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Abstract

In this note, we consider one type of k—tridiagonal matrix family
whose permanents and determinants are specified to the balancing
and Lucas-balancing numbers. Moreover, we provide some proper-
ties between Chebyshev polynomial properties and the given number
sequences.

1 Introduction

The n-square k-tridiagonal matrix [2] is defined as follows:

[ d 0 0 a 0 0
0 dz T ag :
: 0
T(k) - 0 dr-k Qn—k
n
br+1 0
0 brye '
. dn—l 0
\ 0 0 b O 0 dn /

By definition of the matrix family, it is readily seen that k—tridiagonal
matrices are a generalization of some special kind of matrices such as tridi-
agonal, pentadiagonal, etc. This kind of matrices have applications in many

fields of science (see 2, 3, 4, 5, 6]).
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In literature, there are several kinds of integer sequences and their gen-
eralizations. Most of them are defined as a result of an event in nature or to
give a mathematical model to a problem. Integer sequences appear in huge
amount fields of science and they have many applications in mathematics,
biology and engineering.

Recently there is great interest to balancing numbers, introduced by
Behera and Panda in [8] with following recurrence relation for n > 2

Bn+1 = 6.Bn - Bn—la With Bl = 1, Bz =6.

The balancing numbers [8] are obtained as a solution of Diophantine equa-
tionl+2+---+(n-1)=(n+1)+(n+2)+---+(n+7) calling r € Z+,
the balancer corresponding to the balancing number n and it is proved that
a positive integer n is a balancing number if and only if n? is a triangu-
lar number or 8n2 + 1 is a perfect square. In other words, the following
statements are equivalent:
- n is a balancing number
- n? is a triangular number
- 8n? + 1 is a perfect square.
Moreover (8] Behera and Panda showed that hm ﬁt =3+V8.

The Lucas-balancing numbers [11] are defined with the following recur-
rence relations for n > 2:

Cn41 =6Cy — Cn

with C; =3, Cs = 17.
First six values of balancing (B,) and Lucas-balancing (C,.) numbers
are given in the table, below:

n]1 2 3 4 5 6
B,|1 6 35 204 1189 6930
C.|3 17 99 577 3363 19601

The determinant (7] of an n x n matrix A = (a;;) may be given by
n
det(A4) = E sgn(o) Haia(i) ,
o€ES,, i=]1

where S, represents the symmetric group of degree n. Analogously, the
permanent (7] of A is

per (A) = Z Haio(i) .

OES, i=1



Brualdi and Gibson [1] give a new method, which is called as contraction
method, to compute permanents of matrices. Let A = (a;;) bean m x n
matrix with row vectors 71,72,...,™m. We call A is contractible on column
k, if column k contains exactly two non zero elements. Suppose that A is
contractible on column k with a;x # 0,a;% # 0 and 7 # j. Then the (m —
1) x (n— 1) matrix A;;;x obtained from A replacing row i with a;ikr; + ai7;
and deleting row j and column k is called the contraction of A on column k
relative to rows ¢ and j. If A is contractible on row k with ax; # 0,ar; # 0
and ¢ # j, then the matrix Ag.; = [Ag;-:k]T is called the contraction of A
on row k relative to columns 7 and j. We know that if A is a integer matrix
and B is a contraction of A, then

per A=perB. (1)

A matrix A is called convertible if there exists an n x n (1, —1)-matrix H
such that det(Ao H) = per A, where Ao H is well known Hadamard product
of A and H. Here H is called as a converter of A [1].

Let us define n-square symmetric k-tridiagonal matrices Hy x and Up
of the form

6, h,"i for i = 1,2,...,n (2)
0, otherwise

Hpp =

{ -1, hiipr=hyrifori=1,2,...,n-k

=1, Ujipk=Uipkifori=1,2,... n—k
_ 3, u,-,ifori=1,2,...,k
Un = 6, wefori=k+1,k+2,...,n (3)
0, otherwise

here, we assume that there exists m such that n = mk.

2 On k-—tridiagonal matrices and the balanc-
ing and Lucas-balancing numbers

Let us consider k-tridiagonal matrices given with (2) and (3). Then, we
have the following theorem.

Theorem 1 Let {B,} and {C,} are nth balancing and Lucas-balancing
numbers, respectively, then it follows that

det H,x = BE, ., (4)

and
det Uni = C,‘:, (5)
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Proof. By using fast block diagonalization method for k—tridiagonal ma-
trices given by [2], a block diagonal matrix will be obtained and by deter-
minants of tridiagonal matrices of the form

dl a)
by d2 a
fi= by -
di1 ai
b; d;

which satisfies a three-term recurrence
fi=difio1 — biai_1fi2

given by [14], the proof can be seen easily. m
By using Hadamard matrix multiplication property given above, we
consider n—square matrices Ty, . and V, ;. as below:

-1, tiiqxfori=12,...,n—-k
T _ l, ti+k,|‘ forz’=1,2,...,n—k
nk = 6, tiifori=12,...,n
0, otherwise

bl

and
-1, vipxfori=1,2,...,n—k
1, Vitk,i fori=1,2,...,n—k
Vo= 3, wifori=1,2,...,k
6, vifori=k+1,k+2,...,n
0, otherwise

here n = mk. Then we have the following theorem.

Theorem 2
perln; = By’:;.g.l (6)

and
perVo i = C','ﬁ,. )]

Proof. Since the matrices have exactly two non-zero elements at the last
columns, using consecutive contraction steps on the last columns, the result
can be seen, readily. m
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3 Balancing Q-Matrices

The Q—matrix was first studied by King [13] in 1960. Motivated by this,
Ray introduced [12] balancing @—matrix which is given by

a=(17)

n o _ Bn+1 -Bn
QB‘( B. -Bu,

here B, denotes n** balancing number. Moreover, Ray gave

and obtained that

detQ = [BZ ~ Bn-1Bpq1] = 1.

Let us consider n—square matrix

0 -10 0
106 0

=10 6 0 -1 ®)
0 0 1 0

then we have the following theorem.

Theorem 3 Let Qg be n-square matriz given by (8). Then

( 0 ""Bn 0 Bn—l
—_ Bn 0 Bn+1 0 . .
f = 0 Buyya 0 -B. if n odd integer

\Baei O B. 0

( - Bn_ 1 0 - Bn 0
@ = 0 Bt 0 -B,
B B, 0 Ban 0
\ 0 B, 0 -Bn,,

if n even inleger

here n is positive integer and B, is nth balancing number.

Proof. It holds for n = 1 and n = 2. Suppose it verifies for n = k, then
by definition of the sequence

0 —-B, 0 Ba 0 -1 0 0
w1 | Ba 0 Bay 0 10 6 0
% =| 0 Bus 0 -Ba. 0 6 0 —1
Ba, 0 B, 0 0 0 1 0
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and

—Bn_1 0 -B, 0 0 -1 0 0

Qit? = 0 Bpyr 0 ~By 1 0 6 O
B Bi 0 Bn O 0 6 0 -1
0 B, 0 —Bn1 0 0 1 O

by induction, the theorem holds for all positive integers. m

Corollary 4
det % = [Bﬁ - Bn_an.H]z =1.

4 Combining Chebyshev polynomials with bal-
ancing and Lucas-balancing numbers

We know [9] that

z 1
Q@=|" " =Vt ©)

1
a

here U,(z) is the second kind Chebyshev polynomial which satisfies the
following recurrence relation:

Un+1(z) = 22U (z) — Un—1(z)

with initial conditions Up(z) =1 and Uy(z) = 2z for alln = 1,2,....
From (2) for k =1 and (9) for e =1 and z = 6, we have

Bny1 =U,(3).
Moreover, from (10} we can write
Un(z) = Ul(z)Un—i(z) = Ut-1(z)Un-1-1(z)
with 1 <1 € n. So we have
Bnt1 = Bi41Bn—t+1 — BiBn—y

which is given in ([8],Theorem 5.1).
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It is known that [7]

z 1
Tu@)=|' **
.. 1
1 2z
here T, (z) denotes Chebyshev polynomial of first kind. It is also well-known

that
2T (z) = Un(x) — Up—2(z) (10)

From (3) for k = 1, (9) and (10), it is seen, readily
2Cn-1 = Bp — Bp_a.

Consequently, by exploiting properties of Chebyshev polynomials of first
and second kind, some new properties can be verified for balancing and
Lucas-balancing numbers. In [15], the author obtained some results for
Fibonacci and Pell numbers by using similar method.

5 Illustrative examples
Let us consider the results given with (4) and (6) for balancing numbers,

for some k and m taken below.
For k = 2 and m = 3, then

6 0 -1 0 0 o0
0 6 0 -1"0 O
-1 0 6 0 -1 0
Hea=| o _1 0 6 0 -1
0 0 -1 0 6 O
0 0 0 -1 0 &6
det Hg s = Bf
and for k=3 and m =2
6 0 0 1 0 o0
0 6 0 0 1 0
Ten = 0 0 6 0 0 1
3=l -1 0 0 6 0 O
0 -1 0 0 6 0
0O 0 -1 0 0 &6
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perTs 3 = B3.

Taking into account (5) and (7) for Lucas-balancing numbers, for some
k and m given below, we give determinant and permanents for Lucas-
balancing numbers.

/3 0 0 -1 0 0 0 0
0 3 0 0 -1 0 0 0
0 0 6 0 0 -1 0 0
-1 0 0 6 0 0 -1 0 |., _
Us2 = 0 -1 0 0 6 0 0 -1 ifk=2andm=4
0 0 -1 0 0 6 0 0
0 0 0 -1 0 0 6 0
\o 0 0 0 -1 0 0 6
detUg,2=Cf
/3 0 0 0 1 0 0 0
0 3 0 0 0 1 0 O
0 0 3 0 0 0 1 0
0o 0 0 3 0 0 0 1 |.
Va4 = 1.0 0 0 6 0 0 0 ifk=4and m =2
0 -1 0 0 0 6 0 0
0 0 -1 0 0 0 6 0
\0 0 0 -1 0 0 0 6 )
perVg 4 = Cs.

6 Conclusion

In this paper, we give determinants and permanents of k—tridiagonal ma-
trices with balancing and Lucas-balancing numbers. Moreover, we show
that these sequences can be obtained with Chebyshev polynomials. So,
they verify properties of Cheyshev polynomials of first and second kind.
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