {4,5,6}. If n = 4, then G = K + K3, so
b(G) =1. If n =5, then G = Cjs, thus b(G) = 2. Assume n = 6 below.

Let x be a vertex and y, z be the only two vertices not adjacent to = in
G. It is easy to verify that

c=] CaxKzs ifyz€ E(G);
| Kags if yz ¢ E(G),

and so b(G) = 3.

We now assume 7 > 7 in the following discussion.

Let B be a minimum bondage set of G and G’ = G—B. Then y(G’) = 3
by Lemma 2.1. If there exists a vertex x € V(G) such that Eg(z)NB = @,
then |B| = n — 3 by Lemma 2.4. We now assume that Eg(zx) N B # 0 for
every vertex z € V(G). By Lemnma 2.2, |B| < n — 3. Next, we prove that
|B| > n—3. Then there exists a vertex z € V(G) such that |E¢(z)NB| = 1.
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Let zw € B, y and 2 be the only two vertices not adjacent to z in G.
Let p and g be the only two vertices not adjacent to w in G. We claim that
for any vertex z’ € V(G) \ {z,v, z,w},

|Ec({w,y,2},2') N B| > 1 if {wz’,yz’, 22’} C E(G). (2.4)

To see this, note that if |Eg({w,y, z},z’) N B| =0, then {z,z'} is a dom-
inating set of G’ since w,y and z can be dominated by z' and others can
be dominated by z in G’, a contradiction.

We now prove that |B| > n— 3 by considering the following three cases.

Case 1 {y,z} = {p,q}.
In this case, yz € E(G) and z’ is adjacent to every vertex in {w,y, z}
for any vertex 2’ € V| = V(G)\{z,y,z,w} in G. By (2.4), |Ec({w,y, z},z')N
B| > 1, and so |Eg({w,y,2}, V1) N B| > |[V4| = n — 4. Thus

|B| = |{zw}| +|Ec({w,y,2},V1) N B|
>n-3.

Case 2 |{y, 2z} N {p,q}| = 1. Without loss of generality, let p = y.

In this case, yz,wz € E(G) and hence |E¢(z, {y, w})NB| > 1, for oth-
erwise {z, z} is a dominating set of G’ since {y, w} can be dominated
by z and others can be dominated by z in G'. Let r be the only vertex
except x not adjacent to z in G. Thus, =’ is adjacent to every vertex
in {w, y, z} for any vertex ' € V2 = V(G) \ {z,y, 2,w,q,7} in G. By
(2.4), |[Eqg({w,y,2},2') N B| > 1, and so |Eg({w,y,2},V2) N B| >
|[V2| = n — 6. Thus

|B| > |{zw}| +|Ec({w,y,z}, Vo) N B|
+|Ec(;, {v,w}h) N B|+|(Ec(q) U Ec(r)) N B
>n—3.

Case 3 {y,z} N {p,q} = 0.
In this case, wy,wz € E(G).

subcase 3.1 yz ¢ E(G).
In this case, |Eg(w, {y,2}) N B| > 1, for otherwise {z,w} is a
dominating set of G’. Note that 2’ is adjacent to every vertex in
{w,y, 2} for any vertex =’ € V3 = V(G) \ {z,y, 2,w,p,q} in G.
By (24)1 ’Eg({w, Y, Z}, xl) nBI 21, and so IEG'({wa Y Z}, VZ) n
B| 2 |Vz| = n — 6. Thus

|Bl = [{zw}| +|Ec({w,y,2}, V5) N B]
+|Ec(§u {v,2}) N B| + |(Ec(p) U Ec(g)) N B|
>n-—3.
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Subcase 3.2 yz € E(G).

In this case, |E(G[{w,y,2}]) N B| > 2, since otherwise z and
one vertex in {w,y, z} consist of a dominating set of G’. Let r
and s be the only vertex except = not adjacent to y and z in G,
respectively. Note that z’ is adjacent to every vertex in {w,y, 2}
for any vertex z’' € V4 = V(G) \ {=,v,2,w,p,q,7,5} in G. By
(2.4), |[Ec({w,y,2},2')Nn B| > 1, and so

n—-6 if |{r,s}U{p,q}| =2;
|[Ee({w,y,2},Va)NB| 2 n—7 if |{r,s}U{p,q}| =3;
n—-8 if|{r,s}u{p.q} =4
Thus
IBI 2 |{:z:w}| + |Ea({'w,y,z}, ‘/4) n BI
+|E(G[{w,y,2}]) N B
+|(Ec(p) U Eg(q) U Eg(r) U Ec(s)) N B)
>n-3.
The theorem follows. 1
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